Effects of Sunitinib and Other Kinase Inhibitors on Cells Harboring a PDGFRB Mutation Associated with Infantile Myofibromatosis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-34083A
Ministerstvo Zdravotnictví Ceské Republiky
16-33209A
Ministerstvo Zdravotnictví Ceské Republiky
LQ1605
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30200486
PubMed Central
PMC6163232
DOI
10.3390/ijms19092599
PII: ijms19092599
Knihovny.cz E-zdroje
- Klíčová slova
- FR180204, U0126, erlotinib, infantile myofibromatosis, platelet-derived growth factor receptor, protein kinase inhibitors, receptor tyrosine kinases, sunitinib, targeted therapy,
- MeSH
- butadieny aplikace a dávkování terapeutické užití MeSH
- dítě MeSH
- erlotinib aplikace a dávkování terapeutické užití MeSH
- fosforylace účinky léků MeSH
- inhibitory proteinkinas aplikace a dávkování terapeutické užití MeSH
- kojenec MeSH
- lidé MeSH
- mutace * MeSH
- myofibromatóza vrozené farmakoterapie genetika MeSH
- nádorové buněčné linie MeSH
- nitrily aplikace a dávkování terapeutické užití MeSH
- proliferace buněk účinky léků MeSH
- pyrazoly aplikace a dávkování terapeutické užití MeSH
- pyridaziny aplikace a dávkování terapeutické užití MeSH
- růstový faktor odvozený z trombocytů - receptor beta * genetika metabolismus MeSH
- sunitinib aplikace a dávkování terapeutické užití MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- butadieny MeSH
- erlotinib MeSH
- FR 180204 MeSH Prohlížeč
- inhibitory proteinkinas MeSH
- nitrily MeSH
- PDGFRB protein, human MeSH Prohlížeč
- pyrazoly MeSH
- pyridaziny MeSH
- růstový faktor odvozený z trombocytů - receptor beta * MeSH
- sunitinib MeSH
- U 0126 MeSH Prohlížeč
Infantile myofibromatosis represents one of the most common proliferative fibrous tumors of infancy and childhood. More effective treatment is needed for drug-resistant patients, and targeted therapy using specific protein kinase inhibitors could be a promising strategy. To date, several studies have confirmed a connection between the p.R561C mutation in gene encoding platelet-derived growth factor receptor beta (PDGFR-beta) and the development of infantile myofibromatosis. This study aimed to analyze the phosphorylation of important kinases in the NSTS-47 cell line derived from a tumor of a boy with infantile myofibromatosis who harbored the p.R561C mutation in PDGFR-beta. The second aim of this study was to investigate the effects of selected protein kinase inhibitors on cell signaling and the proliferative activity of NSTS-47 cells. We confirmed that this tumor cell line showed very high phosphorylation levels of PDGFR-beta, extracellular signal-regulated kinases (ERK) 1/2 and several other protein kinases. We also observed that PDGFR-beta phosphorylation in tumor cells is reduced by the receptor tyrosine kinase inhibitor sunitinib. In contrast, MAPK/ERK kinases (MEK) 1/2 and ERK1/2 kinases remained constitutively phosphorylated after treatment with sunitinib and other relevant protein kinase inhibitors. Our study showed that sunitinib is a very promising agent that affects the proliferation of tumor cells with a p.R561C mutation in PDGFR-beta.
Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 65691 Brno Czech Republic
Zobrazit více v PubMed
Martignetti J.A., Tian L., Li D., Ramirez M.C., Camacho-Vanegas O., Camacho S.C., Guo Y., Zand D.J., Bernstein A.M., Masur S.K., et al. Mutations in PDGFRB cause autosomal-dominant infantile myofibromatosis. Am. J. Hum. Genet. 2013;92:1001–1007. doi: 10.1016/j.ajhg.2013.04.024. PubMed DOI PMC
Levine E., Fréneaux P., Schleiermacher G., Brisse H., Pannier S., Teissier N., Mesples B., Orbach D. Risk-adapted therapy for infantile myofibromatosis in children. Pediatr. Blood Cancer. 2012;59:115–120. doi: 10.1002/pbc.23387. PubMed DOI
Kim E.J., Wang K.C., Lee J.Y., Phi J.H., Park S.H., Cheon J.E., Jang Y.E., Kim S.K. Congenital solitary infantile myofibromatosis involving the spinal cord. J. Neurosurg. Pediatr. 2013;11:82–86. doi: 10.3171/2012.9.PEDS12245. PubMed DOI
Venkatesh V., Kumar B.P., Kumar K.A., Mohan A.P. Myofibroma-a rare entity with unique clinical presentation. J. Maxillofac. Oral Surg. 2015;14:64–68. doi: 10.1007/s12663-011-0299-5. PubMed DOI PMC
Hausbrandt P.A., Leithner A., Beham A., Bodo K., Raith J., Windhager R. A rare case of infantile myofibromatosis and review of literature. J. Pediatr. Orthop. B. 2010;19:122–126. doi: 10.1097/BPB.0b013e32832e4756. PubMed DOI
Weaver M.S., Navid F., Huppmann A., Meany H., Angiolillo A. Vincristine and Dactinomycin in Infantile Myofibromatosis with a Review of Treatment Options. J. Pediatr. Hematol. Oncol. 2015;37:237–241. doi: 10.1097/MPH.0000000000000286. PubMed DOI
Cheung Y.H., Gayden T., Campeau P.M., LeDuc C.A., Russo D., Nguyen V.H., Guo J., Qi M., Guan Y., Albrecht S., et al. A recurrent PDGFRB mutation causes familial infantile myofibromatosis. Am. J. Hum. Genet. 2013;92:996–1000. doi: 10.1016/j.ajhg.2013.04.026. PubMed DOI PMC
Mudry P., Slaby O., Neradil J., Soukalova J., Melicharkova K., Rohleder O., Jezova M., Seehofnerova A., Michu E., Veselska R., et al. Case report: Rapid and durable response to PDGFR targeted therapy in a child with refractory multiple infantile myofibromatosis and a heterozygous germline mutation of the PDGFRB gene. BMC Cancer. 2017;17:119. doi: 10.1186/s12885-017-3115-x. PubMed DOI PMC
Gatibelza M.E., Vazquez B.R., Bereni N., Denis D., Bardot J., Degardin N. Isolated infantile myofibromatosis of the upper eyelid: Uncommon localization and long-term results after surgical management. J. Pediatr. Surg. 2012;47:1457–1459. doi: 10.1016/j.jpedsurg.2012.03.092. PubMed DOI
Murray N., Hanna B., Graf N., Fu H., Mylene V., Campeau P.M., Ronan A. The spectrum of infantile myofibromatosis includes both non-penetrance and adult recurrence. Eur. J. Med. Genet. 2017;60:353–358. doi: 10.1016/j.ejmg.2017.02.005. PubMed DOI
Lepelletier C., Al-Sarraj Y., Bodemer C., Shaath H., Fraitag S., Kambouris M., Hamel-Teillac D., Shanti H.E., Hadj-Rabia S. Heterozygous PDGFRB Mutation in a Three-generation Family with Autosomal Dominant Infantile Myofibromatosis. Acta Derm. Venereol. 2017;97:858–859. doi: 10.2340/00015555-2671. PubMed DOI
Heldin C.H. Targeting the PDGF signaling pathway in tumor treatment. Cell. Commun. Signal. 2013;11:97. doi: 10.1186/1478-811X-11-97. PubMed DOI PMC
Cao Y. Multifarious functions of PDGFs and PDGFRs in tumor growth and metastasis. Trends Mol. Med. 2013;19:460–473. doi: 10.1016/j.molmed.2013.05.002. PubMed DOI
Andrae J., Gallini R., Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22:1276–1312. doi: 10.1101/gad.1653708. PubMed DOI PMC
Hoch R.V., Soriano P. Roles of PDGF in animal development. Development. 2003;130:4769–4784. doi: 10.1242/dev.00721. PubMed DOI
Aster J.C., Pear W.S., Blacklow S.C. The Varied Roles of Notch in Cancer. Annu. Rev. Pathol. 2017;12:245–275. doi: 10.1146/annurev-pathol-052016-100127. PubMed DOI PMC
Jin S., Hansson E.M., Tikka S., Lanner F., Sahlgren C., Farnebo F., Baumann M., Kalimo H., Lendahl U. Notch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Circ. Res. 2008;102:1483–1491. doi: 10.1161/CIRCRESAHA.107.167965. PubMed DOI
Linhares N.D., Freire M.C., Cardenas R.G., Pena H.B., Bahia M., Pena S.D. Exome sequencing identifies a novel homozygous variant in NDRG4 in a family with infantile myofibromatosis. Eur. J. Med. Genet. 2014;57:643–648. doi: 10.1016/j.ejmg.2014.08.010. PubMed DOI
Linhares N.D., Freire M.C., Cardenas R.G., Bahia M., Puzenat E., Aubin F., Pena S.D. Modulation of expressivity in PDGFRB-related infantile myofibromatosis: A role for PTPRG? Genet. Mol. Res. 2014;13:6287–6292. doi: 10.4238/2014.August.15.11. PubMed DOI
Mirenda M., Toffali L., Montresor A., Scardoni G., Sorio C., Laudanna C. Protein tyrosine phosphatase receptor type γ is a JAK phosphatase and negatively regulates leukocyte integrin activation. J. Immunol. 2015;194:2168–2179. doi: 10.4049/jimmunol.1401841. PubMed DOI
Arts F.A., Chand D., Pecquet C., Velghe A., Constantinescu S., Hallberg B., Demoulin J.B. PDGFRB mutants found in patients with familial infantile myofibromatosis or overgrowth syndrome are oncogenic and sensitive to imatinib. Oncogene. 2016;35:3239–3248. doi: 10.1038/onc.2015.383. PubMed DOI
Faivre S., Demetri G., Sargent W., Raymond E. Molecular basis for sunitinib efficacy and future clinical development. Nat. Rev. Drug Discov. 2007;6:734–745. doi: 10.1038/nrd2380. PubMed DOI
Sos M.L., Koker M., Weir B.A., Heynck S., Rabinovsky R., Zander T., Seeger J.M., Weiss J., Fischer F., Frommolt P., et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 2009;69:3256–3261. doi: 10.1158/0008-5472.CAN-08-4055. PubMed DOI PMC
Yap J.L., Worlikar S., MacKerell A.D., Shapiro P., Fletcher S. Small-molecule inhibitors of the ERK signaling pathway: Towards novel anticancer therapeutics. ChemMedChem. 2011;6:38–48. doi: 10.1002/cmdc.201000354. PubMed DOI PMC
Abouantoun T.J., Castellino R.C., MacDonald T.J. Sunitinib induces PTEN expression and inhibits PDGFR signaling and migration of medulloblastoma cells. J. Neurooncol. 2011;101:215–226. doi: 10.1007/s11060-010-0259-9. PubMed DOI PMC
Wetmore C., Daryani V.M., Billups C.A., Boyett J.M., Leary S., Tanos R., Goldsmith K.C., Stewart C.F., Blaney S.M., Gajjar A. Phase II evaluation of sunitinib in the treatment of recurrent or refractory high-grade glioma or ependymoma in children: A children’s Oncology Group Study ACNS1021. Cancer Med. 2016;5:1416–1424. doi: 10.1002/cam4.713. PubMed DOI PMC
Jakacki R.I., Hamilton M., Gilbertson R.J., Blaney S.M., Tersak J., Krailo M.D., Ingle A.M., Voss S.D., Dancey J.E., Adamson P.C. Pediatric phase I and pharmacokinetic study of erlotinib followed by the combination of erlotinib and temozolomide: A Children’s Oncology Group Phase I Consortium Study. J. Clin. Oncol. 2008;26:4921–4927. doi: 10.1200/JCO.2007.15.2306. PubMed DOI PMC
Altomare D.A., Testa J.R. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24:7455–7464. doi: 10.1038/sj.onc.1209085. PubMed DOI
McCubrey J.A., Steelman L.S., Chappell W.H., Abrams S.L., Wong E.W., Chang F., Lehmann B., Terrian D.M., Milella M., Tafuri A., et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta. 2007;1773:1263–1284. doi: 10.1016/j.bbamcr.2006.10.001. PubMed DOI PMC
Veselska R., Kuglik P., Cejpek P., Svachova H., Neradil J., Loja T., Relichova J. Nestin expression in the cell lines derived from glioblastoma multiforme. BMC Cancer. 2006;6:32. doi: 10.1186/1471-2407-6-32. PubMed DOI PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Skoda J., Neradil J., Zitterbart K., Sterba J., Veselska R. EGFR signaling in the HGG-02 glioblastoma cell line with an unusual loss of EGFR gene copy. Oncol. Rep. 2014;31:480–487. doi: 10.3892/or.2013.2864. PubMed DOI
Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI