New Target for Precision Medicine Treatment of Giant-Cell Tumor of Bone: Sunitinib Is Effective in the Treatment of Neoplastic Stromal Cells with Activated PDGFRβ Signaling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1477/2018
Masarykova Univerzita
16-34083A
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
PubMed
34298757
PubMed Central
PMC8305892
DOI
10.3390/cancers13143543
PII: cancers13143543
Knihovny.cz E-zdroje
- Klíčová slova
- PDGFR beta, denosumab, giant-cell tumor of bone, signaling, sunitinib, targeted treatment,
- Publikační typ
- časopisecké články MeSH
Giant-cell tumor of bone (GCTB) is an intermediate type of primary bone tumor characterized by locally aggressive growth with metastatic potential. The aim of this study was to identify new druggable targets among the cell signaling molecules involved in GCTB tumorigenesis. Profiles of activated signaling proteins in fresh-frozen tumor samples and tumor-derived cell lines were determined using phosphoprotein arrays. Analysis of the obtained data revealed epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor beta (PDGFRβ) as potential targets, but only the PDGFR inhibitor sunitinib caused a considerable decrease in stromal cell viability in vitro. Furthermore, in the case of a 17-year-old patient suffering from GCTB, we showed that the addition of sunitinib to the standard treatment of GCTB with the monoclonal antibody denosumab resulted in the complete depletion of multinucleated giant cells and mononuclear stromal cells in the tumor tissue. To summarize, the obtained data showed that a specific receptor tyrosine kinase (RTK) signaling pattern is activated in GCTB cells and plays an important role in the regulation of cell proliferation. Thus, activated RTKs and their downstream signaling pathways represent useful targets for precision treatment with low-molecular-weight inhibitors or with other types of modern biological therapy.
Department of Chemistry Faculty of Science Masaryk University 61137 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 65691 Brno Czech Republic
Zobrazit více v PubMed
Campanacci M., Baldini N., Boriani S., Sudanese A. Giant-Cell Tumor of Bone. J. Bone Joint Surg. Am. 1987;69:106–114. doi: 10.2106/00004623-198769010-00018. PubMed DOI
Athanasou N., Bansal M., Forsyth R., Reid R., Sapi Z. Giant cell tumor of bone. In: Fletcher C.D.M., Bridge J., Hogendoor P., Mertens F., editors. WHO Classification of Tumours of Soft Tissue and Bone. IARC Press; Lyon, France: 2013. pp. 321–324.
Turcotte R.E. Giant Cell Tumor of Bone. Orthop. Clin. North Am. 2006;37:35–51. doi: 10.1016/j.ocl.2005.08.005. PubMed DOI
Unni K.K., Inwards C.Y. Dahlin’s Bone Tumors: General Aspects and Data on 10,165 Cases. 6th ed. LWW; Philadelphia, PA, USA: 2009.
Ruggieri P., Mavrogenis A.F., Ussia G., Angelini A., Papagelopoulos P.J., Mercuri M. Recurrence After and Complications Associated With Adjuvant Treatments for Sacral Giant Cell Tumor. Clin. Orthop. Relat. Res. 2010;468:2954–2961. doi: 10.1007/s11999-010-1448-8. PubMed DOI PMC
Balke M., Schremper L., Gebert C., Ahrens H., Streitbuerger A., Koehler G., Hardes J., Gosheger G. Giant cell tumor of bone: Treatment and outcome of 214 cases. J. Cancer Res. Clin. Oncol. 2008;134:969–978. doi: 10.1007/s00432-008-0370-x. PubMed DOI
Malek F.A.A., Krueger P.M., Hatmi Z.N., Malayeri A., Faezipour H., Donnell R.J.O. Local control of long bone giant cell tumour using curettage, burring and bone grafting without adjuvant therapy. Int. Orthop. 2006;30:495–498. doi: 10.1007/s00264-006-0146-3. PubMed DOI PMC
Saiz P., Virkus W., Piasecki P., Templeton A., Shott S., Gitelis S. Results of Giant Cell Tumor of Bone Treated With Intralesional Excision. Clin. Orthop. Relat. Res. 2004;424:221–226. doi: 10.1097/01.blo.0000128280.59965.e3. PubMed DOI
Jeys L.M., Suneja R., Chami G., Grimer R.J., Carter S.R., Tillman R.M. Impending fractures in giant cell tumours of the distal femur: Incidence and outcome. Int. Orthop. 2006;30:135–138. doi: 10.1007/s00264-005-0061-z. PubMed DOI PMC
Wu P.-F., Tang J.-Y., Li K.-H. RANK pathway in giant cell tumor of bone: Pathogenesis and therapeutic aspects. Tumor Biol. 2015;36:495–501. doi: 10.1007/s13277-015-3094-y. PubMed DOI
Thomas D.M. RANKL, denosumab, and giant cell tumor of bone. Curr. Opin. Oncol. 2012;24:397–403. doi: 10.1097/CCO.0b013e328354c129. PubMed DOI
Chawla S., Henshaw R., Seeger L., Choy E., Blay J.-Y., Ferrari S., Kroep J., Grimer R., Reichardt P., Rutkowski P., et al. Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: Interim analysis of an open-label, parallel-group, phase 2 study. Lancet Oncol. 2013;14:901–908. doi: 10.1016/S1470-2045(13)70277-8. PubMed DOI
Arbeitsgemeinschaft Knochentumoren. Becker W.T., Dohle J., Bernd L., Braun A., Cserhati M., Enderle A., Hovy L., Matejovsky Z., Szendroi M., et al. Local Recurrence of Giant Cell Tumor of Bone after Intralesional Treatment with and without Adjuvant Therapy. J. Bone Jt. Surg. Am. Vol. 2008;90:1060–1067. doi: 10.2106/JBJS.D.02771. PubMed DOI
Rutkowski P., Gaston L., Borkowska A., Stacchiotti S., Gelderblom H., Baldi G.G., Palmerini E., Casali P., Gronchi A., Parry M., et al. Denosumab treatment of inoperable or locally advanced giant cell tumor of bone—Multicenter analysis outside clinical trial. Eur. J. Surg. Oncol. EJSO. 2018;44:1384–1390. doi: 10.1016/j.ejso.2018.03.020. PubMed DOI
Palmerini E., Chawla N., Ferrari S., Sudan M., Picci P., Marchesi E., Leopardi M.P., Syed I., Sankhala K., Parthasarathy P., et al. Denosumab in advanced/unresectable giant-cell tumour of bone (GCTB): For how long? Eur. J. Cancer. 2017;76:118–124. doi: 10.1016/j.ejca.2017.01.028. PubMed DOI
Ulas A., Akinci M.B., Silay K., Sendur M.A.N., DeDe D.S., Yalcin B. Denosumab: Excellent response of metastatic giant cell tumor of the bone. J. BUON Off. J. Balk. Union Oncol. 2015;20:666–667. PubMed
Mak I.W., Evaniew N., Popovic S., Tozer R., Ghert M. A Translational Study of the Neoplastic Cells of Giant Cell Tumor of Bone Following Neoadjuvant Denosumab. J. Bone Jt. Surg. Am. Vol. 2014;96:e127. doi: 10.2106/JBJS.M.01332. PubMed DOI
Balla P., Moskovszky L., Sapi Z., Forsyth R., Knowles H., Athanasou N.A., Szendroi M., Kopper L., Rajnai H., Pinter F., et al. Epidermal growth factor receptor signalling contributes to osteoblastic stromal cell proliferation, osteoclastogenesis and disease progression in giant cell tumour of bone. Histopathology. 2011;59:376–389. doi: 10.1111/j.1365-2559.2011.03948.x. PubMed DOI
Guenther R., Krenn V., Morawietz L., Dankof A., Melcher I., Schaser K.-D., Kasper H.-U., Kuban R.-J., Ungethüm U., Sers C. Giant cell tumors of the bone: Molecular profiling and expression analysis of Ephrin A1 receptor, Claudin 7, CD52, FGFR3 and AMFR. Pathol. Res. Pr. 2005;201:649–663. doi: 10.1016/j.prp.2005.07.005. PubMed DOI
Liu L., Aleksandrowicz E., Fan P., Schonsiegel F., Zhang Y., Sahr H., Gladkich J., Mattern J., Depeweg D., Lehner B., et al. Enrichment of c-Met+ tumorigenic stromal cells of giant cell tumor of bone and targeting by cabozantinib. Cell Death Dis. 2014;5:e1471. doi: 10.1038/cddis.2014.440. PubMed DOI PMC
Zhou Z., Li Y., Wang X., Hu J., Kuang M., Wang Z., Li S., Xu W., Xiao J. ALCAM+ stromal cells: Role in giant cell tumor of bone progression. Cell Death Dis. 2018;9:1–13. doi: 10.1038/s41419-018-0361-z. PubMed DOI PMC
Maros M.E., Schnaidt S., Balla P., Kelemen Z., Sapi Z., Szendroi M., Laszlo T., Forsyth R., Picci P., Krenacs T. In situ cell cycle analysis in giant cell tumor of bone reveals patients with elevated risk of reduced progression-free survival. Bone. 2019;127:188–198. doi: 10.1016/j.bone.2019.06.022. PubMed DOI
Neradil J., Kyr M., Polaskova K., Kren L., Macigova P., Skoda J., Sterba J., Veselska R. Phospho-Protein Arrays as Effective Tools for Screening Possible Targets for Kinase Inhibitors and Their Use in Precision Pediatric Oncology. Front. Oncol. 2019;9:930. doi: 10.3389/fonc.2019.00930. PubMed DOI PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Meth. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Kassambara A., Mundt F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package Version 1.0.7. [(accessed on 2 May 2021)];2020 Available online: https://CRAN.R-project.org/package=factoextra.
R Core Team . R Foundation for Statistical Computing; Vienna: 2018. [(accessed on 2 May 2021)]. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org.
Sramek M., Neradil J., Macigova P., Mudry P., Polaskova K., Slaby O., Noskova H., Sterba J., Veselska R. Effects of Sunitinib and Other Kinase Inhibitors on Cells Harboring a PDGFRB Mutation Associated with Infantile Myofibromatosis. Int. J. Mol. Sci. 2018;19:2599. doi: 10.3390/ijms19092599. PubMed DOI PMC
Mukaihara K., Suehara Y., Kohsaka S., Akaike K., Tanabe Y., Kubota D., Ishii M., Fujimura T., Kazuno S., Okubo T., et al. Protein Expression Profiling of Giant Cell Tumors of Bone Treated with Denosumab. PLoS ONE. 2016;11:e0148401. doi: 10.1371/journal.pone.0148401. PubMed DOI PMC
Roskoski R. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders. Pharmacol. Res. 2018;129:65–83. doi: 10.1016/j.phrs.2018.01.021. PubMed DOI
Van der Heijden L., Dijkstra P.S., Blay J.-Y., Gelderblom H. Giant cell tumour of bone in the denosumab era. Eur. J. Cancer. 2017;77:75–83. doi: 10.1016/j.ejca.2017.02.021. PubMed DOI
Klenke F.M., Wenger D.E., Inwards C.Y., Rose P.S., Sim F.H. Giant Cell Tumor of Bone: Risk Factors for Recurrence. Clin. Orthop. Relat. Res. 2011;469:591–599. doi: 10.1007/s11999-010-1501-7. PubMed DOI PMC
Van Langevelde K., McCarthy C.L. Radiological findings of denosumab treatment for giant cell tumours of bone. Skelet. Radiol. 2020;49:1345–1358. doi: 10.1007/s00256-020-03449-1. PubMed DOI PMC
Thomas D.M., Skubitz K.M. Giant cell tumour of bone. Curr. Opin. Oncol. 2009;21:338–344. doi: 10.1097/CCO.0b013e32832c951d. PubMed DOI
Baud’Huin M., Renault R., Charrier C., Riet A., Moreau A., Brion R., Gouin F., Duplomb L., Heymann D. Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis. J. Pathol. 2010;221:77–86. doi: 10.1002/path.2684. PubMed DOI
Oreffo R.O., Marshall G.J., Kirchen M., Garcia C., Gallwitz W.E., Chavez J., Mundy G.R., Bonewald L.F. Characterization of a Cell Line Derived from a Human Giant Cell Tumor That Stimulates Osteoclastic Bone Resorption. Clin. Orthop. Relat. Res. 1993;296:229–241. doi: 10.1097/00003086-199311000-00039. PubMed DOI
Hadjidakis D.J., Androulakis I.I. Bone Remodeling. Ann. N. Y. Acad. Sci. 2006;1092:385–396. doi: 10.1196/annals.1365.035. PubMed DOI
Uehara S., Udagawa N., Kobayashi Y. Regulation of osteoclast function via Rho-Pkn3-c-Src pathways. J. Oral Biosci. 2019;61:135–140. doi: 10.1016/j.job.2019.07.002. PubMed DOI
Brun J., Andreasen C.M., Ejersted C., Andersen T.L., Caverzasio J., Thouverey C. PDGF Receptor Signaling in Osteoblast Lineage Cells Controls Bone Resorption Through Upregulation of Csf1 Expression. J. Bone Miner. Res. 2020;35:2458–2469. doi: 10.1002/jbmr.4150. PubMed DOI
David J.-P., Sabapathy K., Hoffmann O., Idarraga M.H., Wagner E.F. JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J. Cell Sci. 2002;115:4317–4325. doi: 10.1242/jcs.00082. PubMed DOI
Boyle W.J., Simonet W.S., Lacey D.L. Osteoclast differentiation and activation. Nat. Cell Biol. 2003;423:337–342. doi: 10.1038/nature01658. PubMed DOI
Baloul S.S. Osteoclastogenesis and Osteogenesis during Tooth Movement. Front Oral Biol. 2016;18:75–79. doi: 10.1159/000351901. PubMed DOI
Wang L., Han L., Xue P., Hu X., Wong S.-W., Deng M., Tseng H.C., Huang B.-W., Ko C.-C. Dopamine suppresses osteoclast differentiation via cAMP/PKA/CREB pathway. Cell. Signal. 2021;78:109847. doi: 10.1016/j.cellsig.2020.109847. PubMed DOI PMC
Roccisana J., Kawanabe N., Kajiya H., Koide M., Roodman G.D., Reddy S.V. Functional Role for Heat Shock Factors in the Transcriptional Regulation of Human RANK Ligand Gene Expression in Stromal/Osteoblast Cells. J. Biol. Chem. 2004;279:10500–10507. doi: 10.1074/jbc.M303727200. PubMed DOI
Koh J.-M., Lee Y.-S., Kim Y.S., Park S.-H., Lee S.H., Kim H.-H., Lee M.-S., Lee K.-U., Kim G.S. Heat shock protein 60 causes osteoclastic bone resorption via toll-like receptor-2 in estrogen deficiency. Bone. 2009;45:650–660. doi: 10.1016/j.bone.2009.06.007. PubMed DOI
Tariq M.U., Umer M., Khan Z., Saeed J., Siddiqui M.A., Din N.U. Spectrum of histological features of Denosumab treated Giant Cell Tumor of Bone; potential pitfalls and diagnostic challenges for pathologists. Ann. Diagn. Pathol. 2020;45:151479. doi: 10.1016/j.anndiagpath.2020.151479. PubMed DOI
Wang G., Jiang S., Li Z., Dong Y. Denosumab and Sunitinib in the treatment of giant-cell tumor of bone with pulmonary and bone metastases in an adolescent. Medicine. 2019;98:e17778. doi: 10.1097/MD.0000000000017778. PubMed DOI PMC
O’Sullivan S., Naot D., Callon K., Porteous F., Horne A., Wattie D., Watson M., Cornish J., Browett P., Grey A. Imatinib Promotes Osteoblast Differentiation by Inhibiting PDGFR Signaling and Inhibits Osteoclastogenesis by Both Direct and Stromal Cell-Dependent Mechanisms. J. Bone Miner. Res. 2007;22:1679–1689. doi: 10.1359/jbmr.070719. PubMed DOI
O’Sullivan S., Tay M.L., Lin J., Bava U., Callon K., Cornish J., Naot D., Grey A. Tyrosine Kinase Inhibitors Regulate OPG through Inhibition of PDGFRβ. PLoS ONE. 2016;11:e0164727. doi: 10.1371/journal.pone.0164727. PubMed DOI PMC
Greenhalgh J., Dwan K., Boland A., Bates V., Vecchio F., Dundar Y., Jain P., Green J.A. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. Cochrane Database Syst. Rev. 2016;5:CD010383. doi: 10.1002/14651858.CD010383.pub2. PubMed DOI
Kelley R.K., Ko A. Erlotinib in the treatment of advanced pancreatic cancer. Biol. Targets Ther. 2008;2:83–95. doi: 10.2147/btt.s1832. PubMed DOI PMC
Motzer R.J., Ravaud A., Patard J.-J., Pandha H.S., George D.J., Patel A., Chang Y.-H., Escudier B., Donskov F., Magheli A., et al. Adjuvant Sunitinib for High-risk Renal Cell Carcinoma After Nephrectomy: Subgroup Analyses and Updated Overall Survival Results. Eur. Urol. 2018;73:62–68. doi: 10.1016/j.eururo.2017.09.008. PubMed DOI PMC
George S., Merriam P., Maki R.G., Abbeele A.D.V.D., Yap J., Akhurst T., Harmon D.C., Bhuchar G., O’Mara M.M., D’Adamo D.R., et al. Multicenter Phase II Trial of Sunitinib in the Treatment of Nongastrointestinal Stromal Tumor Sarcomas. J. Clin. Oncol. 2009;27:3154–3160. doi: 10.1200/JCO.2008.20.9890. PubMed DOI PMC
Noguchi R., Yoshimatsu Y., Ono T., Sei A., Hirabayashi K., Ozawa I., Kikuta K., Kondo T. Establishment and characterization of NCC-PLPS1-C1, a novel patient-derived cell line of pleomorphic liposarcoma. Hum. Cell. 2021;34:688–697. doi: 10.1007/s13577-020-00457-0. PubMed DOI
Basu Mallick A., Chawla S.P. Giant Cell Tumor of Bone: An Update. Curr. Oncol. Rep. 2021;23:1–6. doi: 10.1007/s11912-021-01047-5. PubMed DOI
Palmerini E., Staals E.L., Jones L.B., Donati D.M., Longhi A., Randall R.L. Role of (Neo)adjuvant Denosumab for Giant Cell Tumor of Bone. Curr. Treat. Options Oncol. 2020;21:68. doi: 10.1007/s11864-020-00766-4. PubMed DOI