New Target for Precision Medicine Treatment of Giant-Cell Tumor of Bone: Sunitinib Is Effective in the Treatment of Neoplastic Stromal Cells with Activated PDGFRβ Signaling

. 2021 Jul 15 ; 13 (14) : . [epub] 20210715

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34298757

Grantová podpora
MUNI/A/1477/2018 Masarykova Univerzita
16-34083A Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund

Giant-cell tumor of bone (GCTB) is an intermediate type of primary bone tumor characterized by locally aggressive growth with metastatic potential. The aim of this study was to identify new druggable targets among the cell signaling molecules involved in GCTB tumorigenesis. Profiles of activated signaling proteins in fresh-frozen tumor samples and tumor-derived cell lines were determined using phosphoprotein arrays. Analysis of the obtained data revealed epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor beta (PDGFRβ) as potential targets, but only the PDGFR inhibitor sunitinib caused a considerable decrease in stromal cell viability in vitro. Furthermore, in the case of a 17-year-old patient suffering from GCTB, we showed that the addition of sunitinib to the standard treatment of GCTB with the monoclonal antibody denosumab resulted in the complete depletion of multinucleated giant cells and mononuclear stromal cells in the tumor tissue. To summarize, the obtained data showed that a specific receptor tyrosine kinase (RTK) signaling pattern is activated in GCTB cells and plays an important role in the regulation of cell proliferation. Thus, activated RTKs and their downstream signaling pathways represent useful targets for precision treatment with low-molecular-weight inhibitors or with other types of modern biological therapy.

Zobrazit více v PubMed

Campanacci M., Baldini N., Boriani S., Sudanese A. Giant-Cell Tumor of Bone. J. Bone Joint Surg. Am. 1987;69:106–114. doi: 10.2106/00004623-198769010-00018. PubMed DOI

Athanasou N., Bansal M., Forsyth R., Reid R., Sapi Z. Giant cell tumor of bone. In: Fletcher C.D.M., Bridge J., Hogendoor P., Mertens F., editors. WHO Classification of Tumours of Soft Tissue and Bone. IARC Press; Lyon, France: 2013. pp. 321–324.

Turcotte R.E. Giant Cell Tumor of Bone. Orthop. Clin. North Am. 2006;37:35–51. doi: 10.1016/j.ocl.2005.08.005. PubMed DOI

Unni K.K., Inwards C.Y. Dahlin’s Bone Tumors: General Aspects and Data on 10,165 Cases. 6th ed. LWW; Philadelphia, PA, USA: 2009.

Ruggieri P., Mavrogenis A.F., Ussia G., Angelini A., Papagelopoulos P.J., Mercuri M. Recurrence After and Complications Associated With Adjuvant Treatments for Sacral Giant Cell Tumor. Clin. Orthop. Relat. Res. 2010;468:2954–2961. doi: 10.1007/s11999-010-1448-8. PubMed DOI PMC

Balke M., Schremper L., Gebert C., Ahrens H., Streitbuerger A., Koehler G., Hardes J., Gosheger G. Giant cell tumor of bone: Treatment and outcome of 214 cases. J. Cancer Res. Clin. Oncol. 2008;134:969–978. doi: 10.1007/s00432-008-0370-x. PubMed DOI

Malek F.A.A., Krueger P.M., Hatmi Z.N., Malayeri A., Faezipour H., Donnell R.J.O. Local control of long bone giant cell tumour using curettage, burring and bone grafting without adjuvant therapy. Int. Orthop. 2006;30:495–498. doi: 10.1007/s00264-006-0146-3. PubMed DOI PMC

Saiz P., Virkus W., Piasecki P., Templeton A., Shott S., Gitelis S. Results of Giant Cell Tumor of Bone Treated With Intralesional Excision. Clin. Orthop. Relat. Res. 2004;424:221–226. doi: 10.1097/01.blo.0000128280.59965.e3. PubMed DOI

Jeys L.M., Suneja R., Chami G., Grimer R.J., Carter S.R., Tillman R.M. Impending fractures in giant cell tumours of the distal femur: Incidence and outcome. Int. Orthop. 2006;30:135–138. doi: 10.1007/s00264-005-0061-z. PubMed DOI PMC

Wu P.-F., Tang J.-Y., Li K.-H. RANK pathway in giant cell tumor of bone: Pathogenesis and therapeutic aspects. Tumor Biol. 2015;36:495–501. doi: 10.1007/s13277-015-3094-y. PubMed DOI

Thomas D.M. RANKL, denosumab, and giant cell tumor of bone. Curr. Opin. Oncol. 2012;24:397–403. doi: 10.1097/CCO.0b013e328354c129. PubMed DOI

Chawla S., Henshaw R., Seeger L., Choy E., Blay J.-Y., Ferrari S., Kroep J., Grimer R., Reichardt P., Rutkowski P., et al. Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: Interim analysis of an open-label, parallel-group, phase 2 study. Lancet Oncol. 2013;14:901–908. doi: 10.1016/S1470-2045(13)70277-8. PubMed DOI

Arbeitsgemeinschaft Knochentumoren. Becker W.T., Dohle J., Bernd L., Braun A., Cserhati M., Enderle A., Hovy L., Matejovsky Z., Szendroi M., et al. Local Recurrence of Giant Cell Tumor of Bone after Intralesional Treatment with and without Adjuvant Therapy. J. Bone Jt. Surg. Am. Vol. 2008;90:1060–1067. doi: 10.2106/JBJS.D.02771. PubMed DOI

Rutkowski P., Gaston L., Borkowska A., Stacchiotti S., Gelderblom H., Baldi G.G., Palmerini E., Casali P., Gronchi A., Parry M., et al. Denosumab treatment of inoperable or locally advanced giant cell tumor of bone—Multicenter analysis outside clinical trial. Eur. J. Surg. Oncol. EJSO. 2018;44:1384–1390. doi: 10.1016/j.ejso.2018.03.020. PubMed DOI

Palmerini E., Chawla N., Ferrari S., Sudan M., Picci P., Marchesi E., Leopardi M.P., Syed I., Sankhala K., Parthasarathy P., et al. Denosumab in advanced/unresectable giant-cell tumour of bone (GCTB): For how long? Eur. J. Cancer. 2017;76:118–124. doi: 10.1016/j.ejca.2017.01.028. PubMed DOI

Ulas A., Akinci M.B., Silay K., Sendur M.A.N., DeDe D.S., Yalcin B. Denosumab: Excellent response of metastatic giant cell tumor of the bone. J. BUON Off. J. Balk. Union Oncol. 2015;20:666–667. PubMed

Mak I.W., Evaniew N., Popovic S., Tozer R., Ghert M. A Translational Study of the Neoplastic Cells of Giant Cell Tumor of Bone Following Neoadjuvant Denosumab. J. Bone Jt. Surg. Am. Vol. 2014;96:e127. doi: 10.2106/JBJS.M.01332. PubMed DOI

Balla P., Moskovszky L., Sapi Z., Forsyth R., Knowles H., Athanasou N.A., Szendroi M., Kopper L., Rajnai H., Pinter F., et al. Epidermal growth factor receptor signalling contributes to osteoblastic stromal cell proliferation, osteoclastogenesis and disease progression in giant cell tumour of bone. Histopathology. 2011;59:376–389. doi: 10.1111/j.1365-2559.2011.03948.x. PubMed DOI

Guenther R., Krenn V., Morawietz L., Dankof A., Melcher I., Schaser K.-D., Kasper H.-U., Kuban R.-J., Ungethüm U., Sers C. Giant cell tumors of the bone: Molecular profiling and expression analysis of Ephrin A1 receptor, Claudin 7, CD52, FGFR3 and AMFR. Pathol. Res. Pr. 2005;201:649–663. doi: 10.1016/j.prp.2005.07.005. PubMed DOI

Liu L., Aleksandrowicz E., Fan P., Schonsiegel F., Zhang Y., Sahr H., Gladkich J., Mattern J., Depeweg D., Lehner B., et al. Enrichment of c-Met+ tumorigenic stromal cells of giant cell tumor of bone and targeting by cabozantinib. Cell Death Dis. 2014;5:e1471. doi: 10.1038/cddis.2014.440. PubMed DOI PMC

Zhou Z., Li Y., Wang X., Hu J., Kuang M., Wang Z., Li S., Xu W., Xiao J. ALCAM+ stromal cells: Role in giant cell tumor of bone progression. Cell Death Dis. 2018;9:1–13. doi: 10.1038/s41419-018-0361-z. PubMed DOI PMC

Maros M.E., Schnaidt S., Balla P., Kelemen Z., Sapi Z., Szendroi M., Laszlo T., Forsyth R., Picci P., Krenacs T. In situ cell cycle analysis in giant cell tumor of bone reveals patients with elevated risk of reduced progression-free survival. Bone. 2019;127:188–198. doi: 10.1016/j.bone.2019.06.022. PubMed DOI

Neradil J., Kyr M., Polaskova K., Kren L., Macigova P., Skoda J., Sterba J., Veselska R. Phospho-Protein Arrays as Effective Tools for Screening Possible Targets for Kinase Inhibitors and Their Use in Precision Pediatric Oncology. Front. Oncol. 2019;9:930. doi: 10.3389/fonc.2019.00930. PubMed DOI PMC

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Meth. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Kassambara A., Mundt F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package Version 1.0.7. [(accessed on 2 May 2021)];2020 Available online: https://CRAN.R-project.org/package=factoextra.

R Core Team . R Foundation for Statistical Computing; Vienna: 2018. [(accessed on 2 May 2021)]. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org.

Sramek M., Neradil J., Macigova P., Mudry P., Polaskova K., Slaby O., Noskova H., Sterba J., Veselska R. Effects of Sunitinib and Other Kinase Inhibitors on Cells Harboring a PDGFRB Mutation Associated with Infantile Myofibromatosis. Int. J. Mol. Sci. 2018;19:2599. doi: 10.3390/ijms19092599. PubMed DOI PMC

Mukaihara K., Suehara Y., Kohsaka S., Akaike K., Tanabe Y., Kubota D., Ishii M., Fujimura T., Kazuno S., Okubo T., et al. Protein Expression Profiling of Giant Cell Tumors of Bone Treated with Denosumab. PLoS ONE. 2016;11:e0148401. doi: 10.1371/journal.pone.0148401. PubMed DOI PMC

Roskoski R. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders. Pharmacol. Res. 2018;129:65–83. doi: 10.1016/j.phrs.2018.01.021. PubMed DOI

Van der Heijden L., Dijkstra P.S., Blay J.-Y., Gelderblom H. Giant cell tumour of bone in the denosumab era. Eur. J. Cancer. 2017;77:75–83. doi: 10.1016/j.ejca.2017.02.021. PubMed DOI

Klenke F.M., Wenger D.E., Inwards C.Y., Rose P.S., Sim F.H. Giant Cell Tumor of Bone: Risk Factors for Recurrence. Clin. Orthop. Relat. Res. 2011;469:591–599. doi: 10.1007/s11999-010-1501-7. PubMed DOI PMC

Van Langevelde K., McCarthy C.L. Radiological findings of denosumab treatment for giant cell tumours of bone. Skelet. Radiol. 2020;49:1345–1358. doi: 10.1007/s00256-020-03449-1. PubMed DOI PMC

Thomas D.M., Skubitz K.M. Giant cell tumour of bone. Curr. Opin. Oncol. 2009;21:338–344. doi: 10.1097/CCO.0b013e32832c951d. PubMed DOI

Baud’Huin M., Renault R., Charrier C., Riet A., Moreau A., Brion R., Gouin F., Duplomb L., Heymann D. Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis. J. Pathol. 2010;221:77–86. doi: 10.1002/path.2684. PubMed DOI

Oreffo R.O., Marshall G.J., Kirchen M., Garcia C., Gallwitz W.E., Chavez J., Mundy G.R., Bonewald L.F. Characterization of a Cell Line Derived from a Human Giant Cell Tumor That Stimulates Osteoclastic Bone Resorption. Clin. Orthop. Relat. Res. 1993;296:229–241. doi: 10.1097/00003086-199311000-00039. PubMed DOI

Hadjidakis D.J., Androulakis I.I. Bone Remodeling. Ann. N. Y. Acad. Sci. 2006;1092:385–396. doi: 10.1196/annals.1365.035. PubMed DOI

Uehara S., Udagawa N., Kobayashi Y. Regulation of osteoclast function via Rho-Pkn3-c-Src pathways. J. Oral Biosci. 2019;61:135–140. doi: 10.1016/j.job.2019.07.002. PubMed DOI

Brun J., Andreasen C.M., Ejersted C., Andersen T.L., Caverzasio J., Thouverey C. PDGF Receptor Signaling in Osteoblast Lineage Cells Controls Bone Resorption Through Upregulation of Csf1 Expression. J. Bone Miner. Res. 2020;35:2458–2469. doi: 10.1002/jbmr.4150. PubMed DOI

David J.-P., Sabapathy K., Hoffmann O., Idarraga M.H., Wagner E.F. JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J. Cell Sci. 2002;115:4317–4325. doi: 10.1242/jcs.00082. PubMed DOI

Boyle W.J., Simonet W.S., Lacey D.L. Osteoclast differentiation and activation. Nat. Cell Biol. 2003;423:337–342. doi: 10.1038/nature01658. PubMed DOI

Baloul S.S. Osteoclastogenesis and Osteogenesis during Tooth Movement. Front Oral Biol. 2016;18:75–79. doi: 10.1159/000351901. PubMed DOI

Wang L., Han L., Xue P., Hu X., Wong S.-W., Deng M., Tseng H.C., Huang B.-W., Ko C.-C. Dopamine suppresses osteoclast differentiation via cAMP/PKA/CREB pathway. Cell. Signal. 2021;78:109847. doi: 10.1016/j.cellsig.2020.109847. PubMed DOI PMC

Roccisana J., Kawanabe N., Kajiya H., Koide M., Roodman G.D., Reddy S.V. Functional Role for Heat Shock Factors in the Transcriptional Regulation of Human RANK Ligand Gene Expression in Stromal/Osteoblast Cells. J. Biol. Chem. 2004;279:10500–10507. doi: 10.1074/jbc.M303727200. PubMed DOI

Koh J.-M., Lee Y.-S., Kim Y.S., Park S.-H., Lee S.H., Kim H.-H., Lee M.-S., Lee K.-U., Kim G.S. Heat shock protein 60 causes osteoclastic bone resorption via toll-like receptor-2 in estrogen deficiency. Bone. 2009;45:650–660. doi: 10.1016/j.bone.2009.06.007. PubMed DOI

Tariq M.U., Umer M., Khan Z., Saeed J., Siddiqui M.A., Din N.U. Spectrum of histological features of Denosumab treated Giant Cell Tumor of Bone; potential pitfalls and diagnostic challenges for pathologists. Ann. Diagn. Pathol. 2020;45:151479. doi: 10.1016/j.anndiagpath.2020.151479. PubMed DOI

Wang G., Jiang S., Li Z., Dong Y. Denosumab and Sunitinib in the treatment of giant-cell tumor of bone with pulmonary and bone metastases in an adolescent. Medicine. 2019;98:e17778. doi: 10.1097/MD.0000000000017778. PubMed DOI PMC

O’Sullivan S., Naot D., Callon K., Porteous F., Horne A., Wattie D., Watson M., Cornish J., Browett P., Grey A. Imatinib Promotes Osteoblast Differentiation by Inhibiting PDGFR Signaling and Inhibits Osteoclastogenesis by Both Direct and Stromal Cell-Dependent Mechanisms. J. Bone Miner. Res. 2007;22:1679–1689. doi: 10.1359/jbmr.070719. PubMed DOI

O’Sullivan S., Tay M.L., Lin J., Bava U., Callon K., Cornish J., Naot D., Grey A. Tyrosine Kinase Inhibitors Regulate OPG through Inhibition of PDGFRβ. PLoS ONE. 2016;11:e0164727. doi: 10.1371/journal.pone.0164727. PubMed DOI PMC

Greenhalgh J., Dwan K., Boland A., Bates V., Vecchio F., Dundar Y., Jain P., Green J.A. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. Cochrane Database Syst. Rev. 2016;5:CD010383. doi: 10.1002/14651858.CD010383.pub2. PubMed DOI

Kelley R.K., Ko A. Erlotinib in the treatment of advanced pancreatic cancer. Biol. Targets Ther. 2008;2:83–95. doi: 10.2147/btt.s1832. PubMed DOI PMC

Motzer R.J., Ravaud A., Patard J.-J., Pandha H.S., George D.J., Patel A., Chang Y.-H., Escudier B., Donskov F., Magheli A., et al. Adjuvant Sunitinib for High-risk Renal Cell Carcinoma After Nephrectomy: Subgroup Analyses and Updated Overall Survival Results. Eur. Urol. 2018;73:62–68. doi: 10.1016/j.eururo.2017.09.008. PubMed DOI PMC

George S., Merriam P., Maki R.G., Abbeele A.D.V.D., Yap J., Akhurst T., Harmon D.C., Bhuchar G., O’Mara M.M., D’Adamo D.R., et al. Multicenter Phase II Trial of Sunitinib in the Treatment of Nongastrointestinal Stromal Tumor Sarcomas. J. Clin. Oncol. 2009;27:3154–3160. doi: 10.1200/JCO.2008.20.9890. PubMed DOI PMC

Noguchi R., Yoshimatsu Y., Ono T., Sei A., Hirabayashi K., Ozawa I., Kikuta K., Kondo T. Establishment and characterization of NCC-PLPS1-C1, a novel patient-derived cell line of pleomorphic liposarcoma. Hum. Cell. 2021;34:688–697. doi: 10.1007/s13577-020-00457-0. PubMed DOI

Basu Mallick A., Chawla S.P. Giant Cell Tumor of Bone: An Update. Curr. Oncol. Rep. 2021;23:1–6. doi: 10.1007/s11912-021-01047-5. PubMed DOI

Palmerini E., Staals E.L., Jones L.B., Donati D.M., Longhi A., Randall R.L. Role of (Neo)adjuvant Denosumab for Giant Cell Tumor of Bone. Curr. Treat. Options Oncol. 2020;21:68. doi: 10.1007/s11864-020-00766-4. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...