Uptake of Cd, Pb, U, and Zn by plants in floodplain pollution hotspots contributes to secondary contamination
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-06728S
Grantová Agentura České Republiky
UJEP-SGS-2018-44-003-3
Univerzite Jan Evangelista Purkyne v Ústí nad Labem
PubMed
33978947
DOI
10.1007/s11356-021-14331-5
PII: 10.1007/s11356-021-14331-5
Knihovny.cz E-zdroje
- Klíčová slova
- Biogeochemistry, Element cycling, Floodplains, Heavy metals, Rivers, Salix,
- MeSH
- biodegradace MeSH
- kadmium MeSH
- látky znečišťující půdu * analýza MeSH
- olovo MeSH
- těžké kovy * analýza MeSH
- zinek MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kadmium MeSH
- látky znečišťující půdu * MeSH
- olovo MeSH
- těžké kovy * MeSH
- zinek MeSH
Willows, woody plants of genus Salix common in floodplains of temperate regions, act as plant pumps and translocate the Cd and Zn in the soil profiles of uncontaminated and weakly contaminated floodplains from the sediment bulk to the top strata. We suggest this process occurs because the Cd and Zn concentrations in willow leaves exceed those in the sediments. Senescing foliage of plant species common in floodplains can increase the Cd and Zn ratios as compared to other elements (Pb and common 'lithogenic elements' such as Al) in the top strata of all floodplains, including those that have been severely contaminated. The top enrichment is caused by the root uptake of specific elements by growing plants, which is followed by foliage deposition. Neither the shallow groundwater nor the plant foliage shows that Cd, Zn, and Pb concentrations are related to those in the sediments, but they clearly reflect the shallow groundwater pH, with the risk element mobilised by the acidity that is typical for the subsurface sediments in floodplains. The effect that plants have on the Pb in floodplains is significantly lower than that observed for Cd and Zn, while U can be considered even less mobile than Pb. Groundwater and plant leaves can contribute to secondary contamination with Cd and Zn from floodplain pollution hotspots, meaning that plants can accumulate these elements on the floodplain surface or even return them back to the fluvial transport, even if bank erosion would not occur. For Pb and U at the sites studied, these risks were negligible.
Institute of Geology of the Czech Academy of Sciences Rozvojová 269 165 00 Prague 6 Czech Republic
Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 01 Řež Czech Republic
Zobrazit více v PubMed
Álvarez-Vázquez MÁ, Hošek M, Elznicová J, Pacina J, Hron K, Fačevicová K, Talská R, Bábek O, Matys Grygar T (2020) Separation of geochemical signals in fluvial sediments: new approaches to grain-size control and anthropogenic contamination. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2020.104791
Bidar G, Pruvot C, Garçon G, Verdin A, Shirali P, Douay F (2009) Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Environ Sci Pollut Res 16:42–53 DOI
Ciszewski D, Matys Grygar T (2016) A review of flood-related storage and remobilization of heavy metal pollutants in river systems. Water Air Soil Pollut 227:239. https://doi.org/10.1007/s11270-016-2934-8 DOI
Ciszewski D, Czajka A, Błażej S (2008) Rapid migration of heavy metals and DOI
Dos Santos Utmazian MN, Wenzel WW (2007) Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. J Plant Nutr Soil Sci 170:265–272 DOI
Du Laing G, Bontinck A, Samson R, Vandecasteele B, Vanthuyne DRJ, Meers E, Lesage E, Tack FMG, Verloo MG (2008) Effect of decomposing litter on the mobility and availability of metals in the soil of a recently created floodplain. Geoderma 147:34–46 DOI
Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985 DOI
Elznicová J, Matys Grygar T, Popelka J, Sikora M, Novák P, Hošek M (2019) Threat of pollution hotspots reworking in river systems: case study of the Ploučnice River (Czech Republic). ISPRS Internat J GEO-Informat 8. https://doi.org/10.3390/ijgi8010037
Esser V, Buchty-Lemke M, Schulte P, Podzun LS, Lehmkuhl F (2020) Signatures of recent pollution profiles in comparable central European rivers – examples from the international River Basin District Meuse. Catena. https://doi.org/10.1016/j.catena.2020.104646
Ettler V, Mihaljevič M, Šebek O, Molek M, Grygar T, Zeman J (2006) Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Příbram, Czech Republic. Environ Pollut 142:409–417 DOI
Faměra M, Kotková K, Tůmová Š, Elznicová J, Matys Grygar T (2018) Pollution distribution in floodplain structure visualised by electrical resistivity imaging in the floodplain of the Litavka River, the Czech Republic. Catena 165:157–172 DOI
Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. J Chem Soc London:655–673
Hošek M, Matys Grygar T, Elznicová J, Faměra M, Popelka J, Matkovič J, Kiss T (2018) Geochemical mapping in polluted floodplains using in situ X-ray fluorescence analysis, geophysical imaging, and statistics: surprising complexity of floodplain pollution hotspot. Catena 171:632–644 DOI
Hošek M, Bednárek J, Popelka J, Elznicová J, Tůmová Š, Rohovec J, Navrátil T, Matys Grygar T (2020) Persistent mercury hot spot in Central Europe and Skalka Dam reservoir as a long-term mercury trap. Environ Geochem Health 42:1273–1290 DOI
Hudson-Edwards KA, Macklin MG, Curtis CD, Vaughan DJ (1998) Chemical remobilization of contaminant metals within floodplain sediments in an incising river system: implications for dating and chemostratigraphy. Earth Surf Proc Landforms 23:671–684 DOI
Imseng M, Wiggenhauser M, Keller A, Müller M, Rehkämper M, Murphy K, Kreissig K, Frossard E, Wilcke W, Bigalke M (2018) Fate of Cd in agricultural soils: a stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling. Environ Sci Technol 52:1919–1928 DOI
Imseng M, Wiggenhauser M, Müller M, Keller A, Frossard E, Wilcke W, Bigalke M (2019) The fate of Zn in agricultural soils: a stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling. Environ Sci Technol 53:4140–4149 DOI
Kersten G, Majestic B, Quigley M (2017) Phytoremediation of cadmium and lead-polluted watersheds. Ecotoxicol Environ Saf 137:225–232 DOI
Kim HT, Kim JG (2018) Seasonal variations of metal (Cd, Pb, Mn, Cu, Zn) accumulation in a voluntary species, Salix subfragilis, in unpolluted wetlands. Sci Total Environ 610:1210–1221 DOI
Kotková K, Nováková T, Tůmová Š, Kiss T, Popelka J, Faměra M (2019) Migration of risk elements within the floodplain of the Litavka River, the Czech Republic. Geomorphology 329:46–57 DOI
Lynch SFL, Batty LC, Byrne P (2014) Environmental risk of metal mining contaminated river bank sediment at redox-transitional zones. Minerals 4:52–73 DOI
Lynch SFL, Batty LC, Byrne P (2017) Critical control of flooding and draining sequences on the environmental risk of Zn-contaminated riverbank sediments. J Soils Sediments 17:2691–2707 DOI
Lynch SFL, Batty LC, Byrne P (2018) Environmental risk of severely Pb-contaminated riverbank sediment as a consequence of hydrometeorological perturbation. Sci Total Environ 636:1428–1441 DOI
Majerová L, Bábek O, Navrátil T, Nováková T, Štojdl J, Elznicová J, Hron K, Matys Grygar T (2018) Dam reservoirs as an efficient trap for historical pollution: the passage of Hg and Pb through the Ohre River, Czech Republic. Environ Earth Sci. https://doi.org/10.1007/s12665-018-7761-3
Majerová L, Matys Grygar T, Elznicová J, Strnad L (2013) The differentiation between point and diffuse industrial pollution of the floodplain of the Ploučnice River, Czech Republic. Water Air Soil Pollut 224. https://doi.org/10.1007/s11270-013-1688-9
Matache ML, Marin C, Rozylowicz L, Tudorache A (2013) Plants accumulating heavy metals in the Danube River wetlands. J Environ Health Sci Eng 11. https://doi.org/10.1186/2052-336X-11-39
Mataruga Z, Jarić S, Marković M, Pavlović M, Pavlović D, Jakovljević K, Mitrović M, Pavlović P (2020) Evaluation of Salix alba, Juglans regia and Populus nigra as biomonitors of PTEs in the riparian soils of the Sava River. Environ Monit Assess 192:131. https://doi.org/10.1007/s10661-020-8085-9 DOI
Matys Grygar T, Popelka J (2016) Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. J Geochem Explor 170:39–57 DOI
Matys Grygar T, Sedláček J, Bábek O, Nováková T, Strnad L, Mihaljevič M (2012) Regional contamination of Moravia (South-Eastern Czech Republic): temporal shift of Pb and Zn loading in fluvial sediments. Water Air Soil Pollut 223:739–753 DOI
Matys Grygar T, Nováková T, Bábek O, Elznicová J, Vadinová N (2013) Robust assessment of moderate heavy metal contamination levels in floodplain sediments: a case study on the Jizera River, Czech Republic. Sci Total Environ 452:233–245 DOI
Matys Grygar T, Elznicová J, Bábek O, Hošek M, Engel Z, Kiss T (2014) Obtaining isochrones from pollution signals in a fluvial sediment record: a case study in a uranium-polluted floodplain of the Ploučnice River, Czech Republic. Appl Geochem 48:1–15 DOI
Matys Grygar T, Elznicová J, Tůmová Š, Faměra M, Balogh M, Kiss T (2016a) Floodplain architecture of an actively meandering river (the Ploučnice River, the Czech Republic) as revealed by the distribution of pollution and electrical resistivity tomography. Geomorphology 254:41–56 DOI
Matys Grygar T, Elznicová J, Kiss T, Smith HG (2016b) Using sedimentary archives to reconstruct pollution history and sediment provenance: the Ohře River, Czech Republic. Catena 144:109–129 DOI
Mayerová M, Petrová Š, Madaras M, Lipavský J, Šimon T, Vaněk T (2017) Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops. Environ Sci Pollut Res 24:14706–14716 DOI
Mertens J, Van Nevel L, De Schrijver A, Piesschaert F, Oosterbaan A, Tack FMG, Verheyen K (2007) Tree species effect on the redistribution of soil metals. Environ Pollut 149:173–181 DOI
Mokwe-Ozonzeadi N, Foster I, Valsami-Jones E, McEldowney S (2019) Trace metal distribution in the bed, bank and suspended sediment of the Ravensbourne River and its implication for sediment monitoring in an urban river. J Soils Sediments 19:946–963 DOI
Nováková T, Kotková K, Elznicová J, Strnad L, Engel Z, Matys Grygar T (2015) Pollutant dispersal and stability in a severely polluted floodplain: a case study in the Litavka River, Czech Republic. J Geochem Explor 156:131–144 DOI
Overesch M, Rinklebe J, Broll G, Neue HU (2007) Metals and arsenic in soils and corresponding vegetation at Central Elbe river floodplains (Germany). Environ Pollut 145:800–812 DOI
Padmavathiamma PK, Li LY (2012) Rhizosphere influence and seasonal impact on phytostabilisation of metals-a field study. Water Air Soil Pollut 223:107–124 DOI
Palumbo-Roe B, Wragg J, Banks VJ (2012) Lead mobilisation in the hyporheic zone and river bank sediments of a contaminated stream: contribution to diffuse pollution. J Soils Sediments 12:1633–1640 DOI
Pietrzykowski M, Antonkiewicz J, Gruba P, Pająk M (2018) Content of Zn, Cd and Pb in purple moor-grass in soils heavily contaminated with heavy metals around a zinc and lead ore tailing landfill. Open Chem 16:1143–1152 DOI
Reimann C, Englmaier P, Flem B, Gough L, Lamothe P, Nordgulen O, Smith D (2009) Geochemical gradients in soil O-horizon samples from southern Norway: natural or anthropogenic? Appl Geochem 24:62–76 DOI
Reimann C, Fabian K, Flem B, Andersson M, Filzmoser P, Englmaier P (2018) Geosphere-biosphere circulation of chemical elements in soil and plant systems from a 100 km transect from southern central Norway. Sci Total Environ 639:129–145 DOI
Reimann C, Fabian K, Flem B (2019) Cadmium enrichment in topsoil: separating diffuse contamination from biosphere-circulation signals. Sci Total Environ 651:1344–1355 DOI
Rudnick R, Gao S (2003) Composition of the continental crust. In: Rudnick RL, Holland HD, Turekian KK (eds) The Crust, Treatise on Geochemistry, vol 3. Elsevier–Pergamon, Oxford, pp 1–64
Sánchez J, Marino N, Vaquero MC, Ansorena J, Legórburu I (1998) Metal pollution by old lead-zinc mines in Urumea river valley (Basque country, Spain). Soil, biota and sediment. Water Air Soil Pollut 107:303–319 DOI
Shaheen SM, Rinklebe J, Rupp H, Meissner R (2014) Temporal dynamics of pore water concentrations of Cd, Co, Cu, Ni, and Zn and their controlling factors in a contaminated floodplain soil assessed by undisturbed groundwater lysimeters. Environ Pollut 191:223–231 DOI
Steinnes E (2009) Comment on "Geochemical gradients in soil O-horizon samples from southern Norway: natural or anthropogenic?" by C. Reimann, P. Englmaier, B. Flem, L. Gough, P. Lamothe, O. Nordgulen, and D. Smith. Appl Geochem 24:2019–2022 DOI
Steinnes E, Lierhagen S (2018) Geographical distribution of trace elements in natural surface soils: atmospheric influence from natural and anthropogenic sources. Appl Geochem 88:2–9 DOI
Sterckeman T, Thomine S (2020) Mechanisms of cadmium accumulation in plants. Crit. Rev Plant Sci 39:322–359 DOI
Sun WL, Sang LX, Jiang BF (2012) Trace metals in sediments and aquatic plants from the Xiangjiang River, China. J Soils Sediments 12:1649–1657 DOI
Teodoro M, Hejcman M, Vítková M, Wu S-L, Komárek M (2020) Seasonal fluctuations of Zn, Pb, As and Cd contents in the biomass of selected grass species growing on contaminated soils: Implications for in situ phytostabilization. Sci Total Environ 703:134710. https://doi.org/10.1016/j.scitotenv.2019.134710 DOI
Tőzsér D, Harangi S, Baranyai E, Lakatos G, Fülöp Z, Tóthmérész B, Simon E (2018) Phytoextraction with Salix viminalis in a moderately to strongly contaminated area. Environ Sci Pollut Res 25:3275–3290 DOI
Tůmová Š, Hrubešová D, Vorm P, Hošek M, Matys Grygar T (2019) Common flaws in the analysis of river sediments polluted by risk elements and how to avoid them: case study in the Ploučnice River system, Czech Republic. J Soils Sediments 19:2020–2033 DOI
Türtscher S, Berger P, Lindebner L, Berger TW (2017) Declining atmospheric deposition of heavy metals over the last three decades is reflected in soil and foliage of 97 beech (Fagus sylvatica) stands in the Vienna Woods. Environ Pollut 230:561–573 DOI
Van Nevel L, Mertens J, An DS, Baeten L, De Neve S, Tack FMG, Meers E, Verheyen K (2013) Forest floor leachate fluxes under six different tree species on a metal contaminated site. Sci Total Environ 447:99–107 DOI
Vandecasteele B, Du Laing G, Tack FMG (2007) Effect of submergence-emergence sequence and organic matter or aluminosilicate amendment on metal uptake by woody wetland plant species from contaminated sediments. Environ Pollut 145:329–338 DOI
Vandecasteele B, Quataert P, Genouw G, Lettens S, Tack FMG (2009) Effects of willow stands on heavy metal concentrations and top soil properties of infrastructure spoil landfills and dredged sediment-derived sites. Sci Total Environ 407:5289–5297 DOI
Vandecasteele B, Quataert P, Piesschaert F, Lettens S, De Vos B, Du Laing G (2015) Translocation of Cd and Mn from bark to leaves in willows on contaminated sediments: delayed budburst is related to high Mn concentrations. Land 4:255–280 DOI
Vaněk A, Borůvka L, Drábek O, Mihaljevič M, Komárek M (2005) Mobility of lead, zinc and cadmium in alluvial soil heavily polluted by smelting industry. Plant Soil Environ 51:316–321 DOI
Vaněk A, Ettler V, Borůvka L, Šebek O, Drábek O (2008) Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. Pedosphere 18:464–478 DOI
Vysloužilová M, Tlustoš P, Száková J (2003) Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ 49:542–547 DOI
Zhou J, Obrist D, Dastoor A, Jiskra M, Ryjkov A (2021) Vegetation uptake of mercury and impacts on global cycling. Nature Rev Environ 2:269–284 DOI
Zimmer D, Baum C, Meissner R, Leinweber P (2012) Soil-ecological evaluation of willows in a floodplain. J Plant Nutr Soil Sci 175:245–252 DOI