Delayed Leaf Senescence by Upregulation of Cytokinin Biosynthesis Specifically in Tomato Roots
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35874028
PubMed Central
PMC9298850
DOI
10.3389/fpls.2022.922106
Knihovny.cz E-zdroje
- Klíčová slova
- Solanum lycopersicum, cytokinin, isopentenyltransferase, photosynthesis, shoot-to-root ratio,
- Publikační typ
- časopisecké články MeSH
Cytokinins (CKs) regulate numerous plant developmental processes, including photosynthesis and leaf senescence. Isopentenyltransferase (IPT) is a rate-limiting enzyme in the CK-biosynthesis pathway. We overexpressed ipt under tissue-specific promoters to study the long-range effect of CK on the functioning of tomato source leaves. Photosynthetic activity over time provided the measure for leaf aging. Significantly delayed leaf senescence was observed in plants expressing ipt under a root-specific promoter, but not in those expressing the gene under a source leaf-specific promoter. The root-derived influence on leaf aging was further confirmed by grafting experiments. CK concentration in source leaves of both transgenic lines increased significantly, with different proportions of its various derivatives. On the other hand, root CK concentration was only slightly elevated. Nevertheless, the significant change in the proportion of CK derivatives in the root indicated that CK biosynthesis and metabolism were altered. Partial leaf defoliation upregulates photosynthetic rate in the remaining leaf; however, overexpression of ipt in either tissues eliminated this response. Interestingly, stem girdling also eliminated the photosynthetic response. Taken together, our findings suggest that leaf senescence is regulated by a CK-mediated root-shoot communication network. We propose that CK-mediated signal is translocated to the leaf via the xylem where it alters CK biosynthesis, resulting in delayed senescence.
Zobrazit více v PubMed
Bajguz A., Piotrowska A. (2009). Conjugates of auxin and cytokinin. Phytochemistry 70, 957–969. doi: 10.1016/j.phytochem.2009.05.006, PMID: PubMed DOI
Bieleski R. L. (1964). The problem of halting enzyme action when extracting plant tissues. Anal. Biochem. 9, 431–442. doi: 10.1016/0003-2697(64)90204-0, PMID: PubMed DOI
Corbesier L., Prinsen E., Jacqmard A., Lejeune P., Onckelen H., Van P. C., et al. . (2003). Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition. J. Exp. Bot. 54, 2511–2517. doi: 10.1093/jxb/erg276, PMID: PubMed DOI
Cortleven A., Schmulling T. (2015). Regulation of chloroplast development and function by cytokinin. J. Exp. Bot. 66, 4999–5013. doi: 10.1093/jxb/erv132, PMID: PubMed DOI
Criado M. V., Caputo C., Roberts I. N., Castro M. A., Barneix A. J. (2009). Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). J. Plant Physiol. 166, 1775–1785. doi: 10.1016/j.jplph.2009.05.007, PMID: PubMed DOI
Dobranszki J., Mendler-Drienyovszki N. (2014). Cytokinin-induced changes in the chlorophyll content and fluorescence of in vitro apple leaves. J. Plant Physiol. 171, 1472–1478. doi: 10.1016/j.jplph.2014.06.015, PMID: PubMed DOI
Domagalska M. A., Leyser O. (2011). Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol. 12, 211–221. doi: 10.1038/nrm3088, PMID: PubMed DOI
Gan S., Amasino R. M. (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986–1988. doi: 10.1126/science.270.5244.1986, PMID: PubMed DOI
Gan S., Amasino R. M. (1996). Cytokinins in plant senescence: From spray and pray to clone and play. BioEssays 18, 557–565. doi: 10.1002/bies.950180707 DOI
Gan S., Amasino R. M. (1997). Making sense of senescence. Molecular genetics regulation and manipulation of leaf senescence. Plant Physiol. 113, 313–319. doi: 10.1104/pp.113.2.313, PMID: PubMed DOI PMC
Glanz-Idan N., Tarkowski P., Turečková V., Wolf S. (2020). Root-shoot communication in tomato plants: cytokinin as a signal molecule modulating leaf photosynthetic activity. J. Exp. Bot. 71, 247–257. doi: 10.1093/jxb/erz399, PMID: PubMed DOI PMC
Hallmark H. T., Černý M., Brzobohatý B., Rashotte A. M. (2020). Trans-Zeatin-N-glucosides have biological activity in Arabidopsis thaliana. PLoS One 15:e0232762. doi: 10.1371/journal.pone.0232762, PMID: PubMed DOI PMC
Hirose N., Takei K., Kuroha T., Kamada-Nobusada T., Hayashi H., Sakakibara H. (2008). Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 59, 75–83. doi: 10.1093/jxb/erm157, PMID: PubMed DOI
Holubová H., Hensel G., Vojta P., Tarkowski P., Bergougnoux V., Galuszka P. (2018). Modification of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. Front. Plant Sci. 9:1676. doi: 10.3389/fpls.2018.01676, PMID: PubMed DOI PMC
Jordi W., Schapendonk A., Davelaar E., Stoopen G., Pot C., De Visser R., et al. . (2000). Increased cytokinin levels in transgenic PSAG12–IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ. 23, 279–289. doi: 10.1046/j.1365-3040.2000.00544.x DOI
Kuroha T., Tokunaga H., Kojima M., Ueda N., Ishida T., Nagawa S., et al. . (2009). Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21, 3152–3169. doi: 10.1105/tpc.109.068676, PMID: PubMed DOI PMC
Lilley C. J., Wang D., Atkinson H. G., Urwin P. E. (2011). Effective delivery of a nematode-repellent peptide using a root-cap-specific promoter. Plant Biotechnol. J. 9, 151–161. doi: 10.1111/j.1467-7652.2010.00542, PMID: PubMed DOI
Lin Y.-H., Lin M.-H., Gresshoff P. M., Ferguson B. J. (2011). An efficient petiole-feeding bioassay for introducing aqueous solutions into dicotyledonous plants. Nat. Protoc. 6, 36–45. doi: 10.1038/nprot.2010.171, PMID: PubMed DOI
Lloyd J. C., Raines C. A., John U. P., Dyer T. A. A. (1991). The chloroplast FBPase gene of wheat: structure and expression of the promoter in photosynthetic and meristematic cells of transgenic tobacco plants. Mol. Gen. Genet. 225, 209–216. doi: 10.1007/BF00269850, PMID: PubMed DOI
Matsumoto-Kitano M., Kusumoto T., Tarkowski P., Kinoshita-Tsujimura K., Vaclavıkova K., Miyawaki K., et al. . (2008). Cytokinins are central regulators of cambial activity. Proc. Natl. Acad. Sci. USA 105, 20027–20031. doi: 10.1073/pnas.0805619105, PMID: PubMed DOI PMC
McCormick S. (1991). “Transformation of tomato with Agrobacterium tumefaciens,” in Plant Tissue Culture Manual. ed. Lindsey K. (Dordrecht: Springer Netherlands; ), 311–319.
Miyawaki K., Matsumoto-Kitano M., Kakimoto T. (2004). Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 37, 128–138. doi: 10.1046/j.1365-313x.2003.01945.x, PMID: PubMed DOI
Mok D. W. S., Mok M. C. (2001). Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 89–118. doi: 10.1146/annurev.arplant.52.1.89 PubMed DOI
Moore I., Gälweiler L., Grosskopf D., Schell J., Palme K. (1998). A transcription activation system for regulated gene expression in transgenic plants. Proc. Natl. Acad. Sci. USA 95, 376–381. doi: 10.1073/pnas.95.1.376 PubMed DOI PMC
Moran R. (1982). Formulae for determination of chlorophyllous pigments extracted with N,N-Dimethylformamide. Plant Physiol. 69, 1376–1381. doi: 10.1104/pp.69.6.1376, PMID: PubMed DOI PMC
Müller B., Sheen J. (2007). Advances in cytokinin signaling. Science 318, 68–69. doi: 10.1126/science.1145461 PubMed DOI
Osugi A., Kojima M., Takebayashi Y., Ueda N., Kibi T., Sakakibara H. (2017). Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat. Plants 3:17112. doi: 10.1038/nplants.2017.112, PMID: PubMed DOI
Richmond A. E., Lang A. (1957). Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125, 650–651. doi: 10.1126/science.125.3249.650.b PubMed DOI
Sakakibara H. (2006). Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431–449. doi: 10.1146/annurev.arplant.57.032905.105231 PubMed DOI
Schmülling T., Werner T., Riefler M., Krupkova E., Bartrina y Manns I. (2003). Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J. Plant Res. 116, 241–252. doi: 10.1007/s10265-003-0096-4, PMID: PubMed DOI
Shani E., Ben-Gera H., Shleizer-Burko S., Burko Y., Weiss D., Ori N. (2010). Cytokinin regulates compound leaf development in tomato. Plant Cell 22, 3206–3217. doi: 10.1105/tpc.110.078253, PMID: PubMed DOI PMC
Smart C. M. (1994). Gene expression during leaf senescence. New Phytol. 126, 419–448. doi: 10.1111/j.1469-8137.1994.tb04243.x PubMed DOI
Swartzberg D., Dai N., Gan S., Amasino R. M., Granot D. (2006). Effect of cytokinin production under two SAG promoters on senescence and development of tomato plants. Plant Biol. 8, 579–586. doi: 10.1055/s-2006-924240, PMID: PubMed DOI
Takei K., Yamaya T., Sakakibara H. (2004). Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J. Biol. Chem. 279, 41866–41872. doi: 10.1074/jbc.M406337200, PMID: PubMed DOI
Vidoz M. L., Loreti E., Mensuali A., Alpi A., Perata P. (2010). Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J. 63, 551–562. doi: 10.1111/j.1365-313X.2010.04262.x, PMID: PubMed DOI
Werner T., Kollmer I., Bartrina I., Holst K., Schmülling T. (2006). New insights into the biology of cytokinin degradation. Plant Biol. 8, 371–381. doi: 10.1055/s-2006-923928 PubMed DOI
Werner T., Motyka V., Laucou V., Smets R., Van Onckelen H., Schmülling T. (2003). Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15, 2532–2550. doi: 10.1105/tpc.014928 PubMed DOI PMC
Zurcher E., Müller B. (2016). Cytokinin synthesis, signaling and function-advanced and new insights. Int. Rev. Cell Mol. Biol. 324, 1–38. doi: 10.1016/bs.ircmb.2016.01.001 PubMed DOI