Laser dissection-assisted phloem transcriptomics highlights the metabolic and physiological changes accompanying clubroot disease progression in oilseed rape
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
PubMed
39575835
PubMed Central
PMC11703547
DOI
10.1111/tpj.17156
Knihovny.cz E-resources
- Keywords
- Brassica napus, Plasmodiophora brassicae, clubroot, laser dissection transcriptomics, oilseed rape, phloem,
- MeSH
- Amino Acids metabolism MeSH
- Arabidopsis * genetics physiology MeSH
- Brassica napus * genetics metabolism physiology parasitology MeSH
- Cyclopentanes metabolism MeSH
- Cytokinins metabolism MeSH
- Nitrogen metabolism MeSH
- Phloem * metabolism genetics MeSH
- Glucosinolates metabolism MeSH
- Plant Leaves genetics metabolism MeSH
- Plant Diseases * parasitology genetics MeSH
- Oxylipins metabolism MeSH
- Plasmodiophorida * physiology MeSH
- Gene Expression Regulation, Plant * MeSH
- Transcriptome MeSH
- Carbon metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amino Acids MeSH
- Cyclopentanes MeSH
- Cytokinins MeSH
- Nitrogen MeSH
- Glucosinolates MeSH
- jasmonic acid MeSH Browser
- Oxylipins MeSH
- Carbon MeSH
Plasmodiophora brassicae, a soil-borne biotroph, establishes galls as strong physiological sinks on Brassicaceae plants including Brassica napus and Arabidopsis thaliana. We compare transcriptional profiles of phloem dissected from leaf petioles and hypocotyls of healthy and infected B. napus plants. Our results highlight how pathogenesis accompanies phloem-mediated defence responses whilst exerting a strong influence on carbon-nitrogen (C-N) economy. We observe transcriptional changes indicating decreased aliphatic glucosinolate biosynthesis, fluctuating jasmonic acid responses, altered amino acid (AA) and nitrate transport, carbohydrate metabolism and modified cytokinin responses. Changes observed in phloem-dissected from upper versus lower plant organs point to phloem as a conduit in mediating C-N repartitioning, nutrition-related signalling and cytokinin dynamics over long distances during clubroot disease. To assess changes in physiology, we measured AAs, sugars and cytokinins, in phloem exudates from B. napus plants. Despite the decrease in most AA and sucrose levels, isopentyl-type cytokinins increased within infected plants. Furthermore, we employed Arabidopsis for visualising promoter activities of B. napus AA and N transporter orthologues and tested the impact of disrupted cytokinin transport during P. brassicae-induced gall formation using Atabcg14 mutants. Our physiological and microscopy studies show that the host developmental reaction to P. brassicae relies on cytokinin and is accompanied by intense nitrogen and carbon repartitioning. Overall, our work highlights the systemic aspects of host responses that should be taken into account when studying clubroot disease.
Czech Advanced Technology and Research Institute Palacký University Olomouc Olomouc Czech Republic
Institute of Plant Genetics Polish Academy of Sciences ul Strzeszyńska 34 Poznań 60 479 Poland
See more in PubMed
Abualia, R. , Ötvös, K. , Novák, O. , Bouguyon, E. , Domanegg, K. , Krapp, A. et al. (2022) Molecular framework integrating nitrate sensing in root and auxin‐guided shoot adaptive responses. Proceedings of the National Academy of Sciences, 119, e2122460119. PubMed PMC
Aigu, Y. , Daval, S. , Gazengel, K. , Marnet, N. , Lariagon, C. , Laperche, A. et al. (2022) Multi‐omic investigation of low‐nitrogen conditional resistance to clubroot reveals Brassica napus genes involved in nitrate assimilation. Frontiers in Plant Science, 13, 790563. PubMed PMC
Bi, K. , He, Z. , Gao, Z. , Zhao, Y. , Fu, Y. , Cheng, J. et al. (2016) Integrated omics study of lipid droplets from Plasmodiophora brassicae . Scientific Reports, 6, 36965. PubMed PMC
Bíbová, J. , Kábrtová, V. , Večeřová, V. , Kučerová, Z. , Hudeček, M. , Plačková, L. et al. (2023) The role of a cytokinin antagonist in the progression of clubroot disease. Biomolecules, 13, 299. PubMed PMC
Bieleski, R.L. (1964) The problem of halting enzyme action when extracting plant tissues. Analytical Biochemistry, 9, 431–442. PubMed
Bishopp, A. , Lehesranta, S. , Vatén, A. , Help, H. , El‐Showk, S. , Scheres, B. et al. (2011) Phloem‐transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Current Biology, 21, 927–932. PubMed
Blicharz, S. , Beemster, G.T.S. , Ragni, L. , de Diego, N. , Spichal, L. , Hernandiz, A.E. et al. (2021) Phloem exudate metabolic content reflects the response to water‐deficit stress in pea plants (Pisum sativum L.). The Plant Journal, 106, 1338–1355. PubMed PMC
Ćavar Zeljković, S. , de Diego, N. , Drašar, L. , Nisler, J. , Havlíček, L. , Spíchal, L. et al. (2024) Comprehensive LC‐MS/MS analysis of nitrogen‐related plant metabolites. Journal of Experimental Botany, 75, 5390–5411. PubMed PMC
Chardon, F. , de Marco, F. , Marmagne, A. , Le Hir, R. , Vilaine, F. , Bellini, C. et al. (2022) Natural variation in the long‐distance transport of nutrients and photoassimilates in response to N availability. Journal of Plant Physiology, 273, 153707. PubMed
Clough, S.J. & Bent, A.F. (1998) Floral dip: a simplified method forAgrobacterium‐mediated transformation of Arabidopsis thaliana . The Plant Journal, 16, 735–743. PubMed
Donald, E.C. , Jaudzems, G. & Porter, I.J. (2008) Pathology of cortical invasion by Plasmodiophora brassicae in clubroot resistant and susceptible Brassica oleracea hosts. Plant Pathology, 57, 201–209.
Eisen, M.B. , Spellman, P.T. , Brown, P.O. & Botstein, D. (1998) Cluster analysis and display of genome‐wide expression patterns. Proceedings of the National Academy of Sciences, 95, 14863–14868. PubMed PMC
Emms, D.M. & Kelly, S. (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology, 20, 238. PubMed PMC
Evans, J. & Scholes, J. (1995) How does clubroot alter the regulation of carbon metabolism in its host? Aspects of Applied Biology, 42, 125–132.
Funck, D. , Sinn, M. , Forlani, G. , Hartig, J.S. (2023) Guanidine production by plant homoarginine‐6‐hydroxylases. eLife, 12, RP91458. PubMed PMC
Galindo‐González, L. , Manolii, V. , Hwang, S.‐F. & Strelkov, S.E. (2020) Response of Brassica napus to Plasmodiophora brassicae involves salicylic acid‐mediated immunity: an RNA‐seq‐based study. Frontiers in Plant Science, 11, 1025. PubMed PMC
Garvetto, A. , Murúa, P. , Kirchmair, M. , Salvenmoser, W. , Hittorf, M. , Ciaghi, S. et al. (2023) Phagocytosis underpins the biotrophic lifestyle of intracellular parasites in the class Phytomyxea (Rhizaria). New Phytologist, 238, 2130–2143. PubMed PMC
Gazengel, K. , Aigu, Y. , Lariagon, C. , Humeau, M. , Gravot, A. , Manzanares‐Dauleux, M.J. et al. (2021) Nitrogen supply and host‐plant genotype modulate the transcriptomic profile of Plasmodiophora brassicae . Frontiers in Microbiology, 12, 701067. PubMed PMC
Giehl, R.F.H. , Laginha, A.M. , Duan, F. , Rentsch, D. , Yuan, L. & von Wirén, N. (2017) A critical role of AMT2;1 in root‐to‐shoot translocation of ammonium in Arabidopsis. Molecular Plant, 10, 1449–1460. PubMed
Glanz‐Idan, N. , Lach, M. , Tarkowski, P. , Vrobel, O. & Wolf, S. (2022) Delayed leaf senescence by upregulation of cytokinin biosynthesis specifically in tomato roots. Frontiers in Plant Science, 13, 922106. PubMed PMC
Gustafsson, M. , Liljeroth, E. , Gunnarsson, M. & Lundborg, T. (1986) Effects of infection by Plasmodiophora brassicae on root anatomy of rape. Journal of Phytopathology, 117, 144–151.
Heuermann, D. , Hahn, H. & von Wirén, N. (2021) Seed yield and nitrogen efficiency in oilseed rape after ammonium nitrate or urea fertilization. Frontiers in Plant Science, 11, 608785. PubMed PMC
Hönig, M. , Roeber, V.M. , Schmülling, T. & Cortleven, A. (2023) Chemical priming of plant defense responses to pathogen attacks. Frontiers in Plant Science, 14, 1146577. PubMed PMC
Hsu, P.K. & Tsay, Y.F. (2013) Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem‐borne nitrate to enhance plant growth. Plant Physiology, 163, 844–856. PubMed PMC
Hunt, E. , Gattolin, S. , Newbury, H.J. , Bale, J.S. , Tseng, H.‐M. , Barrett, D.A. et al. (2009) A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected. Journal of Experimental Botany, 61, 55–64. PubMed PMC
Hunziker, P. , Halkier, B.A. & Schulz, A. (2019) Arabidopsis glucosinolate storage cells transform into phloem fibres at late stages of development. Journal of Experimental Botany, 70, 4305–4317. PubMed PMC
Irani, S. , Trost, B. , Waldner, M. , Nayidu, N. , Tu, J. , Kusalik, A.J. et al. (2018) Transcriptome analysis of response to Plasmodiophora brassicae infection in the Arabidopsis shoot and root. BMC Genomics, 19, 23. PubMed PMC
Ivanov Dobrev, P. & Kamínek, M. (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed‐mode solid‐phase extraction. Journal of Chromatography A, 950, 21–29. PubMed
Jayasinghege, C.P.A. , Ozga, J.A. , Manolii, V.P. , Hwang, S.F. & Strelkov, S.E. (2023) Impact of susceptibility on plant hormonal composition during clubroot disease development in canola (Brassica napus). Plants (Basel), 12, 2899. PubMed PMC
Jubault, M. , Lariagon, C. , Taconnat, L. , Renou, J.‐P. , Gravot, A. , Delourme, R. et al. (2013) Partial resistance to clubroot in Arabidopsis is based on changes in the host primary metabolism and targeted cell division and expansion capacity. Functional & Integrative Genomics, 13, 191–205. PubMed PMC
Kim, J.‐Y. , Symeonidi, E. , Pang, T.Y. , Denyer, T. , Weidauer, D. , Bezrutczyk, M. et al. (2021) Distinct identities of leaf phloem cells revealed by single cell transcriptomics. The Plant Cell, 33, 511–530. PubMed PMC
Ko, D. , Kang, J. , Kiba, T. , Park, J. , Kojima, M. , Do, J. et al. (2014) Arabidopsis ABCG14 is essential for the root‐to‐shoot translocation of cytokinin. Proceedings of the National Academy of Sciences, 111, 7150–7155. PubMed PMC
Kong, L. , Sun, J. , Zhang, W. , Zhan, Z. & Piao, Z. (2024) Functional analysis of the key BrSWEET genes for sugar transport involved in the Brassica rapa–Plasmodiophora brassicae interaction. Gene, 927, 148708. PubMed
Konishi, N. , Ishiyama, K. , Beier, M.P. , Inoue, E. , Kanno, K. , Yamaya, T. et al. (2016) Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots. Journal of Experimental Botany, 68, 613–625. PubMed PMC
Ladwig, F. , Stahl, M. , Ludewig, U. , Hirner, A.A. , Hammes, U.Z. , Stadler, R. et al. (2012) Siliques are Red1 from Arabidopsis acts as a bidirectional amino acid transporter that is crucial for the amino acid homeostasis of siliques. Plant Physiology, 158, 1643–1655. PubMed PMC
Lampropoulos, A. , Sutikovic, Z. , Wenzl, C. , Maegele, I. , Lohmann, J.U. & Forner, J. (2013) GreenGate—a novel, versatile, and efficient cloning system for plant transgenesis. PLoS One, 8, e83043. PubMed PMC
Lemarié, S. , Robert‐Seilaniantz, A. , Lariagon, C. , Lemoine, J. , Marnet, N. , Jubault, M. et al. (2015) Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis. Plant & Cell Physiology, 56, 2158–2168. PubMed
Li, H. , Li, X. , Xuan, Y. , Jiang, J. , Wei, Y. & Piao, Z. (2018) Genome wide identification and expression profiling of SWEET genes family reveals its role during Plasmodiophora brassicae‐induced formation of clubroot in Brassica rapa . Frontiers in Plant Science, 9, 207. PubMed PMC
Li, J. , Brader, G. , Kariola, T. & Palva, E.T. (2006) WRKY70 modulates the selection of signaling pathways in plant defense. The Plant Journal, 46, 477–491. PubMed
Li, J.‐Y. , Fu, Y.‐L. , Pike, S.M. , Bao, J. , Tian, W. , Zhang, Y. et al. (2010) The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. The Plant Cell, 22, 1633–1646. PubMed PMC
Love, M.I. , Huber, W. & Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biology, 15, 550. PubMed PMC
Ludwig‐Müller, J. (2009) Glucosinolates and the clubroot disease: defense compounds or auxin precursors? Phytochemistry Reviews, 8, 135–148.
Malinowski, R. , Novák, O. , Borhan, M.H. , Spíchal, L. , Strnad, M. & Rolfe, S.A. (2016) The role of cytokinins in clubroot disease. European Journal of Plant Pathology, 145, 1–15.
Malinowski, R. , Smith, J.A. , Fleming, A.J. , Scholes, J.D. & Rolfe, S.A. (2012) Gall formation in clubroot‐infected Arabidopsis results from an increase in existing meristematic activities of the host but is not essential for the completion of the pathogen life cycle. The Plant Journal, 71, 226–238. PubMed
Malinowski, R. , Truman, W. & Blicharz, S. (2019) Genius architect or clever thief‐how Plasmodiophora brassicae reprograms host development to establish a pathogen‐oriented physiological sink. Molecular Plant‐Microbe Interactions, 32, 1259–1266. PubMed
Matsumoto‐Kitano, M. , Kusumoto, T. , Tarkowski, P. , Kinoshita‐Tsujimura, K. , Václavíková, K. , Miyawaki, K. et al. (2008) Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences, 105, 20027–20031. PubMed PMC
McIntyre, K.E. , Bush, D.R. & Argueso, C.T. (2021) Cytokinin regulation of source–sink relationships in plant–pathogen interactions. Frontiers in Plant Science, 12, 677585. PubMed PMC
Morales de los Ríos, L. , Corratgé‐Faillie, C. , Raddatz, N. , Mendoza, I. , Lindahl, M. , de Angeli, A. et al. (2021) The Arabidopsis protein NPF6.2/NRT1.4 is a plasma membrane nitrate transporter and a target of protein kinase CIPK23. Plant Physiology and Biochemistry, 168, 239–251. PubMed
Nguyen, H.N. , Nguyen, T.Q. , Kisiala, A.B. & Emery, R.J.N. (2021) Beyond transport: cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. Planta, 254, 45. PubMed
O'Brien, J.A. , Vega, A. , Bouguyon, E. , Krouk, G. , Gojon, A. , Coruzzi, G. et al. (2016) Nitrate transport, sensing, and responses in plants. Molecular Plant, 9, 837–856. PubMed
Ochoa, J.C. , Mukhopadhyay, S. , Bieluszewski, T. , Jędryczka, M. , Malinowski, R. & Truman, W. (2023) Natural variation in Arabidopsis responses to Plasmodiophora brassicae reveals an essential role for resistance to Plasmodiophora brasssicae 1 (RPB1). The Plant Journal, 116, 1421–1440. PubMed
O'Donoghue, E.M. , Somerfield, S.D. , Shaw, M. , Bendall, M. , Hedderly, D. , Eason, J. et al. (2004) Evaluation of carbohydrates in Pukekohe longkeeper and Grano cultivars of Allium cepa . Journal of Agricultural and Food Chemistry, 52, 5383–5390. PubMed
Olszak, M. , Truman, W. , Stefanowicz, K. , Sliwinska, E. , Ito, M. , Walerowski, P. et al. (2019) Transcriptional profiling identifies critical steps of cell cycle reprogramming necessary for Plasmodiophora brassicae‐driven gall formation in Arabidopsis. The Plant Journal, 97, 715–729. PubMed PMC
Parker, J.E. (2009) The quest for long‐distance signals in plant systemic immunity. Science Signaling, 2, pe31. PubMed
Perchlik, M. & Tegeder, M. (2017) Improving plant nitrogen use efficiency through alteration of amino acid transport processes. Plant Physiology, 175, 235–247. PubMed PMC
Pfaffl, M.W. , Horgan, G.W. & Dempfle, L. (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30, e36 PubMed PMC
Pieterse, C.M.J. , van der Does, D. , Zamioudis, C. , Leon‐Reyes, A. & van Wees, S.C.M. (2012) Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489–521. PubMed
Podlešáková, K. , Ugena, L. , Spíchal, L. , Doležal, K. & de Diego, N. (2019) Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnology, 48, 53–65. PubMed
Raines, T. , Shanks, C. , Cheng, C.‐Y. , McPherson, D. , Argueso, C.T. , Kim, H.J. et al. (2016) The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis. The Plant Journal, 85, 134–147. PubMed
Rousseau‐Gueutin, M. , Belser, C. , Da Silva, C. , Richard, G. , Istace, B. , Cruaud, C. et al. (2020) Long‐read assembly of the Brassica napus reference genome Darmor‐bzh. GigaScience, 9, giaa137. PubMed PMC
Sakakibara, H. (2021) Cytokinin biosynthesis and transport for systemic nitrogen signaling. The Plant Journal, 105, 421–430. PubMed
Sasaki, T. , Suzaki, T. , Soyano, T. , Kojima, M. , Sakakibara, H. & Kawaguchi, M. (2014) Shoot‐derived cytokinins systemically regulate root nodulation. Nature Communications, 5, 4983. PubMed
Schürholz, A.‐K. , López‐Salmerón, V. , Li, Z. , Forner, J. , Wenzl, C. , Gaillochet, C. et al. (2018) A comprehensive toolkit for inducible, cell type‐specific gene expression in Arabidopsis. Plant Physiology, 178, 40–53. PubMed PMC
Schwelm, A. , Fogelqvist, J. , Knaust, A. , Jülke, S. , Lilja, T. , Bonilla‐Rosso, G. et al. (2015) The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Scientific Reports, 5, 11153. PubMed PMC
Shao, Q. , Gao, Q. , Lhamo, D. , Zhang, H. & Luan, S. (2020) Two glutamate‐ and pH‐regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis . Science Signaling, 13, eaba1453. PubMed
Siddique, S. , Radakovic, Z.S. , De La Torre, C.M. , Chronis, D. , Novák, O. , Ramireddy, E. et al. (2015) A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. Proceedings of the National Academy of Sciences, 112, 12669–12674. PubMed PMC
Storey, J.D. (2002) A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 64, 479–498.
Suda, H. & Toyota, M. (2022) Integration of long‐range signals in plants: a model for wound‐induced Ca2+, electrical, ROS, and glutamate waves. Current Opinion in Plant Biology, 69, 102270. PubMed
Tegeder, M. & Ward, J.M. (2012) Molecular evolution of plant AAP and LHT amino acid transporters. Frontiers in Plant Science, 3, 21. PubMed PMC
Tetyuk, O. , Benning, U.F. & Hoffmann‐Benning, S. (2013) Collection and analysis of Arabidopsis phloem exudates using the EDTA‐facilitated method. JoVE, 80, e51111. PubMed PMC
Toyota, M. , Spencer, D. , Sawai‐Toyota, S. , Jiaqi, W. , Zhang, T. , Koo, A.J. et al. (2018) Glutamate triggers long‐distance, calcium‐based plant defense signaling. Science, 361, 1112–1115. PubMed
Truman, W. , Bennett, M.H. , Kubigsteltig, I. , Turnbull, C. & Grant, M. (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proceedings of the National Academy of Sciences, 104, 1075–1080. PubMed PMC
Turgeon, R. & Wolf, S. (2009) Phloem transport: cellular pathways and molecular trafficking. Annual Review of Plant Biology, 60, 207–221. PubMed
van Bel, M. , Diels, T. , Vancaester, E. , Kreft, L. , Botzki, A. , van de Peer, Y. et al. (2018) PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucleic Acids Research, 46, D1190–D1196. PubMed PMC
Vatén, A. , Dettmer, J. , Wu, S. , Stierhof, Y.‐D. , Miyashima, S. , Yadav, S.R. et al. (2011) Callose biosynthesis regulates symplastic trafficking during root development. Developmental Cell, 21, 1144–1155. PubMed
Walerowski, P. , Gündel, A. , Yahaya, N. , Truman, W. , Sobczak, M. , Olszak, M. et al. (2018) Clubroot disease stimulates early steps of phloem differentiation and recruits SWEET sucrose transporters within developing galls. The Plant Cell, 30, 3058–3073. PubMed PMC
Wang, G. , Hu, C. , Zhou, J. , Liu, Y. , Cai, J. , Pan, C. et al. (2019) Systemic root‐shoot signaling drives Jasmonate‐based root defense against nematodes. Current Biology, 29, 3430–3438.e3434. PubMed
Woronin, M. (1878) Plasmodiophora brassicae, urheber der kophpflanzenhernie. Jahrbucher fur Wissenschaftliche Botanik, 1, 548–574.
Xu, D. , Hunziker, P. , Koroleva, O. , Blennow, A. , Crocoll, C. , Schulz, A. et al. (2019) GTR‐mediated radial import directs accumulation of defensive glucosinolates to sulfur‐rich cells in the phloem cap of Arabidopsis inflorescence stem. Molecular Plant, 12, 1474–1484. PubMed
Xu, L. , Yang, H. , Ren, L. , Chen, W. , Liu, L. , Liu, F. et al. (2018) Jasmonic acid‐mediated aliphatic Glucosinolate metabolism is involved in clubroot disease development in Brassica napus L. Frontiers in Plant Science, 9, 750. PubMed PMC
Yang, W. , Cortijo, S. , Korsbo, N. , Roszak, P. , Schiessl, K. , Gurzadyan, A. et al. (2021) Molecular mechanism of cytokinin‐activated cell division in Arabidopsis . Science, 371, 1350–1355. PubMed PMC
Zamani‐Noor, N. , Brand, S. & Söchting, H.‐P. (2022) Effect of pathogen virulence on pathogenicity, host range, and reproduction of Plasmodiophora brassicae, the causal agent of clubroot disease. Plant Disease, 106, 57–64. PubMed
Zhang, G.‐B. , Yi, H.‐Y. & Gong, J.‐M. (2014) The Arabidopsis ethylene/Jasmonic acid‐NRT signaling module coordinates nitrate reallocation and the trade‐off between growth and environmental adaptation. The Plant Cell, 26, 3984–3998. PubMed PMC
Zhang, K. , Novak, O. , Wei, Z. , Gou, M. , Zhang, X. , Yu, Y. et al. (2014) Arabidopsis ABCG14 protein controls the acropetal translocation of root‐synthesized cytokinins. Nature Communications, 5, 3274. PubMed
Zhang, L. , Garneau, M.G. , Majumdar, R. , Grant, J. & Tegeder, M. (2015) Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids. The Plant Journal, 81, 134–146. PubMed
Zhang, L. , Tan, Q. , Lee, R. , Trethewy, A. , Lee, Y.‐H. & Tegeder, M. (2010) Altered xylem–phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. The Plant Cell, 22, 3603–3620. PubMed PMC
Zhang, W. , Wang, S. , Yu, F. , Tang, J. , Yu, L. , Wang, H. et al. (2019) Genome‐wide identification and expression profiling of sugar transporter protein (STP) family genes in cabbage (Brassica oleracea var. capitata L.) reveals their involvement in clubroot disease responses. Genes, 10, 71. PubMed PMC
Zhao, J. , Deng, X. , Qian, J. , Liu, T. , Ju, M. , Li, J. et al. (2023) Arabidopsis ABCG14 forms a homodimeric transporter for multiple cytokinins and mediates long‐distance transport of isopentenyladenine‐type cytokinins. Plant Communications, 4, 100468. PubMed PMC
Zhao, J. , Ding, B. , Zhu, E. , Deng, X. , Zhang, M. , Zhang, P. et al. (2021) Phloem unloading via the apoplastic pathway is essential for shoot distribution of root‐synthesized cytokinins. Plant Physiology, 186, 2111–2123. PubMed PMC