Phloem exudate metabolic content reflects the response to water-deficit stress in pea plants (Pisum sativum L.)
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33738886
PubMed Central
PMC8360158
DOI
10.1111/tpj.15240
Knihovny.cz E-zdroje
- Klíčová slova
- Pisum sativum, abiotic stress, developmental plasticity, drought, oleic acid, phloem,
- MeSH
- biologický transport MeSH
- dusík metabolismus MeSH
- floém anatomie a histologie genetika fyziologie MeSH
- fyziologická adaptace MeSH
- fyziologický stres MeSH
- genotyp MeSH
- hrách setý anatomie a histologie genetika fyziologie MeSH
- kyselina olejová metabolismus MeSH
- listy rostlin anatomie a histologie genetika fyziologie MeSH
- období sucha MeSH
- rostlinné exsudáty MeSH
- uhlík metabolismus MeSH
- voda fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- kyselina olejová MeSH
- rostlinné exsudáty MeSH
- uhlík MeSH
- voda MeSH
Drought stress impacts the quality and yield of Pisum sativum. Here, we show how short periods of limited water availability during the vegetative stage of pea alters phloem sap content and how these changes are connected to strategies used by plants to cope with water deficit. We have investigated the metabolic content of phloem sap exudates and explored how this reflects P. sativum physiological and developmental responses to drought. Our data show that drought is accompanied by phloem-mediated redirection of the components that are necessary for cellular respiration and the proper maintenance of carbon/nitrogen balance during stress. The metabolic content of phloem sap reveals a shift from anabolic to catabolic processes as well as the developmental plasticity of P. sativum plants subjected to drought. Our study underlines the importance of phloem-mediated transport for plant adaptation to unfavourable environmental conditions. We also show that phloem exudate analysis can be used as a useful proxy to study stress responses in plants. We propose that the decrease in oleic acid content within phloem sap could be considered as a potential marker of early signalling events mediating drought response.
Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12 14 Poznan 61 704 Poland
ZMBP Center for Plant Molecular Biology University of Tübingen Tübingen Germany
Zobrazit více v PubMed
Alfocea, F.P., Balibrea, M.E., Alarcón, J.J. & Bolarín, M.C. (2000) Composition of xylem and phloem exudates in relation to the salt‐tolerance of domestic and wild tomato species. Journal of Plant Physiology, 156, 367–374.
Alves‐Carvalho, S., Aubert, G., Carrere, S., Cruaud, C., Brochot, A.L., Jacquin, F.et al. (2015) Full‐length de novo assembly of RNA‐seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. The Plant Journal, 84, 1–19. PubMed
Andersen, M.N. & Aremu, J.A. (1991) Drought sensitivity, root development and osmotic adjustment in field grown peas. Irrigation Science, 12, 45–51.
Andriankaja, M., Dhondt, S., De Bodt, S., Vanhaeren, H., Coppens, F., De Milde, L.et al. (2012) Exit from proliferation during leaf development in arabidopsis thaliana: a not‐so‐gradual process. Developmental Cell, 22, 64–78. PubMed
Aubry, E., Dinant, S., Vilaine, F., Bellini, C. & Le Hir, R. (2019) Lateral transport of organic and inorganic solutes. Plants, 8, 20. PubMed PMC
Avramova, V., AbdElgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L.et al. (2015) Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiology, 169, 1382–1396. PubMed PMC
Aykas, D.P., Ball, C., Sia, A., Zhu, K., Shotts, M.‐L., Schmenk, A.et al. (2020) In‐situ screening of soybean quality with a novel handheld near‐infrared sensor. Sensors, 20, 6283. PubMed PMC
Barbaglia, A.M. & Hoffmann‐Benning, S. (2016) Long‐distance lipid signaling and its role in plant development and stress response. In: Nakamura, Y. & Li‐Beisson, Y. (Eds) Lipids in Plant and Algae Development. Cham: Springer International Publishing, pp. 339–361. PubMed
Braidwood, L., Breuer, C. & Sugimoto, K. (2014) My body is a cage: mechanisms and modulation of plant cell growth. New Phytologist, 201, 388–402. PubMed
Buhtz, A., Springer, F., Chappell, L., Baulcombe, D.C. & Kehr, J. (2008) Identification and characterization of small RNAs from the phloem of Brassica napus . The Plant Journal, 53, 739–749. PubMed
Cal, A.J., Sanciangco, M., Rebolledo, M.C., Luquet, D., Torres, R.O., McNally, K.L.et al. (2019) Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought. Plant, Cell & Environment, 42, 1532–1544. PubMed PMC
Canarini, A., Merchant, A. & Dijkstra, F.A. (2016) Drought effects on Helianthus annuus and Glycine max metabolites: from phloem to root exudates. Rhizosphere, 2, 85–97.
Clauw, P., Coppens, F., Korte, A., Herman, D., Slabbinck, B., Dhondt, S.et al. (2016) Leaf growth response to mild drought: natural variation in Arabidopsis sheds light on trait architecture. The Plant Cell, 28, 2417–2434. PubMed PMC
Coller, B.S. (2015) Blood at 70: its roots in the history of hematology and its birth. Blood, 126, 2548–2560. PubMed PMC
de Reuille, P.B. & Ragni, L. (2017) Vascular morphodynamics during secondary growth. In: de Lucas, M. & Etchhells, J. (Eds) Xylem, Vol 1544. Methods in Molecular Biology. New York, NY: Humana Press, pp. 103–125. 10.1007/978-1-4939-6722-3_10 PubMed DOI
Dinant, S., Bonnemain, J.‐L., Girousse, C. & Kehr, J. (2010) Phloem sap intricacy and interplay with aphid feeding. Comptes Rendus Biologies, 333, 504–515. PubMed
Dinant, S. & Suárez‐López, P. (2012) Multitude of Long‐Distance Signal Molecules Acting Via Phloem. 14, 89–121.
Gamboa‐Tuz, S.D., Pereira‐Santana, A., Zamora‐Briseño, J.A., Castano, E., Espadas‐Gil, F., Ayala‐Sumuano, J.T.et al. (2018) Transcriptomics and co‐expression networks reveal tissue‐specific responses and regulatory hubs under mild and severe drought in papaya (Carica papaya L.). Scientific Reports, 8, 14539. PubMed PMC
Gessler, A., Rennenberg, H. & Keitel, C. (2004) Stable isotope composition of organic compounds transported in the phloem of European beech – evaluation of different methods of phloem sap collection and assessment of gradients in carbon isotope composition during leaf‐to‐stem transport. Plant Biology, 6, 721–729. PubMed
Giavalisco, P., Kapitza, K., Kolasa, A., Buhtz, A. & Kehr, J. (2006) Towards the proteome of Brassica napus phloem sap. Proteomics, 6, 896–909. PubMed
Gowan, E., Lewis, B.A. & Turgeon, R. (1995) Phloem transport of antirrhinoside, an iridoid glycoside, in Asarina scandens (Scrophulariaceae). Journal of Chemical Ecology, 21, 1781–1788. PubMed
Hildebrandt, T.M., Nunes Nesi, A., Araújo, W.L. & Braun, H.‐P. (2015) Amino acid catabolism in plants. Molecular Plant, 8, 1563–1579. PubMed
Kehr, J. & Kragler, F. (2018) Long distance RNA movement. New Phytologist, 218, 29–40. PubMed
Keitel, C., Matzarakis, A., Rennenberg, H. & Gessler, A. (2006) Carbon isotopic composition and oxygen isotopic enrichment in phloem and total leaf organic matter of European beech (Fagus sylvatica L.) along a climate gradient. Plant, Cell & Environment, 29, 1492–1507. PubMed
Kind, T., Wohlgemuth, G., Lee, D.Y., Lu, Y., Palazoglu, M., Shahbaz, S.et al. (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time‐of‐flight gas chromatography/mass spectrometry. Analytical Chemistry, 81, 10038–10048. PubMed PMC
Kircher, S. & Schopfer, P. (2012). Photosynthetic sucrose acts as cotyledon‐derived long‐distance signal to control root growth during early seedling development in Arabidopsis . Proceedings of the National Academy of Sciences of the United States of America, 109, 11217–11221. PubMed PMC
Kirkham, M.B. (2014) Field Capacity, Wilting Point, Available Water, and the Nonlimiting Water Range. 153–170.
Klimek‐Kopyra, A., Zając, T., Skowera, B. & Styrc, N. (2017) The effect of water shortage on pea (Pisum sativum L.) productivity in relation to the pod position on the stem. Acta Agrobotanica, 70(3), 70–82.
Kollist, H., Zandalinas, S.I., Sengupta, S., Nuhkat, M., Kangasjärvi, J. & Mittler, R. (2019) Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends in Plant Science, 24, 25–37. PubMed
Kuwabara, A., Backhaus, A., Malinowski, R., Bauch, M., Hunt, L., Nagata, T.et al. (2011) A shift toward smaller cell size via manipulation of cell cycle gene expression acts to smoothen Arabidopsis leaf shape. Plant Physiology, 156, 2196–2206. PubMed PMC
Lalonde, S., Tegeder, M., Throne‐Holst, M., Frommer, W.B. & Patrick, J.W. (2003) Phloem loading and unloading of sugars and amino acids. Plant, Cell & Environment, 26, 37–56.
Lemoine, R., Camera, S.L., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N.et al. (2013) Source‐to‐sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science, 4, 272. PubMed PMC
López‐Salmerón, V., Cho, H., Tonn, N. & Greb, T. (2019) The phloem as a mediator of plant growth plasticity. Current Biology, 29, R173–R181. PubMed
Majumdar, R., Barchi, B., Turlapati, S.A., Gagne, M., Minocha, R., Long, S.et al. (2016) Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post‐transcriptional level. Frontiers in plant Science, 7, 78. PubMed PMC
Malter, D. & Wolf, S. (2011) Melon phloem‐sap proteome: developmental control and response to viral infection. Protoplasma, 248, 217–224. PubMed
Mandal, M.K., Chandra‐Shekara, A.C., Jeong, R.‐D., Yu, K., Zhu, S., Chanda, B.et al. (2012) Oleic acid‐dependent modulation of NITRIC OXIDE ASSOCIATED1 protein levels regulates nitric oxide‐mediated defense signaling in Arabidopsis. The Plant cell, 24, 1654–1674. PubMed PMC
Marchetti, C.F., Ugena, L., Humplík, J.F., Polák, M., Ćavar, Z.S., Podlešáková, K.et al. (2019) A novel image‐based screening method to study water‐deficit response and recovery of barley populations using canopy dynamics phenotyping and simple metabolite profiling. Frontiers in Plant Science, 10. 10.3389/fpls.2019.01252 PubMed DOI PMC
Merchant, A. (2012) Developing phloem d 13 C and sugar composition as indicators of water deficit in Lupinus angustifolius . HortScience: a publication of the American Society for Horticultural Science, 47, 691–696.
Michaeli, S. & Fromm, H. (2015) Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined? Frontiers in plant science, 6, 419. PubMed PMC
Mundim, F.M. & Pringle, E.G. (2018) Whole‐plant metabolic allocation under water stress. Frontiers in plant science, 9, 852. PubMed PMC
Noonan, M.J., Tinnesand, H.V. & Buesching, C.D. (2018) Normalizing gas‐chromatography–mass spectrometry data: method choice can alter biological inference. BioEssays, 40, 1700210. PubMed
Ouaked, F., Rozhon, W., Lecourieux, D. & Hirt, H. (2003) A MAPK pathway mediates ethylene signaling in plants. The EMBO Journal, 22, 1282–1288. PubMed PMC
Pahlow, S., Ostendorp, A., Krüßel, L. & Kehr, J. (2018) Phloem sap sampling from Brassica napus for 3D‐PAGE of protein and ribonucleoprotein complexes. Journal of Visualized Experiments, 131, e57097. PubMed PMC
Pate, J.S. & Atkins, C.A. (1983) Xylem and phloem transport and the functional economy of carbon and nitrogen of a legume leaf. Plant Physiology, 71, 835–840. PubMed PMC
Pfaffl, M.W., Horgan, G.W. & Dempfle, L. (2002) Relative expression software tool (REST©) for group‐wise comparison and statistical analysis of relative expression results in real‐time PCR. Nucleic Acids Research, 30, e36. PubMed PMC
Pirasteh‐Anosheh, H., Saed‐Moucheshi, A., Pakniyat, H. & Pessarakli, M. (2016) Stomatal responses to drought stress. In: Ahmad, P. (Ed.) Water Stress and Crop Plants: A Sustainable Approach. John Wiley & Sons, Ltd., pp. 24–40.
Podlešáková, K., Ugena, L., Spíchal, L., Doležal, K. & De Diego, N. (2019) Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnology, 48, 53–65. PubMed
Regnault, T., Davière, J.‐M., Wild, M., Sakvarelidze‐Achard, L., Heintz, D., Carrera Bergua, E.et al. (2015) The gibberellin precursor GA12 acts as a long‐distance growth signal in Arabidopsis. Nature Plants, 1, 15073. PubMed
Rocha, M., Licausi, F., Araújo, W.L., Nunes‐Nesi, A., Sodek, L., Fernie, A.R.et al. (2010) Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus . Plant Physiology, 152, 1501–1513. PubMed PMC
Sack, L. & Scoffoni, C. (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983–1000. PubMed
Sankar, M., Nieminen, K., Ragni, L., Xenarios, I. & Hardtke, C.S. (2014) Automated quantitative histology reveals vascular morphodynamics during Arabidopsis hypocotyl secondary growth. eLife, 3, e01567. PubMed PMC
Savage, J.A., Zwieniecki, M.A. & Holbrook, N.M. (2013) Phloem transport velocity varies over time and among vascular bundles during early cucumber seedling development. Plant Physiology, 163, 1409–1418. PubMed PMC
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671. PubMed PMC
Sevanto, S. (2014) Phloem transport and drought. Journal of Experimental Botany, 65, 1751–1759. PubMed
Sevanto, S. (2018) Drought impacts on phloem transport. Current Opinion in Plant Biology, 43, 76–81. PubMed
Sevanto, S., McDowell, N.G., Dickman, L.T., Pangle, R. & Pockman, W.T. (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment, 37, 153–161. PubMed PMC
Sharma, S., Villamor, J.G. & Verslues, P.E. (2011) Essential role of tissue‐specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiology, 157, 292–304. PubMed PMC
Siqueira, J.A., Hardoim, P., Ferreira, P.C.G., Nunes‐Nesi, A. & Hemerly, A.S. (2018) Unraveling interfaces between energy metabolism and cell cycle in plants. Trends in Plant Science, 23, 731–747. PubMed
Sirault, X.R.R., James, R.A. & Furbank, R.T. (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Functional Plant Biology, 36, 970–977. PubMed
Stroock, A.D., Pagay, V.V., Zwieniecki, M.A. & Holbrook, N.M. (2014) The physicochemical hydrodynamics of vascular plants. Annual Review of Fluid Mechanics, 46, 615–642.
Takahashi, F. & Shinozaki, K. (2019) Long‐distance signaling in plant stress response. Current Opinion in Plant Biology, 47, 106–111. PubMed
Tetyuk, O., Benning, U.F. & Hoffmann‐Benning, S. (2013) Collection and analysis of Arabidopsis phloem exudates using the EDTA‐facilitated method. Journal of Visualized Experiments, 80, e51111. PubMed PMC
Tilsner, J., Kassner, N., Struck, C. & Lohaus, G. (2005) Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions. Planta, 221, 328–338. PubMed
Toyota, M., Spencer, D., Sawai‐Toyota, S., Jiaqi, W., Zhang, T., Koo, A.J.et al. (2018) Glutamate triggers long‐distance, calcium‐based plant defense signaling. Science, 361, 1112–1115. PubMed
van Bel, A.J.E. & Hess, P.H. (2008) Hexoses as phloem transport sugars: the end of a dogma? Journal of Experimental Botany, 59, 261–272. PubMed
Wunderling, A., Ben Targem, M., Barbier de Reuille, P. & Ragni, L. (2016) Novel tools for quantifying secondary growth. Journal of Experimental Botany, 68, 89–95. PubMed
Yamaguchi‐Shinozaki, K. & Shinozaki, K. (1993) Characterization of the expression of a desiccation‐responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Molecular & General Genetics, 236–236, 331–340. PubMed
Yamamoto, R., Inouhe, M. & Masuda, Y. (1988) Galactose inhibition of auxin‐induced growth of mono‐ and dicotyledonous plants. Plant Physiology, 86, 1223–1227. PubMed PMC
Yang, X., Neta, P. & Stein, S.E. (2017) Extending a tandem mass spectral library to include MS(2) spectra of fragment ions produced in‐source and MS(n) spectra. Journal of the American Society for Mass Spectrometry, 28, 2280–2287. PubMed
Zhong, W., Hartung, W., Komor, E. & Schobert, C. (1996) Phloem transport of abscisic acid in Ricinus communis L. seedlings. Plant, Cell and Environment, 19, 471–477.