Phloem exudate metabolic content reflects the response to water-deficit stress in pea plants (Pisum sativum L.)
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33738886
PubMed Central
PMC8360158
DOI
10.1111/tpj.15240
Knihovny.cz E-zdroje
- Klíčová slova
- Pisum sativum, abiotic stress, developmental plasticity, drought, oleic acid, phloem,
- MeSH
- biologický transport MeSH
- dusík metabolismus MeSH
- floém anatomie a histologie genetika fyziologie MeSH
- fyziologická adaptace MeSH
- fyziologický stres MeSH
- genotyp MeSH
- hrách setý anatomie a histologie genetika fyziologie MeSH
- kyselina olejová metabolismus MeSH
- listy rostlin anatomie a histologie genetika fyziologie MeSH
- období sucha MeSH
- rostlinné exsudáty MeSH
- uhlík metabolismus MeSH
- voda fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- kyselina olejová MeSH
- rostlinné exsudáty MeSH
- uhlík MeSH
- voda MeSH
Drought stress impacts the quality and yield of Pisum sativum. Here, we show how short periods of limited water availability during the vegetative stage of pea alters phloem sap content and how these changes are connected to strategies used by plants to cope with water deficit. We have investigated the metabolic content of phloem sap exudates and explored how this reflects P. sativum physiological and developmental responses to drought. Our data show that drought is accompanied by phloem-mediated redirection of the components that are necessary for cellular respiration and the proper maintenance of carbon/nitrogen balance during stress. The metabolic content of phloem sap reveals a shift from anabolic to catabolic processes as well as the developmental plasticity of P. sativum plants subjected to drought. Our study underlines the importance of phloem-mediated transport for plant adaptation to unfavourable environmental conditions. We also show that phloem exudate analysis can be used as a useful proxy to study stress responses in plants. We propose that the decrease in oleic acid content within phloem sap could be considered as a potential marker of early signalling events mediating drought response.
Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12 14 Poznan 61 704 Poland
ZMBP Center for Plant Molecular Biology University of Tübingen Tübingen Germany
Zobrazit více v PubMed
Alfocea, F.P., Balibrea, M.E., Alarcón, J.J. & Bolarín, M.C. (2000) Composition of xylem and phloem exudates in relation to the salt‐tolerance of domestic and wild tomato species. Journal of Plant Physiology, 156, 367–374.
Alves‐Carvalho, S., Aubert, G., Carrere, S., Cruaud, C., Brochot, A.L., Jacquin, F. PubMed
Andersen, M.N. & Aremu, J.A. (1991) Drought sensitivity, root development and osmotic adjustment in field grown peas. Irrigation Science, 12, 45–51.
Andriankaja, M., Dhondt, S., De Bodt, S., Vanhaeren, H., Coppens, F., De Milde, L. PubMed
Aubry, E., Dinant, S., Vilaine, F., Bellini, C. & Le Hir, R. (2019) Lateral transport of organic and inorganic solutes. Plants, 8, 20. PubMed PMC
Avramova, V., AbdElgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L. PubMed PMC
Aykas, D.P., Ball, C., Sia, A., Zhu, K., Shotts, M.‐L., Schmenk, A. PubMed PMC
Barbaglia, A.M. & Hoffmann‐Benning, S. (2016) Long‐distance lipid signaling and its role in plant development and stress response. In: Nakamura, Y. & Li‐Beisson, Y. (Eds) Lipids in Plant and Algae Development. Cham: Springer International Publishing, pp. 339–361. PubMed
Braidwood, L., Breuer, C. & Sugimoto, K. (2014) My body is a cage: mechanisms and modulation of plant cell growth. New Phytologist, 201, 388–402. PubMed
Buhtz, A., Springer, F., Chappell, L., Baulcombe, D.C. & Kehr, J. (2008) Identification and characterization of small RNAs from the phloem of PubMed
Cal, A.J., Sanciangco, M., Rebolledo, M.C., Luquet, D., Torres, R.O., McNally, K.L. PubMed PMC
Canarini, A., Merchant, A. & Dijkstra, F.A. (2016) Drought effects on
Clauw, P., Coppens, F., Korte, A., Herman, D., Slabbinck, B., Dhondt, S. PubMed PMC
Coller, B.S. (2015) Blood at 70: its roots in the history of hematology and its birth. Blood, 126, 2548–2560. PubMed PMC
de Reuille, P.B. & Ragni, L. (2017) Vascular morphodynamics during secondary growth. In: de Lucas, M. & Etchhells, J. (Eds) Xylem, Vol 1544. Methods in Molecular Biology. New York, NY: Humana Press, pp. 103–125. 10.1007/978-1-4939-6722-3_10 PubMed DOI
Dinant, S., Bonnemain, J.‐L., Girousse, C. & Kehr, J. (2010) Phloem sap intricacy and interplay with aphid feeding. Comptes Rendus Biologies, 333, 504–515. PubMed
Dinant, S. & Suárez‐López, P. (2012) Multitude of Long‐Distance Signal Molecules Acting Via Phloem. 14, 89–121.
Gamboa‐Tuz, S.D., Pereira‐Santana, A., Zamora‐Briseño, J.A., Castano, E., Espadas‐Gil, F., Ayala‐Sumuano, J.T. PubMed PMC
Gessler, A., Rennenberg, H. & Keitel, C. (2004) Stable isotope composition of organic compounds transported in the phloem of European beech – evaluation of different methods of phloem sap collection and assessment of gradients in carbon isotope composition during leaf‐to‐stem transport. Plant Biology, 6, 721–729. PubMed
Giavalisco, P., Kapitza, K., Kolasa, A., Buhtz, A. & Kehr, J. (2006) Towards the proteome of PubMed
Gowan, E., Lewis, B.A. & Turgeon, R. (1995) Phloem transport of antirrhinoside, an iridoid glycoside, in PubMed
Hildebrandt, T.M., Nunes Nesi, A., Araújo, W.L. & Braun, H.‐P. (2015) Amino acid catabolism in plants. Molecular Plant, 8, 1563–1579. PubMed
Kehr, J. & Kragler, F. (2018) Long distance RNA movement. New Phytologist, 218, 29–40. PubMed
Keitel, C., Matzarakis, A., Rennenberg, H. & Gessler, A. (2006) Carbon isotopic composition and oxygen isotopic enrichment in phloem and total leaf organic matter of European beech ( PubMed
Kind, T., Wohlgemuth, G., Lee, D.Y., Lu, Y., Palazoglu, M., Shahbaz, S. PubMed PMC
Kircher, S. & Schopfer, P. (2012). Photosynthetic sucrose acts as cotyledon‐derived long‐distance signal to control root growth during early seedling development in PubMed PMC
Kirkham, M.B. (2014) Field Capacity, Wilting Point, Available Water, and the Nonlimiting Water Range. 153–170.
Klimek‐Kopyra, A., Zając, T., Skowera, B. & Styrc, N. (2017) The effect of water shortage on pea (
Kollist, H., Zandalinas, S.I., Sengupta, S., Nuhkat, M., Kangasjärvi, J. & Mittler, R. (2019) Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends in Plant Science, 24, 25–37. PubMed
Kuwabara, A., Backhaus, A., Malinowski, R., Bauch, M., Hunt, L., Nagata, T. PubMed PMC
Lalonde, S., Tegeder, M., Throne‐Holst, M., Frommer, W.B. & Patrick, J.W. (2003) Phloem loading and unloading of sugars and amino acids. Plant, Cell & Environment, 26, 37–56.
Lemoine, R., Camera, S.L., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N. PubMed PMC
López‐Salmerón, V., Cho, H., Tonn, N. & Greb, T. (2019) The phloem as a mediator of plant growth plasticity. Current Biology, 29, R173–R181. PubMed
Majumdar, R., Barchi, B., Turlapati, S.A., Gagne, M., Minocha, R., Long, S. PubMed PMC
Malter, D. & Wolf, S. (2011) Melon phloem‐sap proteome: developmental control and response to viral infection. Protoplasma, 248, 217–224. PubMed
Mandal, M.K., Chandra‐Shekara, A.C., Jeong, R.‐D., Yu, K., Zhu, S., Chanda, B. PubMed PMC
Marchetti, C.F., Ugena, L., Humplík, J.F., Polák, M., Ćavar, Z.S., Podlešáková, K. PubMed DOI PMC
Merchant, A. (2012) Developing phloem d 13 C and sugar composition as indicators of water deficit in
Michaeli, S. & Fromm, H. (2015) Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined? Frontiers in plant science, 6, 419. PubMed PMC
Mundim, F.M. & Pringle, E.G. (2018) Whole‐plant metabolic allocation under water stress. Frontiers in plant science, 9, 852. PubMed PMC
Noonan, M.J., Tinnesand, H.V. & Buesching, C.D. (2018) Normalizing gas‐chromatography–mass spectrometry data: method choice can alter biological inference. BioEssays, 40, 1700210. PubMed
Ouaked, F., Rozhon, W., Lecourieux, D. & Hirt, H. (2003) A MAPK pathway mediates ethylene signaling in plants. The EMBO Journal, 22, 1282–1288. PubMed PMC
Pahlow, S., Ostendorp, A., Krüßel, L. & Kehr, J. (2018) Phloem sap sampling from PubMed PMC
Pate, J.S. & Atkins, C.A. (1983) Xylem and phloem transport and the functional economy of carbon and nitrogen of a legume leaf. Plant Physiology, 71, 835–840. PubMed PMC
Pfaffl, M.W., Horgan, G.W. & Dempfle, L. (2002) Relative expression software tool (REST PubMed PMC
Pirasteh‐Anosheh, H., Saed‐Moucheshi, A., Pakniyat, H. & Pessarakli, M. (2016) Stomatal responses to drought stress. In: Ahmad, P. (Ed.) Water Stress and Crop Plants: A Sustainable Approach. John Wiley & Sons, Ltd., pp. 24–40.
Podlešáková, K., Ugena, L., Spíchal, L., Doležal, K. & De Diego, N. (2019) Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnology, 48, 53–65. PubMed
Regnault, T., Davière, J.‐M., Wild, M., Sakvarelidze‐Achard, L., Heintz, D., Carrera Bergua, E. PubMed
Rocha, M., Licausi, F., Araújo, W.L., Nunes‐Nesi, A., Sodek, L., Fernie, A.R. PubMed PMC
Sack, L. & Scoffoni, C. (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983–1000. PubMed
Sankar, M., Nieminen, K., Ragni, L., Xenarios, I. & Hardtke, C.S. (2014) Automated quantitative histology reveals vascular morphodynamics during Arabidopsis hypocotyl secondary growth. eLife, 3, e01567. PubMed PMC
Savage, J.A., Zwieniecki, M.A. & Holbrook, N.M. (2013) Phloem transport velocity varies over time and among vascular bundles during early cucumber seedling development. Plant Physiology, 163, 1409–1418. PubMed PMC
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671. PubMed PMC
Sevanto, S. (2014) Phloem transport and drought. Journal of Experimental Botany, 65, 1751–1759. PubMed
Sevanto, S. (2018) Drought impacts on phloem transport. Current Opinion in Plant Biology, 43, 76–81. PubMed
Sevanto, S., McDowell, N.G., Dickman, L.T., Pangle, R. & Pockman, W.T. (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment, 37, 153–161. PubMed PMC
Sharma, S., Villamor, J.G. & Verslues, P.E. (2011) Essential role of tissue‐specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiology, 157, 292–304. PubMed PMC
Siqueira, J.A., Hardoim, P., Ferreira, P.C.G., Nunes‐Nesi, A. & Hemerly, A.S. (2018) Unraveling interfaces between energy metabolism and cell cycle in plants. Trends in Plant Science, 23, 731–747. PubMed
Sirault, X.R.R., James, R.A. & Furbank, R.T. (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Functional Plant Biology, 36, 970–977. PubMed
Stroock, A.D., Pagay, V.V., Zwieniecki, M.A. & Holbrook, N.M. (2014) The physicochemical hydrodynamics of vascular plants. Annual Review of Fluid Mechanics, 46, 615–642.
Takahashi, F. & Shinozaki, K. (2019) Long‐distance signaling in plant stress response. Current Opinion in Plant Biology, 47, 106–111. PubMed
Tetyuk, O., Benning, U.F. & Hoffmann‐Benning, S. (2013) Collection and analysis of Arabidopsis phloem exudates using the EDTA‐facilitated method. Journal of Visualized Experiments, 80, e51111. PubMed PMC
Tilsner, J., Kassner, N., Struck, C. & Lohaus, G. (2005) Amino acid contents and transport in oilseed rape ( PubMed
Toyota, M., Spencer, D., Sawai‐Toyota, S., Jiaqi, W., Zhang, T., Koo, A.J. PubMed
van Bel, A.J.E. & Hess, P.H. (2008) Hexoses as phloem transport sugars: the end of a dogma? Journal of Experimental Botany, 59, 261–272. PubMed
Wunderling, A., Ben Targem, M., Barbier de Reuille, P. & Ragni, L. (2016) Novel tools for quantifying secondary growth. Journal of Experimental Botany, 68, 89–95. PubMed
Yamaguchi‐Shinozaki, K. & Shinozaki, K. (1993) Characterization of the expression of a desiccation‐responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Molecular & General Genetics, 236–236, 331–340. PubMed
Yamamoto, R., Inouhe, M. & Masuda, Y. (1988) Galactose inhibition of auxin‐induced growth of mono‐ and dicotyledonous plants. Plant Physiology, 86, 1223–1227. PubMed PMC
Yang, X., Neta, P. & Stein, S.E. (2017) Extending a tandem mass spectral library to include MS(2) spectra of fragment ions produced in‐source and MS(n) spectra. Journal of the American Society for Mass Spectrometry, 28, 2280–2287. PubMed
Zhong, W., Hartung, W., Komor, E. & Schobert, C. (1996) Phloem transport of abscisic acid in