Phloem exudate metabolic content reflects the response to water-deficit stress in pea plants (Pisum sativum L.)

. 2021 Jun ; 106 (5) : 1338-1355. [epub] 20210506

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33738886

Drought stress impacts the quality and yield of Pisum sativum. Here, we show how short periods of limited water availability during the vegetative stage of pea alters phloem sap content and how these changes are connected to strategies used by plants to cope with water deficit. We have investigated the metabolic content of phloem sap exudates and explored how this reflects P. sativum physiological and developmental responses to drought. Our data show that drought is accompanied by phloem-mediated redirection of the components that are necessary for cellular respiration and the proper maintenance of carbon/nitrogen balance during stress. The metabolic content of phloem sap reveals a shift from anabolic to catabolic processes as well as the developmental plasticity of P. sativum plants subjected to drought. Our study underlines the importance of phloem-mediated transport for plant adaptation to unfavourable environmental conditions. We also show that phloem exudate analysis can be used as a useful proxy to study stress responses in plants. We propose that the decrease in oleic acid content within phloem sap could be considered as a potential marker of early signalling events mediating drought response.

Zobrazit více v PubMed

Alfocea, F.P., Balibrea, M.E., Alarcón, J.J. & Bolarín, M.C. (2000) Composition of xylem and phloem exudates in relation to the salt‐tolerance of domestic and wild tomato species. Journal of Plant Physiology, 156, 367–374.

Alves‐Carvalho, S., Aubert, G., Carrere, S., Cruaud, C., Brochot, A.L., Jacquin, F.et al. (2015) Full‐length de novo assembly of RNA‐seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. The Plant Journal, 84, 1–19. PubMed

Andersen, M.N. & Aremu, J.A. (1991) Drought sensitivity, root development and osmotic adjustment in field grown peas. Irrigation Science, 12, 45–51.

Andriankaja, M., Dhondt, S., De Bodt, S., Vanhaeren, H., Coppens, F., De Milde, L.et al. (2012) Exit from proliferation during leaf development in arabidopsis thaliana: a not‐so‐gradual process. Developmental Cell, 22, 64–78. PubMed

Aubry, E., Dinant, S., Vilaine, F., Bellini, C. & Le Hir, R. (2019) Lateral transport of organic and inorganic solutes. Plants, 8, 20. PubMed PMC

Avramova, V., AbdElgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L.et al. (2015) Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiology, 169, 1382–1396. PubMed PMC

Aykas, D.P., Ball, C., Sia, A., Zhu, K., Shotts, M.‐L., Schmenk, A.et al. (2020) In‐situ screening of soybean quality with a novel handheld near‐infrared sensor. Sensors, 20, 6283. PubMed PMC

Barbaglia, A.M. & Hoffmann‐Benning, S. (2016) Long‐distance lipid signaling and its role in plant development and stress response. In: Nakamura, Y. & Li‐Beisson, Y. (Eds) Lipids in Plant and Algae Development. Cham: Springer International Publishing, pp. 339–361. PubMed

Braidwood, L., Breuer, C. & Sugimoto, K. (2014) My body is a cage: mechanisms and modulation of plant cell growth. New Phytologist, 201, 388–402. PubMed

Buhtz, A., Springer, F., Chappell, L., Baulcombe, D.C. & Kehr, J. (2008) Identification and characterization of small RNAs from the phloem of Brassica napus . The Plant Journal, 53, 739–749. PubMed

Cal, A.J., Sanciangco, M., Rebolledo, M.C., Luquet, D., Torres, R.O., McNally, K.L.et al. (2019) Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought. Plant, Cell & Environment, 42, 1532–1544. PubMed PMC

Canarini, A., Merchant, A. & Dijkstra, F.A. (2016) Drought effects on Helianthus annuus and Glycine max metabolites: from phloem to root exudates. Rhizosphere, 2, 85–97.

Clauw, P., Coppens, F., Korte, A., Herman, D., Slabbinck, B., Dhondt, S.et al. (2016) Leaf growth response to mild drought: natural variation in Arabidopsis sheds light on trait architecture. The Plant Cell, 28, 2417–2434. PubMed PMC

Coller, B.S. (2015) Blood at 70: its roots in the history of hematology and its birth. Blood, 126, 2548–2560. PubMed PMC

de Reuille, P.B. & Ragni, L. (2017) Vascular morphodynamics during secondary growth. In: de Lucas, M. & Etchhells, J. (Eds) Xylem, Vol 1544. Methods in Molecular Biology. New York, NY: Humana Press, pp. 103–125. 10.1007/978-1-4939-6722-3_10 PubMed DOI

Dinant, S., Bonnemain, J.‐L., Girousse, C. & Kehr, J. (2010) Phloem sap intricacy and interplay with aphid feeding. Comptes Rendus Biologies, 333, 504–515. PubMed

Dinant, S. & Suárez‐López, P. (2012) Multitude of Long‐Distance Signal Molecules Acting Via Phloem. 14, 89–121.

Gamboa‐Tuz, S.D., Pereira‐Santana, A., Zamora‐Briseño, J.A., Castano, E., Espadas‐Gil, F., Ayala‐Sumuano, J.T.et al. (2018) Transcriptomics and co‐expression networks reveal tissue‐specific responses and regulatory hubs under mild and severe drought in papaya (Carica papaya L.). Scientific Reports, 8, 14539. PubMed PMC

Gessler, A., Rennenberg, H. & Keitel, C. (2004) Stable isotope composition of organic compounds transported in the phloem of European beech – evaluation of different methods of phloem sap collection and assessment of gradients in carbon isotope composition during leaf‐to‐stem transport. Plant Biology, 6, 721–729. PubMed

Giavalisco, P., Kapitza, K., Kolasa, A., Buhtz, A. & Kehr, J. (2006) Towards the proteome of Brassica napus phloem sap. Proteomics, 6, 896–909. PubMed

Gowan, E., Lewis, B.A. & Turgeon, R. (1995) Phloem transport of antirrhinoside, an iridoid glycoside, in Asarina scandens (Scrophulariaceae). Journal of Chemical Ecology, 21, 1781–1788. PubMed

Hildebrandt, T.M., Nunes Nesi, A., Araújo, W.L. & Braun, H.‐P. (2015) Amino acid catabolism in plants. Molecular Plant, 8, 1563–1579. PubMed

Kehr, J. & Kragler, F. (2018) Long distance RNA movement. New Phytologist, 218, 29–40. PubMed

Keitel, C., Matzarakis, A., Rennenberg, H. & Gessler, A. (2006) Carbon isotopic composition and oxygen isotopic enrichment in phloem and total leaf organic matter of European beech (Fagus sylvatica L.) along a climate gradient. Plant, Cell & Environment, 29, 1492–1507. PubMed

Kind, T., Wohlgemuth, G., Lee, D.Y., Lu, Y., Palazoglu, M., Shahbaz, S.et al. (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time‐of‐flight gas chromatography/mass spectrometry. Analytical Chemistry, 81, 10038–10048. PubMed PMC

Kircher, S. & Schopfer, P. (2012). Photosynthetic sucrose acts as cotyledon‐derived long‐distance signal to control root growth during early seedling development in Arabidopsis . Proceedings of the National Academy of Sciences of the United States of America, 109, 11217–11221. PubMed PMC

Kirkham, M.B. (2014) Field Capacity, Wilting Point, Available Water, and the Nonlimiting Water Range. 153–170.

Klimek‐Kopyra, A., Zając, T., Skowera, B. & Styrc, N. (2017) The effect of water shortage on pea (Pisum sativum L.) productivity in relation to the pod position on the stem. Acta Agrobotanica, 70(3), 70–82.

Kollist, H., Zandalinas, S.I., Sengupta, S., Nuhkat, M., Kangasjärvi, J. & Mittler, R. (2019) Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends in Plant Science, 24, 25–37. PubMed

Kuwabara, A., Backhaus, A., Malinowski, R., Bauch, M., Hunt, L., Nagata, T.et al. (2011) A shift toward smaller cell size via manipulation of cell cycle gene expression acts to smoothen Arabidopsis leaf shape. Plant Physiology, 156, 2196–2206. PubMed PMC

Lalonde, S., Tegeder, M., Throne‐Holst, M., Frommer, W.B. & Patrick, J.W. (2003) Phloem loading and unloading of sugars and amino acids. Plant, Cell & Environment, 26, 37–56.

Lemoine, R., Camera, S.L., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N.et al. (2013) Source‐to‐sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science, 4, 272. PubMed PMC

López‐Salmerón, V., Cho, H., Tonn, N. & Greb, T. (2019) The phloem as a mediator of plant growth plasticity. Current Biology, 29, R173–R181. PubMed

Majumdar, R., Barchi, B., Turlapati, S.A., Gagne, M., Minocha, R., Long, S.et al. (2016) Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post‐transcriptional level. Frontiers in plant Science, 7, 78. PubMed PMC

Malter, D. & Wolf, S. (2011) Melon phloem‐sap proteome: developmental control and response to viral infection. Protoplasma, 248, 217–224. PubMed

Mandal, M.K., Chandra‐Shekara, A.C., Jeong, R.‐D., Yu, K., Zhu, S., Chanda, B.et al. (2012) Oleic acid‐dependent modulation of NITRIC OXIDE ASSOCIATED1 protein levels regulates nitric oxide‐mediated defense signaling in Arabidopsis. The Plant cell, 24, 1654–1674. PubMed PMC

Marchetti, C.F., Ugena, L., Humplík, J.F., Polák, M., Ćavar, Z.S., Podlešáková, K.et al. (2019) A novel image‐based screening method to study water‐deficit response and recovery of barley populations using canopy dynamics phenotyping and simple metabolite profiling. Frontiers in Plant Science, 10. 10.3389/fpls.2019.01252 PubMed DOI PMC

Merchant, A. (2012) Developing phloem d 13 C and sugar composition as indicators of water deficit in Lupinus angustifolius . HortScience: a publication of the American Society for Horticultural Science, 47, 691–696.

Michaeli, S. & Fromm, H. (2015) Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined? Frontiers in plant science, 6, 419. PubMed PMC

Mundim, F.M. & Pringle, E.G. (2018) Whole‐plant metabolic allocation under water stress. Frontiers in plant science, 9, 852. PubMed PMC

Noonan, M.J., Tinnesand, H.V. & Buesching, C.D. (2018) Normalizing gas‐chromatography–mass spectrometry data: method choice can alter biological inference. BioEssays, 40, 1700210. PubMed

Ouaked, F., Rozhon, W., Lecourieux, D. & Hirt, H. (2003) A MAPK pathway mediates ethylene signaling in plants. The EMBO Journal, 22, 1282–1288. PubMed PMC

Pahlow, S., Ostendorp, A., Krüßel, L. & Kehr, J. (2018) Phloem sap sampling from Brassica napus for 3D‐PAGE of protein and ribonucleoprotein complexes. Journal of Visualized Experiments, 131, e57097. PubMed PMC

Pate, J.S. & Atkins, C.A. (1983) Xylem and phloem transport and the functional economy of carbon and nitrogen of a legume leaf. Plant Physiology, 71, 835–840. PubMed PMC

Pfaffl, M.W., Horgan, G.W. & Dempfle, L. (2002) Relative expression software tool (REST©) for group‐wise comparison and statistical analysis of relative expression results in real‐time PCR. Nucleic Acids Research, 30, e36. PubMed PMC

Pirasteh‐Anosheh, H., Saed‐Moucheshi, A., Pakniyat, H. & Pessarakli, M. (2016) Stomatal responses to drought stress. In: Ahmad, P. (Ed.) Water Stress and Crop Plants: A Sustainable Approach. John Wiley & Sons, Ltd., pp. 24–40.

Podlešáková, K., Ugena, L., Spíchal, L., Doležal, K. & De Diego, N. (2019) Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnology, 48, 53–65. PubMed

Regnault, T., Davière, J.‐M., Wild, M., Sakvarelidze‐Achard, L., Heintz, D., Carrera Bergua, E.et al. (2015) The gibberellin precursor GA12 acts as a long‐distance growth signal in Arabidopsis. Nature Plants, 1, 15073. PubMed

Rocha, M., Licausi, F., Araújo, W.L., Nunes‐Nesi, A., Sodek, L., Fernie, A.R.et al. (2010) Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus . Plant Physiology, 152, 1501–1513. PubMed PMC

Sack, L. & Scoffoni, C. (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983–1000. PubMed

Sankar, M., Nieminen, K., Ragni, L., Xenarios, I. & Hardtke, C.S. (2014) Automated quantitative histology reveals vascular morphodynamics during Arabidopsis hypocotyl secondary growth. eLife, 3, e01567. PubMed PMC

Savage, J.A., Zwieniecki, M.A. & Holbrook, N.M. (2013) Phloem transport velocity varies over time and among vascular bundles during early cucumber seedling development. Plant Physiology, 163, 1409–1418. PubMed PMC

Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671. PubMed PMC

Sevanto, S. (2014) Phloem transport and drought. Journal of Experimental Botany, 65, 1751–1759. PubMed

Sevanto, S. (2018) Drought impacts on phloem transport. Current Opinion in Plant Biology, 43, 76–81. PubMed

Sevanto, S., McDowell, N.G., Dickman, L.T., Pangle, R. & Pockman, W.T. (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment, 37, 153–161. PubMed PMC

Sharma, S., Villamor, J.G. & Verslues, P.E. (2011) Essential role of tissue‐specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiology, 157, 292–304. PubMed PMC

Siqueira, J.A., Hardoim, P., Ferreira, P.C.G., Nunes‐Nesi, A. & Hemerly, A.S. (2018) Unraveling interfaces between energy metabolism and cell cycle in plants. Trends in Plant Science, 23, 731–747. PubMed

Sirault, X.R.R., James, R.A. & Furbank, R.T. (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Functional Plant Biology, 36, 970–977. PubMed

Stroock, A.D., Pagay, V.V., Zwieniecki, M.A. & Holbrook, N.M. (2014) The physicochemical hydrodynamics of vascular plants. Annual Review of Fluid Mechanics, 46, 615–642.

Takahashi, F. & Shinozaki, K. (2019) Long‐distance signaling in plant stress response. Current Opinion in Plant Biology, 47, 106–111. PubMed

Tetyuk, O., Benning, U.F. & Hoffmann‐Benning, S. (2013) Collection and analysis of Arabidopsis phloem exudates using the EDTA‐facilitated method. Journal of Visualized Experiments, 80, e51111. PubMed PMC

Tilsner, J., Kassner, N., Struck, C. & Lohaus, G. (2005) Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions. Planta, 221, 328–338. PubMed

Toyota, M., Spencer, D., Sawai‐Toyota, S., Jiaqi, W., Zhang, T., Koo, A.J.et al. (2018) Glutamate triggers long‐distance, calcium‐based plant defense signaling. Science, 361, 1112–1115. PubMed

van Bel, A.J.E. & Hess, P.H. (2008) Hexoses as phloem transport sugars: the end of a dogma? Journal of Experimental Botany, 59, 261–272. PubMed

Wunderling, A., Ben Targem, M., Barbier de Reuille, P. & Ragni, L. (2016) Novel tools for quantifying secondary growth. Journal of Experimental Botany, 68, 89–95. PubMed

Yamaguchi‐Shinozaki, K. & Shinozaki, K. (1993) Characterization of the expression of a desiccation‐responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Molecular & General Genetics, 236–236, 331–340. PubMed

Yamamoto, R., Inouhe, M. & Masuda, Y. (1988) Galactose inhibition of auxin‐induced growth of mono‐ and dicotyledonous plants. Plant Physiology, 86, 1223–1227. PubMed PMC

Yang, X., Neta, P. & Stein, S.E. (2017) Extending a tandem mass spectral library to include MS(2) spectra of fragment ions produced in‐source and MS(n) spectra. Journal of the American Society for Mass Spectrometry, 28, 2280–2287. PubMed

Zhong, W., Hartung, W., Komor, E. & Schobert, C. (1996) Phloem transport of abscisic acid in Ricinus communis L. seedlings. Plant, Cell and Environment, 19, 471–477.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...