Impact of nutrients and water level changes on submerged macrophytes along a temperature gradient: A pan-European mesocosm experiment
Language English Country England, Great Britain Media print-electronic
Document type Journal Article
Grant support
PRG709
Eesti Teadusagentuur
BIDEB 2232
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (TÜBİTAK)
2211
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (TÜBİTAK)
ÇAYDAĞ 110Y125
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (TÜBİTAK)
CLEAR2 (a Villum Kann Rasmussen Centre of Excellence project)
AU Centre for Water Technology
244121
EU FP-7 Theme 6 projects REFRESH (Adaptive Strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems)
Orta Doğu Teknik Üniversitesi BAP Programme
PubMed
32893967
DOI
10.1111/gcb.15338
Knihovny.cz E-resources
- Keywords
- climate change, latitudinal gradient, macrophytes, mesocosm, nutrients, shallow lakes, water level, water temperature,
- MeSH
- Lakes * MeSH
- Temperature MeSH
- Water * MeSH
- Nutrients MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Sweden MeSH
- Names of Substances
- Water * MeSH
Submerged macrophytes are of key importance for the structure and functioning of shallow lakes and can be decisive for maintaining them in a clear water state. The ongoing climate change affects the macrophytes through changes in temperature and precipitation, causing variations in nutrient load, water level and light availability. To investigate how these factors jointly determine macrophyte dominance and growth, we conducted a highly standardized pan-European experiment involving the installation of mesocosms in lakes. The experimental design consisted of mesotrophic and eutrophic nutrient conditions at 1 m (shallow) and 2 m (deep) depth along a latitudinal temperature gradient with average water temperatures ranging from 14.9 to 23.9°C (Sweden to Greece) and a natural drop in water levels in the warmest countries (Greece and Turkey). We determined percent plant volume inhabited (PVI) of submerged macrophytes on a monthly basis for 5 months and dry weight at the end of the experiment. Over the temperature gradient, PVI was highest in the shallow mesotrophic mesocosms followed by intermediate levels in the shallow eutrophic and deep mesotrophic mesocosms, and lowest levels in the deep eutrophic mesocosms. We identified three pathways along which water temperature likely affected PVI, exhibiting (a) a direct positive effect if light was not limiting; (b) an indirect positive effect due to an evaporation-driven water level reduction, causing a nonlinear increase in mean available light; and (c) an indirect negative effect through algal growth and, thus, high light attenuation under eutrophic conditions. We conclude that high temperatures combined with a temperature-mediated water level decrease can counterbalance the negative effects of eutrophic conditions on macrophytes by enhancing the light availability. While a water level reduction can promote macrophyte dominance, an extreme reduction will likely decrease macrophyte biomass and, consequently, their capacity to function as a carbon store and food source.
Centre for Ecosystem Research and Implementation Middle East Technical University Ankara Turkey
Department of Biology University of Patras Rio Greece
Department of Bioscience Aarhus University Silkeborg Denmark
Department of River Ecology Helmholtz Centre for Environmental Research UFZ Magdeburg Germany
Department of Zoology Faculty of Science Al Azhar University Assiut Egypt
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
Nature Conservation Centre Ankara Turkey
Species Information Center Swedish University of Agricultural Sciences Uppsala Sweden
See more in PubMed
Anderson, M. R., & Kalff, J. (1986). Nutrient limitation of Myriophyllum spicatum growth in situ. Freshwater Biology, 16, 735-743. https://doi.org/10.1111/j.1365-2427.1986.tb01014.x
Angelstein, S., Wolfram, C., Rahn, K., Kiwel, U., Frimel, S., Merbach, I., & Schubert, H. (2009). The influence of different sediment nutrient contents on growth and competition of Elodea nuttallii and Myriophyllum spicatum in nutrient-poor waters. Fundamental and Applied Limnology, 175, 49-57.
Barko, J. W., Gunnison, D., & Carpenter, S. R. (1991). Sediment interactions with submersed macrophyte growth and community dynamics. Aquatic Botany, 41, 41-65. https://doi.org/10.1016/0304-3770(91)90038-7
Barko, J. W., & Smart, R. M. (1981). Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes. Ecological Monographs, 51, 219-236.
Barone, R., Castelli, G., & Naselli-Flores, L. (2010). Red sky at night cyanobacteria delight: The role of climate in structuring phytoplankton assemblage in a shallow, Mediterranean lake (Biviere di Gela, southeastern Sicily). Hydrobiologia, 639, 43-53. https://doi.org/10.1007/s10750-009-0016-2
Bartón, K. (2015). MuMIn: Multi-model inference. R package version 1.43.17. Retrieved from http://cran.r-project.org/package=MuMIn
Bécares, E., Gomá, J., Fernández-Aláez, M., Fernández-Aláez, C., Romo, S., Miracle, M. R., … Moss, B. (2008). Effects of nutrients and fish on periphyton and plant biomass across a European latitudinal gradient. Aquatic Ecology, 42, 561-574. https://doi.org/10.1007/s10452-007-9126-y
Beklioğlu, M., Altınayar, G., & Tan, C. O. (2006). Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Archiv für Hydrobiologie, 166, 535-556.
Beklioğlu, M., Bucak, T., Coppens, J., Bezirci, G., Tavşanoğlu, Ü., Çakıroğlu, A., … Özen, A. (2017). Restoration of eutrophic lakes with fluctuating water levels: A 20-year monitoring study of two inter-connected lakes. Water, 9, 127. https://doi.org/10.3390/w9020127
Beklioğlu, M., & Tan, C. O. (2008). Restoration of a shallow Mediterranean lake by biomanipulation complicated by drought. Fundamental and Applied Limnology, 171, 105-118. https://doi.org/10.1127/1863-9135/2008/0171-0105
Blindow, I. (1992). Long and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biology, 28, 15-27. https://doi.org/10.1111/j.1365-2427.1992.tb00558.x
Blindow, I., Andersson, G., Hargeby, A., & Johansson, S. (1993). Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology, 30, 159-167. https://doi.org/10.1111/j.1365-2427.1993.tb00796.x
Blindow, I., Hargeby, A., & Hilt, S. (2014). Facilitation of clear-water conditions in shallow lakes by macrophytes: Differences between charophyte and angiosperm dominance. Hydrobiologia, 737, 99-110. https://doi.org/10.1007/s10750-013-1687-2
Bornette, G., & Puijalon, S. (2011). Response of aquatic plants to abiotic factors: A review. Aquatic Sciences, 73, 1-14. https://doi.org/10.1007/s00027-010-0162-7
Bresciani, M., Bolpagni, R., Braga, F., Oggioni, A., & Giardino, C. (2012). Retrospective assessment of macrophytic communities in southern Lake Garda (Italy) from in situ and MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) data. Journal of Limnology, 71, 180-190. https://doi.org/10.4081/jlimnol.2012.e19
Brothers, S. M., Hilt, S., Attermeyer, K., Grossart, H. P., Kosten, S., Lischke, B., … Köhler, J. (2013). A regime shift from macrophyte to phytoplankton dominance enhances carbon burial in a shallow, eutrophic lake. Ecosphere, 4, 1-17. https://doi.org/10.1890/ES13-00247.1
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789. https://doi.org/10.1890/03-9000
Bucak, T., Saraoğlu, E., Levi, E. E., Tavşanoğlu, Ü. N., Çakıroğlu, A. İ., Jeppesen, E., & Beklioğlu, M. (2012). The influence of water level on macrophyte growth and trophic interactions in eutrophic Mediterranean shallow lakes: A mesocosm experiment with and without fish. Freshwater Biology, 57, 1631-1642. https://doi.org/10.1111/j.1365-2427.2012.02825.x
Burks, R. L., Jeppesen, E., & Lodge, D. M. (2001). Littoral zone structures as Daphnia refugia against fish predators. Limnology and Oceanography, 46, 230-237. https://doi.org/10.4319/lo.2001.46.2.0230
Burks, R. L., Mulderij, G., Gross, E., Jones, I., Jacobsen, L., Jeppesen, E., & Van Donk, E. (2006). Center stage: The crucial role of macrophytes in regulating trophic interactions in shallow lake wetlands. In R. Bobbink, B. Beltman, J. T. A. Verhoeven, & D. F. Whigham (Eds.), Wetlands: Functioning, biodiversity conservation, and restoration. Ecological studies (analysis and synthesis) (pp. 37-59). Berlin, Germany: Springer.
Canfield, D. E., Shireman, J. V., Colle, D. E., Haller, W. T., Watkins, C. E., & Maceina, M. J. (1984). Prediction of chlorophyll-a concentrations in Florida lakes: Importance of aquatic macrophytes. Canadian Journal of Fisheries and Aquatic Sciences, 41, 497-501. https://doi.org/10.1139/f84-059
Canty, A., & Ripley, B. (2015). boot: Bootstrap R (S-Plus) functions. R package version 1.3-24. Retrieved from http://cran.r-project.org/package=boot
Cao, J. J., Wang, Y., & Zhu, Z. L. (2012). Growth response of the submerged macrophyte Myriophyllum spicatum to sediment nutrient levels and water-level fluctuations. Aquatic Biology, 17, 295-303.
Cao, Y., Neif, É. M., Li, W., Coppens, J., Filiz, N., Lauridsen, T. L., … Jeppesen, E. (2015). Heat wave effects on biomass and vegetative growth of macrophytes after long-term adaptation to different temperatures: A mesocosm study. Climate Research, 66, 265-274. https://doi.org/10.3354/cr01352
Carr, G. M., & Chambers, P. A. (1998). Macrophyte growth and sediment phosphorus and nitrogen in a Canadian prairie river. Freshwater Biology, 39, 525-536. https://doi.org/10.1046/j.1365-2427.1998.00300.x
Chen, J., Cao, T., Zhang, X., Xi, Y., Ni, L., & Jeppesen, E. (2016). Differential photosynthetic and morphological adaptations to low light affect depth distribution of two submersed macrophytes in lakes. Scientific Reports, 6, 1-9. https://doi.org/10.1038/srep34028
Coops, H., Beklioğlu, M., & Crisman, T. L. (2003). The role of water-level fluctuations in shallow lake ecosystems - Workshop conclusions. Hydrobiologia, 506, 23-27. https://doi.org/10.1023/B:HYDR.0000008595.14393.77
Coppens, J., Hejzlar, J., Šorf, M., Jeppesen, E., Erdoğan, Ş., Scharfenberger, U., … Beklioğlu, M. (2016). The influence of nutrient loading, climate and water depth on nitrogen and phosphorus loss in shallow lakes: A pan-European mesocosm experiment. Hydrobiologia, 778(1), 13-32. https://doi.org/10.1007/s10750-015-2505-9
Coppens, J., Özen, A., Tavşanoğlu, Ü. N., Erdoğan, Ş., Levi, E. E., Yozgatlıgil, C., … Beklioğlu, M. (2016). Impact of alternating wet and dry periods on long-term seasonal phosphorus and nitrogen budgets of two shallow Mediterranean lakes. Science of the Total Environment, 563, 456-467. https://doi.org/10.1016/j.scitotenv.2016.04.028
Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90. https://doi.org/10.1007/BF00386231
Fordham, D. A. (2015). Mesocosms reveal ecological surprises from climate change. PLOS Biology, 13, e1002323. https://doi.org/10.1371/journal.pbio.1002323
Gelman, A. (2008). Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine, 27, 2865-2873. https://doi.org/10.1002/sim.3107
Håkanson, L. (2005). The importance of lake morphometry for the structure and function of lakes. International Review of Hydrobiology, 90, 433-461. https://doi.org/10.1002/iroh.200410775
Hansson, L. A., Ekvall, M. K., He, L., Li, Z., Svensson, M., Urrutia-Cordero, P., & Zhang, H. (in press). Different climate scenarios alter dominance patterns among aquatic primary producers in temperate systems. Limnology and Oceanography. https://doi.org/10.1002/lno.11455
Havens, K. E., East, T. L., & Beaver, J. R. (2007). Zooplankton response to extreme drought in a large subtropical lake. Hydrobiologia, 589, 187-198. https://doi.org/10.1007/s10750-007-0738-y
Hilt, S., Brothers, S., Jeppesen, E., Veraart, A., & Kosten, S. (2017). Translating regime shifts in shallow lakes into changes in ecosystem functions and services. BioScience, 67, 928-936. https://doi.org/10.1093/biosci/bix106
Hilt, S., Gross, E. M., Hupfer, M., Morscheid, H., Mahlmann, J., Melzer, A., … De Weyer, K. V. (2006). Restoration of submerged vegetation in shallow eutrophic lakes - A guideline and state of the art in Germany. Limnologica, 36, 155-171. https://doi.org/10.1016/j.limno.2006.06.001
Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15(3), 651-674. https://doi.org/10.1198/106186006X133933
Hothorn, T., & Zeileis, A. (2015). partykit: A modular toolkit for recursive partytioning in R. Journal of Machine Learning Research, 16, 3905-3909.
Hynes, H. B. N. (1950). The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a review of methods used in studies of the food of fishes. Journal of Animal Ecology, 19, 36-58.
Intergovernmental Panel on Climate Change. (2014). Climate change 2014 - Impacts, adaptation and vulnerability: Part A: Global and sectoral aspects: Working group II contribution to the IPCC fifth assessment report. Technical summary (Vol. 1, pp. 33-34). Cambridge: Cambridge University Press.
Jeppesen, E., Brucet, S., Naselli-Flores, L., Papastergiadou, E., Stefanidis, K., Nõges, T., … Beklioğlu, M. (2015). Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia, 750, 201-227. https://doi.org/10.1007/s10750-014-2169-x
Jeppesen, E., Kronvang, B., Olesen, J. E., Audet, J., Søndergaard, M., Hoffmann, C. C., … Özkan, K. (2011). Climate change effects on nitrogen loading from cultivated catchments in Europe: Implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia, 663, 1-21. https://doi.org/10.1007/s10750-010-0547-6
Jeppesen, E., Kronvang, B., Søndergaard, M., Hansen, K. M., Andersen, H. E., Lauridsen, T. L., … Olesen, J. E. (2009). Climate change effects on runoff, catchment phosphorus loading and lake ecological state and potential implications. Journal of Environmental Quality, 38, 1930-1941. https://doi.org/10.2134/jeq2008.0113
Jeppesen, E., Meerhoff, M., Davidson, T. A., Trolle, D., Søndergaard, M., Lauridsen, T. L., … Nielsen, A. (2014). Climate change impacts on lakes: An integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Journal of Limnology, 73, 84-107. https://doi.org/10.4081/jlimnol.2014.844
Kim, S. (2012). ppcor: Partial and semi-partial (Part) correlation. R package version 1.1. Retrieved from http://cran.r-project.org/package=ppcor
Köhler, J., Hachoł, J., & Hilt, S. (2010). Regulation of submersed macrophyte biomass in a temperate lowland river: Interactions between shading by bank vegetation, epiphyton and water turbidity. Aquatic Botany, 92, 129-136. https://doi.org/10.1016/j.aquabot.2009.10.018
Körner, C. H. (1991). Some often overlooked plant characteristics as determinants of plant growth: A reconsideration. Functional Ecology, 5(2), 162-173. https://doi.org/10.2307/2389254
Kosten, S., Jeppesen, E., Huszar, V. L. M., Mazzeo, N., Van Nes, E. H., Peeters, E. T. H. M., … Scheffer, M. (2011). Ambiguous climate impacts on competition between submerged macrophytes and phytoplankton in shallow lakes. Freshwater Biology, 56, 1540-1553. https://doi.org/10.1111/j.1365-2427.2011.02593.x
Kosten, S., Kamarainen, A., Jeppesen, E., Van nes, E. H., Peeters, E. T. H. M., Mazzeo, N., … Scheffer, M. (2009). Climate-related differences in the dominance of submerged macrophytes in shallow lakes. Global Change Biology, 15, 2503-2517. https://doi.org/10.1111/j.1365-2486.2009.01969.x
Kreyling, J., Schweiger, A. H., Bahn, M., Ineson, P., Migliavacca, M., Morel-Journel, T., … Larsen, K. S. (2018). To replicate, or not to replicate - That is the question: How to tackle nonlinear responses in ecological experiments. Ecology Letters, 21, 1629-1638. https://doi.org/10.1111/ele.13134
Lacoul, P., & Freedman, B. (2006). Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews, 14, 89-136. https://doi.org/10.1139/a06-001
Landkildehus, F., Søndergaard, M., Beklioglu, M., Adrian, R., Angeler, D. G., Hejzlar, J., … Jeppesen, E. (2014). Climate change effects on shallow lakes: Design and preliminary results of a cross-European climate gradient mesocosm experiment. Estonian Journal of Ecology, 63, 71-89.
Lauridsen, T. L., Mønster, T., Raundrup, K., Nymand, J., & Olesen, B. (2020). Macrophyte performance in a low arctic lake: Effects of temperature, light and nutrients on growth and depth distribution. Aquatic Sciences, 82, 18. https://doi.org/10.1007/s00027-019-0692-6
Lenth, R. (2020). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.6. Retrieved from http://cran.r-project.org/package=emmeans
Li, L., Lan, Z., Chen, J., & Song, Z. (2018). Allocation to clonal and sexual reproduction and its plasticity in Vallisneria spinulosa along a water-depth gradient. Ecosphere, 9, e02070. https://doi.org/10.1002/ecs2.2070
Li, Z., He, L., Zhang, H., Urrutia-Cordero, P., Ekvall, M. K., Hollander, J., & Hansson, L. A. (2017). Climate warming and heat waves affect reproductive strategies and interactions between submerged macrophytes. Global Change Biology, 23, 108-116. https://doi.org/10.1111/gcb.13405
Liboriussen, L., Lauridsen, T. L., Søndergaard, M., Landkildehus, F., Søndergaard, M., Larsem, S. E., & Jeppesen, E. (2011). Effects of warming and nutrients on sediment community respiration in shallow lakes: An outdoor mesocosm experiment. Freshwater Biology, 56, 437-447. https://doi.org/10.1111/j.1365-2427.2010.02510.x
Liira, J., Feldmann, T., Mäemets, H., & Peterson, U. (2010). Two decades of macrophytes expansion on the shores of a large shallow northern temperate lake - A retrospective series of satellite images. Aquatic Botany, 93, 207-215. https://doi.org/10.1016/j.aquabot.2010.08.001
Loverde-Oliveira, S. M., Huszar, V. L. M., Mazzeo, N., & Scheffer, M. (2009). Hydrology-driven regime shifts in a shallow tropical lake. Ecosystems, 12, 807-819. https://doi.org/10.1007/s10021-009-9258-0
Madsen, J. D., Chambers, P. A., James, W. F., Koch, E. W., & Westlake, D. F. (2001). The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444, 71-84. https://doi.org/10.1023/A:1017520800568
Madsen, T. V., & Brix, H. (1997). Growth, photosynthesis and acclimation by two submerged macrophytes in relation to temperature. Oecologia, 110, 320-327. https://doi.org/10.1007/s004420050165
Mahdy, A., Hilt, S., Filiz, N., Beklioğlu, M., Hejzlar, J., Özkundakci, D., … Adrian, R. (2015). Effects of water temperature on summer periphyton biomass in shallow lakes: A pan-European mesocosm experiment. Aquatic Sciences, 77, 499-510. https://doi.org/10.1007/s00027-015-0394-7
Martin, G. D., & Coetzee, J. A. (2014). Competition between two aquatic macrophytes, Lagarosiphon major (Ridley) Moss (Hydrocharitaceae) and Myriophyllum spicatum Linnaeus (Haloragaceae) as influenced by substrate sediment and nutrients. Aquatic Botany, 114, 1-11. https://doi.org/10.1016/j.aquabot.2013.11.001
Mazzeo, N., Rodríguez-Gallego, L., Kruk, C., Meerhoff, M., Gorga, J., Lacerot, G., … García-Rodríguez, F. (2003). Effects of Egeria densa Planch. beds on a shallow lake without piscivorous fish. Hydrobiologia, 506-509, 591-602. https://doi.org/10.1023/B:HYDR.0000008571.40893.77
Mckee, D., Hatton, K., Eaton, J. W., Atkinson, D., Atherton, A., Harvey, I., & Moss, B. (2002). Effects of simulated climate warming on macrophytes in freshwater microcosm communities. Aquatic Botany, 74, 71-83. https://doi.org/10.1016/S0304-3770(02)00048-7
Milly, P. C. D., Dunne, K. A., & Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature Letters, 438, 347-350. https://doi.org/10.1038/nature04312
Moss, B. (1990). Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia, 200-201, 367-377. https://doi.org/10.1007/BF02530354
Nõges, T., & Nõges, P. (1999). The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia, 408-409, 277-283. https://doi.org/10.1007/978-94-017-2986-4_30
Offill, Y. A., & Walton, W. E. (1999). Comparative efficacy of the threespined stickleback (Gasterosteus aculeatus) and the mosquitofish (Gambusia affinis) for mosquito control. Journal of American Mosquito Control Association, 15, 380-390.
Olsen, S., Chan, F., Li, W., Zhao, S., Søndergaard, M., & Jeppesen, E. (2015). Strong impact of nitrogen loading on submerged macrophytes and algae: A long-term mesocosm experiment in a shallow Chinese lake. Freshwater Biology, 60, 1525-1536. https://doi.org/10.1111/fwb.12585
Özen, A., Karapınar, B., Kucuk, I., Jeppesen, E., & Beklioğlu, M. (2010). Drought-induced changes in nutrient concentrations and retention in two shallow Mediterranean lakes subjected to different degrees of management. Hydrobiologia, 646, 61-72. https://doi.org/10.1007/s10750-010-0179-x
Özkan, K., Jeppesen, E., Johansson, L. S., & Beklioğlu, M. (2010). The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in shallow warm lakes: A mesocosm experiment. Freshwater Biology, 55, 463-475. https://doi.org/10.1111/j.1365-2427.2009.02297.x
Paice, R. L., Chambers, J. M., & Robson, B. J. (2017). Potential of submerged macrophytes to support food webs in lowland agricultural streams. Marine and Freshwater Research, 68, 549-562. https://doi.org/10.1071/MF15391
Papastergiadou, E., Kagalou, I., Stefanidis, K., Retalis, A., & Leonardos, I. (2010). Effects of anthropogenic influences on the trophic state, land uses and aquatic vegetation in a shallow Mediterranean lake: Implications for restoration. Water Resources Management, 24, 415-435. https://doi.org/10.1007/s11269-009-9453-y
Papastergiadou, E. S., Retalis, A., Kalliris, P., & Georgiadis, T. (2007). Land use changes and associated environmental impacts on the Mediterranean shallow Lake Stymfalia, Greece. Hydrobiologia, 584, 361-372. https://doi.org/10.1007/s10750-007-0606-9
Patrick, D. A., Boudreau, N., Bozic, Z., Carpenter, G. S., Langdon, D. M., LeMay, S. R., … Quinn, K. M. (2012). Effects of climate change on late-season growth and survival of native and nonnative species of watermilfoil (Myriophyllum spp.): Implications for invasive potential and ecosystem change. Aquatic Botany, 103, 83-88. https://doi.org/10.1016/j.aquabot.2012.06.008
Phillips, G. L., Willby, N., & Moss, B. (2016). Submerged macrophyte decline in shallow lakes: What have we learnt in the last forty years? Aquatic Botany, 135, 37-45. https://doi.org/10.1016/j.aquabot.2016.04.004
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Development Core Team. (2019). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-139. Retrieved from http://cran.r-project.org/package=nlme
R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
Riis, T., Olesen, B., Clayton, J. S., Lambertini, C., Brix, H., & Sorrell, B. K. (2012). Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquatic Botany, 102, 56-64. https://doi.org/10.1016/j.aquabot.2012.05.002
Rip, W., Ouboter, M., & Los, H. (2007). Impact of climatic fluctuations on Characeae biomass in a shallow, restored lake in The Netherlands. Hydrobiologia, 584, 415-424. https://doi.org/10.1007/s10750-007-0608-7
Roberts, E., Kroker, J., Körner, S., & Nicklisch, A. (2003). The role of periphyton during the re-colonization of a shallow lake with submerged macrophytes. Hydrobiologia, 506-509, 525-530. https://doi.org/10.1023/B:HYDR.0000008560.73832.1c
Romo, S., Miracle, M. R., Villena, M.-J., Rueda, J., Ferriol, C., & Vicente, E. (2004). Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshwater Biology, 49, 1593-1607. https://doi.org/10.1111/j.1365-2427.2004.01305.x
Rooney, D. J., & Kalff, J. (2000). Inter-annual variation in submerged macrophyte community biomass and distribution: The influence of temperature and lake morphometry. Aquatic Botany, 68, 321-335. https://doi.org/10.1016/S0304-3770(00)00126-1
Sand-Jensen, K., & Borum, J. (1991). Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany, 41, 137-176. https://doi.org/10.1016/0304-3770(91)90042-4
Sand-Jensen, K., Møller, C. L., & Borum, J. (2015). High resistance of oligotrophic isoetid plants to oxic and anoxic dark exposure. Freshwater Biology, 60, 1044-1051. https://doi.org/10.1111/fwb.12570
Sand-Jensen, K., Riis, T., Vestergaard, O., & Larsen, S. E. (2000). Macrophyte decline in Danish lakes and streams over past 100 years. Journal of Ecology, 88, 1030-1040. https://doi.org/10.1046/j.1365-2745.2000.00519.x
Scharfenberger, U., Jeppesen, E., Beklioğlu, M., Søndergaard, M., Angeler, D. G., Çakıroğlu, A. İ., … Adrian, R. (2019). Effects of trophic status, water level, and temperature on shallow lake metabolism and metabolic balance: A standardized pan-European mesocosm experiment. Limnology and Oceanography, 64, 616-631. https://doi.org/10.1002/lno.11064
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591-596. https://doi.org/10.1038/35098000
Scheffer, M., & Jeppesen, E. (2007). Regime shifts in shallow lakes. Ecosystems, 10, 1-3. https://doi.org/10.1007/s10021-006-9002-y
Schmieder, K., Werner, S., & Bauer, H. G. (2006). Submersed macrophytes as a food source for wintering waterbirds at Lake Constance. Aquatic Botany, 84, 245-250. https://doi.org/10.1016/j.aquabot.2005.09.006
Short, F. T., Kosten, S., Morgan, P. A., Malone, S., & Moore, G. E. (2016). Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany, 135, 3-17. https://doi.org/10.1016/j.aquabot.2016.06.006
Skinner, D. (2012). Sediment resuspension and water quality during declining water levels in a shallow lake: A case study of Lake Alexandrina, South Australia. PhD thesis, University of Adelaide, School of Earth and Environmental Sciences. http://hdl.handle.net/2440/83330
Staehr, P. A., Sand-Jensen, K., Raun, A. L., Nilsson, B., & Kidmose, J. (2010). Drivers of metabolism and net heterotrophy in contrasting lakes. Limnology and Oceanography, 55, 817-830. https://doi.org/10.4319/lo.2010.55.2.0817
Stefanidis, K., & Papastergiadou, E. (2013). Effects of a long term water level reduction on the ecology and water quality in an eastern Mediterranean lake. Knowledge and Management of Aquatic Ecosystems, 411, 05. https://doi.org/10.1051/kmae/2013072
Stewart, R. I., Dossena, M., Bohan, D. A., Jeppesen, E., Kordas, R. L., Ledger, M. E., … Woodward, G. (2013). Mesocosm experiments as a tool for ecological climate-change research. Advances in Ecological Research, 48, 71-181. https://doi.org/10.1016/B978-0-12-417199-2.00002-1
Thomaz, S. M., Pagioro, T. A., Bini, L. M., & Murphy, K. J. (2006). Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Hydrobiologia, 570, 53-59. https://doi.org/10.1007/s10750-006-0161-9
Trenberth, K. E., Dai, A., Van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4, 17-22. https://doi.org/10.1038/nclimate2067
Van Donk, E., & Van de Bund, W. J. (2002). Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: Allelopathy versus other mechanisms. Aquatic Botany, 72, 261-274. https://doi.org/10.1016/S0304-3770(01)00205-4
Velthuis, M., de Senerpont Domis, L. N., Frenken, T., Stephan, S., Kazanjian, G., Aben, R., … Van de Waal, D. B. (2017). Warming advances top-down control and reduces producer biomass in a freshwater plankton community. Ecosphere, 8, e01651. https://doi.org/10.1002/ecs2.1651
Zhang, P., Grutters, B., Van Leeuwen, C. H., Xu, J., Petruzzella, A., van den Berg, R. F., & Bakker, E. S. (2019). Effects of rising temperature on the growth, stoichiometry, and palatability of aquatic plants. Frontiers in Plant Science, 9, 1947. https://doi.org/10.3389/fpls.2018.01947
Zhang, P., Kuramae, A., Van Leeuwen, C. H., Velthuis, M., van Donk, E., Xu, J., & Bakker, E. S. (2020). Interactive effects of rising temperature and nutrient enrichment on aquatic plant growth, stoichiometry, and palatability. Frontiers in Plant Science, 11, 58. https://doi.org/10.3389/fpls.2020.00058