macrophytes
Dotaz
Zobrazit nápovědu
Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N) and carbon (δ13C) isotopic mixing models, perch (Perca fluviatilis L.) and rudd (Scardinius erythrophthalmus (L.)) showed larger individual variation (i.e., variance) in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.)). Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence the overall food-web structures in lake ecosystems.
- MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- izotopy dusíku analýza MeSH
- potravní řetězec MeSH
- rostliny * MeSH
- ryby * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cryptic pigmentation of prey is often thought to evolve in response to predator-mediated selection, but pigmentation traits can also be plastic, and change with respect to both abiotic and biotic environmental conditions. In such cases, identifying the presence of, and drivers of trait plasticity is useful for understanding the evolution of crypsis. Previous work suggests that cryptic pigmentation of freshwater isopods (Asellus aquaticus) has evolved in response to predation pressure by fish in habitats with varying macrophyte cover and coloration. However, macrophytes can potentially influence the distribution of pigmentation by altering not only habitat-specific predation susceptibility, but also dietary resources and abiotic conditions. The goals of this study were to experimentally test how two putative agents of selection, namely macrophytes and fish, affect the pigmentation of A. aquaticus, and to assess whether pigmentation is plastic, using a diet manipulation in a common garden. We performed two experiments: (a) in an outdoor mesocosm experiment, we investigated how different densities of predatory fish (0/30/60 three-spined stickleback [Gasterosteus aculeatus] per mesocosm) and macrophytes (presence/absence) affected the abundance, pigmentation and body size structure of isopod populations. (b) In a subsequent laboratory experiment, we reared isopods in a common garden experiment on two different food sources (high/low protein content) to test whether variation in pigmentation of isopods can be explained by diet-based developmental plasticity. We found that fish presence strongly reduced isopod densities, particularly in the absence of macrophytes, but had no effect on pigmentation or size structure of the populations. However, we found that isopods showed consistently higher pigmentation in the presence of macrophytes, regardless of fish presence or absence. Our laboratory experiment, in which we manipulated the protein content of the isopods' diet, revealed strong plasticity of pigmentation and weak plasticity of growth rate. The combined results of both experiments suggest that pigmentation of A. aquaticus is a developmentally plastic trait and that multiple environmental factors (e.g. macrophytes, diet and predation) might jointly influence the evolution of cryptic pigmentation of A. aquaticus in nature on relatively short time-scales.
- MeSH
- ekosystém MeSH
- Isopoda * MeSH
- pigmentace MeSH
- predátorské chování MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Higher biomass especially of some aquatic macrophyte species offered a higher density of phytophilous zoobenthos, but did not increase the proportion of non-planktonic to planktonic prey in young-of-the-year perch Perca fluviatilis. Both abundance and biomass of non-planktonic prey dominated over planktonic prey in the pond with lower biomass of aquatic macrophytes and lower food. Survival of P. fluviatilis was lower (20%) in the pond with lower food than in the other pond (34%), however, specific growth rate (1.3% day(-1) ) and final Fulton's condition factor of P. fluviatilis were similar in both ponds.
- MeSH
- biomasa MeSH
- okounovití růst a vývoj MeSH
- plankton * MeSH
- potravní řetězec * MeSH
- rybníky MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Four emergent plants (helophytes, synonyms emersion macrophytes, marsh plants, etc.) Phragmites australis, Juncus glaucus, Carex gracillis and Typha latifolia were successfully used for degradation of TNT (2,4,6-trinitrotoluene) under in vitro conditions. The plants took up and transformed more than 90% of TNT from the medium within ten days of cultivation. The most efficient species was Ph. australis which took up 98% of TNT within ten days. The first stable degradation products 4-amino-2,6-dinitrotoluene (4-ADNT) and 2-amino-4,6-dinitrotoluene (2-ADNT) were identified and analysed during the cultivation period. [14C] TNT was used for the detection of TNT degradation products and their compartmentalization in plant tissues after two weeks of cultivation. Forty one percent of 14C was detected as insoluble or bound in cell structures: 34% in roots and 8% in the aerial parts. These results open the perspective of using the above-mentioned plants for the remediation of TNT contaminated waters.
- MeSH
- biodegradace MeSH
- chemické látky znečišťující vodu analýza metabolismus toxicita MeSH
- financování organizované MeSH
- kořeny rostlin chemie metabolismus MeSH
- Magnoliopsida chemie metabolismus růst a vývoj MeSH
- nadzemní části rostlin chemie metabolismus MeSH
- radioizotopy uhlíku MeSH
- trinitrotoluen analýza metabolismus toxicita MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- srovnávací studie MeSH
In recent years, the keeping of ornamental freshwater animals and plants in garden ponds has been growing in popularity. Water hyacinth (Eichhornia crassipes) is one of the preferred macrophytes seasonally imported mainly from South-eastern Asia throughout the world. This constitutes a secondary introduction inasmuch as the species is native to South America. Although many assemblages of aquatic invertebrates have been described as associated with this plant in the wild, there has been no research focused on their potential introduction via the international plant trade. We examined 216 specimens of water hyacinths imported for ornamental purposes from Indonesia into the Czech Republic. Numerous meio- and macroinvertebrates belonging to at least 39 species were captured. On the total number of individuals, the highest prevalence was of Tubulinea and Rotifera. Most of these were still alive and vital, including a caterpillar of the Indo-Australian invasive moth Spodoptera litura. Water hyacinths are usually placed into outdoor ponds immediately after import, which facilitates the release of non-target alien species. The present paper aims to draw attention to "hitchhikers" associated with the ornamental trade.
- MeSH
- bezobratlí fyziologie MeSH
- Eichhornia fyziologie MeSH
- obchod MeSH
- rybníky analýza MeSH
- vodní organismy MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Indonésie MeSH
- Jižní Amerika MeSH
The effectiveness of heavy metal uptake from contaminated nutrient solution by four aquatic macrophytes (Pistia stratiotes L., Salvinia auriculata AubL, Salvinia minima Baker, and Azolla filiculoides Lam) was estimated in this study. The influence of cadmium (3.5 mg L(-1) and 10.5 mg L(-1)) and lead (25 mg L(-1) and 125 mg L(-1)) on the stress symptoms was observed through the determination of chlorophyll content and transpiration rate over 14 days of the experiment. The results of the present study showed extreme reductions in Cd and Pb concentrations in solution during the first 4 days. The accumulation of Pb in plant tissues was the highest during the first 4 days and was more than 10 times higher in the roots (42,862 mg kg(-1)) than in the leaves (3867 mg kg(-1)). The accumulation of Cd slowly increased and was the highest at the end of the experiment. Concentrations in roots (3923 mg kg(-1)) were roughly 6 times higher than in the leaves (624 mg kg(-1)). Results showed significant decrease in the transpiration rate at Pb treatment and a significant increase at Cd treatment during 48 hours of exposition.
- MeSH
- Araceae chemie účinky léků metabolismus MeSH
- časové faktory MeSH
- chemické látky znečišťující vodu metabolismus MeSH
- chlorofyl metabolismus MeSH
- čištění vody metody MeSH
- kadmium metabolismus farmakologie MeSH
- kapradiny chemie účinky léků metabolismus MeSH
- kořeny rostlin chemie metabolismus MeSH
- listy rostlin chemie metabolismus MeSH
- olovo metabolismus farmakologie MeSH
- roztoky MeSH
- transpirace rostlin účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The use of natural chelates to enhance risk element mobility combined with rhizofiltration by free floating macrophytes have not been thoroughly studied in recent years. The aim of this study was to investigate the efficiency of organic acids in soil by conducting flushing experiments to enhance the mobility of Cd, Pb, and Zn from soil to solution. In addition, the bioaccumulation of Cd, Pb, and Zn, in water lettuce (Pistia stratiotes L.) will be studied as they affect the biomass in the rhizofiltration process. The results revealed that citric and tartaric acids mobilised the highest amount of all risk elements. In comparison to control, citric acid mobilised 71%, 181%, and 112% of Cd, Pb, and Zn while tartaric acid mobilised 70%, 155%, and 135% of Cd, Pb, and Zn respectively. The bioconcentration factor was approximately 2-5 times higher for juvenile plants than mature plants for all treatments as well as for both parts (leaves and roots). The risk element translocation into aerial parts decreased with increased time. Juvenile and mature plants proved a high accumulation potential and a 3 week growth period was observed as a sufficient time period to remove more than 80% of Cd, Pb, and Zn.
- MeSH
- Araceae růst a vývoj metabolismus MeSH
- biodegradace MeSH
- biologický transport MeSH
- biomasa MeSH
- časové faktory MeSH
- chemické látky znečišťující vodu metabolismus MeSH
- kadmium metabolismus MeSH
- kořeny rostlin růst a vývoj metabolismus MeSH
- kyselina citronová metabolismus MeSH
- kyseliny karboxylové metabolismus MeSH
- látky znečišťující půdu metabolismus MeSH
- listy rostlin růst a vývoj metabolismus MeSH
- olovo metabolismus MeSH
- půda chemie MeSH
- tartaráty metabolismus MeSH
- těžké kovy metabolismus MeSH
- zinek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Since wetlands are ecosystems that have an ample supply of water, they play an important role in the energy budgets of their respective landscapes due to their capacity to shift energy fluxes in favor of latent heat. Rates of evapotranspiration in wetlands are commonly as high as 6-15 mm day⁻¹, testifying to the large amount of energy that is dissipated through this process. Emergent or semi-emergent wetland macrophytes substantially influence the solar energy distribution due to their high capacity for transpiration. Wetland ecosystems in eutrophic habitats show a high primary production of biomass because of the highly efficient use of solar energy in photosynthesis. In wetlands associated with the slow decomposition of dead organic matter, such as oligotrophic marshes or fens and bogs, the accumulation of biomass is also high, in spite of the rather low primary production of biomass. Most of the energy exchange in water-saturated wetlands is, however, linked with heat balance, whereby the largest proportion of the incoming energy is dissipated during the process of evapotranspiration. An example is shown of energy fluxes during the course of a day in the wetland ecosystem of Mokré Louky (Wet Meadows) near Třeboň. The negative consequences of the loss of wetlands for the local and regional climate are discussed.
Pesticides are used in modern agriculture to increase crop yields, but they may pose a serious threat to aquatic ecosystems. Pesticides may enter water bodies through diffuse and point sources, but diffuse sources are probably the most important. Among diffuse pollution, surface runoff and erosion, leaching and drainage represent the major pathways. The most commonly used mitigation techniques to prevent pesticide input into water bodies include edge-of-field and riparian buffer strips, vegetated ditches and constructed wetlands. The first attempts to use wetland macrophytes for pesticide removal were carried out as early as the 1970s, but only in the last decade have constructed wetlands for pesticide mitigation become widespread. The paper summarizes 47 studies in which removal of 87 pesticides was monitored. The survey revealed that constructed wetlands with free water surface are the most commonly used type. Also, it has been identified that removal of pesticides is highly variable. The results of the survey revealed that the highest pesticide removal was achieved for pesticides of the organochlorine, strobilurin/strobin, organosphosphate and pyrethroid groups while the lowest removals were observed for pesticides of the triazinone, aryloxyalkanoic acid and urea groups. The removal of pesticides generally increases with increasing value of KOC but the relationship is not strong.