Allelic Variants of CRISPR/Cas9 Induced Mutation in an Inositol Trisphosphate 5/6 Kinase Gene Manifest Different Phenotypes in Barley
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738
European Regional Development Fund
PubMed
32033421
PubMed Central
PMC7076722
DOI
10.3390/plants9020195
PII: plants9020195
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR, abiotic stress, barley mutant, phosphate, phytic acid, salinity,
- Publikační typ
- časopisecké články MeSH
Inositol trisphosphate 5/6 kinases (ITPK) constitute a small group of enzymes participating in the sequential phosphorylation of inositol phosphate to inositol hexakisphosphate (IP6), which is a major storage form of phosphate in cereal grains. The development of lines with reduced IP6 content could enhance phosphate and mineral bioavailability. Moreover, plant ITPKs participate in abiotic stress signaling. To elucidate the role of HvITPK1 in IP6 synthesis and stress signaling, a barley itpk1 mutant was created using programmable nuclease Cas9. Homozygous single bp insertion and deletion mutant lines were obtained. The mutants contained altered levels of phosphate in the mature grains, ranging from 65% to 174% of the wild type (WT) content. Homozygous mutant lines were tested for their response to salinity during germination. Interestingly, insertion mutant lines revealed a higher tolerance to salinity stress than deletion mutants. Mature embryos of an insertion mutant itpk1-2 and deletion mutant itpk1-33 were cultivated in vitro on MS medium supplemented with NaCl at 50, 100, and 200 mM. While both mutants grew less well than WT on no or low salt concentrations, the itpk1-2 mutant was affected less than the WT and itpk33 when grown on the highest NaCl concentration. The expression of all ITPKs was induced in roots in response to salt stress. In shoots, the differential effect of high salt on IPTK expression in the two iptk1 mutants was consistent with their different sensitivities to salt stress. The results extend the evidence for the involvement of ITPK genes in phosphate storage and abiotic stress signaling.
Zobrazit více v PubMed
Cosgrove D. Inositolhexakisphosphates. In: Cosgrove D., editor. Inositol Phosphates: Their Chemistry, Biochemistry and Physiology. Elsevier Scientific Publishing Company; New York, NY, USA: 1980. pp. 26–43.
Raboy V. Forward genetics studies of seed phytic acid. Isr. J. Plant Sci. 2007;55:171–181. doi: 10.1560/IJPS.55.2.171. DOI
Suzuki M., Tanaka K., Kuwano M., Yoshida K.T. Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): Implications for the phytic acid biosynthetic pathway. Gene. 2007;405:55–64. doi: 10.1016/j.gene.2007.09.006. PubMed DOI
Meijer H.J.G., Divecha N., Van Den Ende H., Musgrave A., Munnik T. Hyperosmotic stress induces rapid synthesis of phosphatidyl-D-inositol 3,5-bisphosphate in plant cells. Planta. 1999;208:294–298. doi: 10.2135/cropsci2011.05.0285. DOI
Warkentin T.D., Delgerjav O., Arganosa G., Rehman A.U., Bett K.E., Anbessa Y., Rossnagel B., Raboy V. Development and characterization of low-phytate pea. Crop Sci. 2012;52:74–78. doi: 10.2135/cropsci2011.05.0285. DOI
Sakai H., Iwai T., Matsubara C., Usui Y., Okamura M. A decrease in phytic acid content substantially affects the distribution of mineral elements within rice seeds. Plant Sci. 2015;238:170–177. doi: 10.1016/j.plantsci.2015.06.006. PubMed DOI
Jiang M., Liu Y., Liu Y., Tan Y., Huang J., Shu Q. Mutation of inositol 1,3,4-trisphosphate 5/6-kinase6 impairs plant growth and phytic acid synthesis in rice. Plants. 2019;8:114. doi: 10.3390/plants8050114. PubMed DOI PMC
Harada A., Sakai T., Okada K. phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc. Natl. Acad. Sci. USA. 2003;100:8583–8588. doi: 10.1073/pnas.1336802100. PubMed DOI PMC
Franklin-Tong V.E., Drøbak B.K., Allan A.C., Watkins P.A.C., Trewavas A.J. Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate. Plant Cell. 1996;8:1305–1321. doi: 10.2307/3870303. PubMed DOI PMC
Yuan F.-J., Zhao H.-J., Ren X.-L., Zhu S.-L., Fu X.-J., Shu Q.-Y. Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.) Theor. Appl. Genet. 2007;115:945–957. doi: 10.1007/s00122-007-0621-2. PubMed DOI
Wilcox J.R., Premachandra G.S., Young K.A., Raboy V. Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci. 2000;40:1601–1605. doi: 10.2135/cropsci2000.4061601x. DOI
Larson S.R., Raboy V. Linkage mapping of maize and barley myo-inositol 1-phosphate synthase DNA sequences: Correspondence with a low phytic acid mutation. Theor. Appl. Genet. 1999;99:27–36. doi: 10.1007/s001220051205. DOI
Larson S.R., Rutger J.N., Young K.A., Raboy V. Isolation and Genetic Mapping of a Non-Lethal Rice (Oryza sativa L.) Low Phytic Acid Mutation. Crop Sci. 2000;40:1397–1405. doi: 10.2135/cropsci2000.4051397x. DOI
Guttieri M., Bowen D., Dorsch J.A., Raboy V., Souza E. Identification and characterization of a low phytic acid wheat. Crop Sci. 2004;44:418–424. doi: 10.2135/cropsci2004.4180. DOI
Larson S.R., Young K.A., Cook A., Blake T.K., Raboy V. Linkage mapping of two mutations that reduce phytic acid content of barley grain. Theor. Appl. Genet. 1998;97:141–146. doi: 10.1007/s001220050878. DOI
Jang D.A., Fadel J.G., Klasing K.C., Mireles A.J., Ernst R.A., Young K.A., Cook A., Raboy V. Evaluation of low-phytate corn and barley on broiler chick performance. Poult. Sci. 2003;82:1914–1924. doi: 10.1093/ps/82.12.1914. PubMed DOI
Veum T.L., Ledoux D.R., Raboy V. Low-phytate barley cultivars improve the utilization of phosphorus, calcium, nitrogen, energy, and dry matter in diets fed to young swine. J. Anim. Sci. 2007;85:961–971. doi: 10.2527/jas.2006-453. PubMed DOI
Thacker P.A., Rossnagel B.G., Raboy V. Phosphorus digestibility in low-phytate barley fed to finishing pigs. Can. J. Anim. Sci. 2003;83:101–104. doi: 10.4141/A02-040. PubMed DOI
Leytem A.B., Taylor J.B., Raboy V., Plumstead P.W. Dietary low-phytate mutant-M 955 barley grain alters phytate degradation and mineral digestion in sheep fed high-grain diets. Anim. Feed Sci. Technol. 2007;138:13–28. doi: 10.1016/j.anifeedsci.2006.11.005. DOI
Poulsen H.D., Johansen K.S., Hatzack F., Boisen S., Rasmussen S.K. Nutritional value of low-phytate barley evaluated in rats. Acta Agric. Scand. Sect. A Anim. Sci. 2001;51:53–58. doi: 10.1080/090647001300004790a. DOI
Raboy V. Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci. 2009;177:281–296. doi: 10.1016/j.plantsci.2009.06.012. DOI
Pilu R., Panzeri D., Gavazzi G., Rasmussen S.K., Consonni G., Nielsen E. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241) Theor. Appl. Genet. 2003;107:980–987. doi: 10.1007/s00122-003-1316-y. PubMed DOI
Bregitzer P., Raboy V. Effects of four independent low-phytate mutations in barley (Hordeum vulgare L.) on seed phosphorus characteristics and malting quality. Cereal Chem. 2006;83:460–464. doi: 10.1094/CC-83-0460. DOI
Kuo H., Chang T., Chiang S., Wang W., Charng Y., Chiou T. Arabidopsis inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level. Plant J. 2014;80:503–515. doi: 10.1111/tpj.12650. PubMed DOI
Raboy V., Peterson K., Jackson C., Marshall J.M., Hu G., Saneoka H., Bregitzer P. A substantial fraction of barley (Hordeum vulgare L.) low phytic acid mutations have little or no effect on yield across diverse production environments. Plants. 2015;4:225–239. doi: 10.3390/plants4020225. PubMed DOI PMC
Brinch-Pedersen H., Hatzack F., Stöger E., Arcalis E., Pontopidan K., Holm P.B. Heat-stable phytases in transgenic wheat (Triticum aestivum L.): Deposition pattern, thermostability, and phytate hydrolysis. J. Agric. Food Chem. 2006;54:4624–4632. doi: 10.1021/jf0600152. PubMed DOI
Abid N., Khatoon A., Maqbool A., Irfan M., Bashir A., Asif I., Shahid M., Saeed A., Brinch-Pedersen H., Malik K.A. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains. Transgenic Res. 2017;26:109–122. doi: 10.1007/s11248-016-9983-z. PubMed DOI
Holme I.B., Dionisio G., Brinch-Pedersen H., Wendt T., Madsen C.K., Vincze E., Holm P.B. Cisgenic barley with improved phytase activity. Plant Biotechnol. J. 2012;10:237–247. doi: 10.1111/j.1467-7652.2011.00660.x. PubMed DOI
Du H., Liu L., You L., Yang M., Yubing H., Li X., Xiong L. Characterization of an inositol 1,3,4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice. Plant Mol. Biol. 2011;77:547–563. doi: 10.1007/s11103-011-9830-9. PubMed DOI
Marathe A., Krishnan V., Vinutha T., Dahuja A., Jolly M., Sachdev A. Exploring the role of Inositol 1,3,4-trisphosphate 5/6 kinase-2 (GmITPK2) as a dehydration and salinity stress regulator in Glycine max (L.) Merr. through heterologous expression in E. Coli. Plant Physiol. Biochem. 2018;123:331–341. doi: 10.1016/j.plaphy.2017.12.026. PubMed DOI
Zhu J. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002;53:247–273. doi: 10.1146/annurev.arplant.53.091401.143329. PubMed DOI PMC
Loewus F.A., Murthy P.P.N. Myo-Inositol metabolism in plants. Plant Sci. 2000;150:1–19. doi: 10.1016/S0168-9452(99)00150-8. DOI
Aggarwal S., Shukla V., Bhati K.K., Kaur M., Sharma S., Singh A., Mantri S., Pandey A.K. Hormonal regulation and expression profiles of wheat genes involved during phytic acid biosynthesis pathway. Plants. 2015;4:298–319. doi: 10.3390/plants4020298. PubMed DOI PMC
Niu X., Chen Æ.Q., Wang Æ.X. OsITL1 gene encoding an inositol 1,3,4-trisphosphate 5/6-kinase is a negative regulator of osmotic stress signaling. Biotechnol. Lett. 2008;30:1687–1692. doi: 10.1007/s10529-008-9730-5. PubMed DOI
Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F., Hummel A., Bogdanove A.J., Voytas D.F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:756–761. doi: 10.1534/genetics.110.120717. PubMed DOI PMC
Cermak T., Doyle E.L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J., Voytas D.F. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39:e82:1–e82:11. doi: 10.1093/nar/gkr739. PubMed DOI PMC
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA —Guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–822. doi: 10.1126/science.1225829. PubMed DOI PMC
Nekrasov V., Staskawicz B., Weigel D., Jones D.J., Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013;31:691–693. doi: 10.1038/nbt.2655. PubMed DOI
Jiang W., Zhou H., Bi H., Fromm M., Yang B., Weeks D.P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41:1–12. doi: 10.1093/nar/gkt780. PubMed DOI PMC
Shan Q., Wang Y., Li J., Zhang Y., Chen K., Liang Z., Zhang K., Liu J., Xi J.J., Qiu J.-L., et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013;31:686–688. doi: 10.1038/nbt.2650. PubMed DOI
Ma X., Zhang Q., Zhu Q., Liu W., Chen Y., Qiu R., Wang B., Yang Z., Li H., Lin Y., et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicotplants. Mol. Plant. 2015;8:1274–1284. doi: 10.1016/j.molp.2015.04.007. PubMed DOI
Xie K., Minkenberg B., Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA. 2015;112:3570–3575. doi: 10.1073/pnas.1420294112. PubMed DOI PMC
Fauser F., Schiml S., Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 2014;79:348–359. doi: 10.1111/tpj.12554. PubMed DOI
Slaymaker I.M., Gao L., Zetsche B., Scott D.A., Yan W.X., Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2015;351:84–88. doi: 10.1126/science.aad5227. PubMed DOI PMC
Kleinstiver B.P., Pattanayak V., Prew M.S., Tsai S.Q., Nguyen N.T., Zheng Z., Keith Joung J. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529:490–495. doi: 10.1038/nature16526. PubMed DOI PMC
Li C., Zong Y., Wang Y., Jin S., Zhang D., Song Q., Zhang R. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 2018;19:59. doi: 10.1186/s13059-018-1443-z. PubMed DOI PMC
Bo L., Jia-jie W., Dao-lin F. Constructing the barley model for genetic transformation in Triticeae. J. Integr. Agric. 2015;14:453–468. doi: 10.1016/S2095-3119(14)60935-7. DOI
Hamada H., Liu Y., Nagira Y., Miki R., Taoka N., Imai R. Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Sci. Rep. 2018;8:1–7. doi: 10.1038/s41598-018-32714-6. PubMed DOI PMC
Zhang Y., Liang Z., Zong Y., Wang Y., Liu J., Chen K., Qiu J.-L., Gao C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 2016;7:1–8. doi: 10.1038/ncomms12617. PubMed DOI PMC
Abid G., Silue S., Muhovski Y., Jacquemin J.M., Toussaint A., Baudoin J.P. Role of myo-inositol phosphate synthase and sucrose synthase genes in plant seed development. Gene. 2009;439:1–10. doi: 10.1016/j.gene.2009.03.007. PubMed DOI
Bhati K.K., Aggarwal S., Sharma S., Mantri S., Singh S.P., Bhalla S., Kaur J., Tiwari S., Roy J.K., Tuli R., et al. Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (Triticum aestivum L.) Plant Sci. 2014;224:74–85. doi: 10.1016/j.plantsci.2014.04.009. PubMed DOI
Shi J., Hongyu W., Wu Y., Hazebroek J., Meeley R.B., Ertl D.S. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol. 2003;131:507–515. doi: 10.1104/pp.014258. PubMed DOI PMC
Liang G., Zhang H., Lou D., Yu D. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci. Rep. 2016;6:1–8. doi: 10.1038/srep21451. PubMed DOI PMC
Serhantova V., Ehrenbergerova J., Ohnoutkova L. Callus induction and regeneration efficiency of spring barley cultivars registered in the Czech Republic. Plant Soil Environ. 2004;50:456–462. doi: 10.17221/4058-PSE. DOI
Harwood W.A. A protocol for high-throughput Agrobacterium-mediated barley transformation. In: Henry R.J., Furtado A., editors. Cereal Genomics: Methods and Protocols. Humana Press; Totowa, NJ, USA: 2014. pp. 251–260. PubMed
Holme I.B., Wendt T., Gil J., Deleuran L.C., Starker C.G., Voytas D.F., Brinch-Pedersen H. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol. Biol. 2017;95:111–121. doi: 10.1007/s11103-017-0640-6. PubMed DOI
Kapusi E., Corcuera-Gómez M., Melnik S., Stoger E. Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front. Plant Sci. 2017;8:1–11. doi: 10.3389/fpls.2017.00540. PubMed DOI PMC
Lawrenson T., Shorinola O., Stacey N., Li C., Østergaard L., Patron N., Uauy C., Harwood W. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 2015;16:1–13. doi: 10.1186/s13059-015-0826-7. PubMed DOI PMC
Singh M., Kumar M., Albertsen M.C., Young J.K., Cigan A.M. Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.) Plant Mol. Biol. 2018;97:371–383. doi: 10.1007/s11103-018-0749-2. PubMed DOI
Li M., Hensel G., Mascher M., Melzer M., Budhagatapalli N., Rutten T., Himmelbach A., Beier S., Korzun V., Kumlehn J., et al. Leaf variegation and impaired chloroplast development caused by a truncated CCT domain gene in albostrians barley. Plant Cell. 2019;31:1430–1445. doi: 10.1105/tpc.19.00132. PubMed DOI PMC
Holubová K., Hensel G., Vojta P., Tarkowski P., Gene H. Modification of Barley Plant Productivity Through Regulation of Cytokinin Content by Reverse–Genetics Approaches Preparation of Constructs for Silencing. Front. Plant Sci. 2018;9:1–18. doi: 10.3389/fpls.2018.01676. PubMed DOI PMC
Sánchez-León S., Gil-Humanes J., Ozuna C.V., Sousa C., Voytas D.F., Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 2018;16:902–910. doi: 10.1111/pbi.12837. PubMed DOI PMC
Jang G., Lee S., Um T., Hyun Chang S., Yong Lee H., Chung P.J., Kim J.-K., Do Choi Y. Genetic chimerism of CRISPR/Cas9-mediated rice mutants. Plant Biotechnol. Rep. 2016;10:1–11. doi: 10.1007/s11816-016-0414-7. PubMed DOI
Hatzack F., Johansen K.S., Rasmussen S.K. Nutritionally relevant parameters in low-phytate barley (Hordeum vulgare L.) grain mutants. J. Agric. Food Chem. 2000;48:6074–6080. doi: 10.1021/jf000669p. PubMed DOI
Raboy V., Gerbasi P.F., Young K.A., Stoneberg S.D., Pickett S.G., Bauman A.T., Murthy P.P., Sheridan W.F., Ertl D.S. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol. 2000;124:355–368. doi: 10.1104/pp.124.1.355. PubMed DOI PMC
Kim S.I., Tai T.H. Identification of genes necessary for wild-type levels of seed phytic acid in Arabidopsis thaliana using a reverse genetics approach. Mol. Genet. Genomics. 2011;286:119–133. doi: 10.1007/s00438-011-0631-2. PubMed DOI
Nagy R., Grob H., Weder B., Green P., Klein M., Frelet-Barrand A., Schjoerring J.K., Brearley C., Martinoia E. The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporterinvolved in guard cell signaling and phytate storage. J. Biol. Chem. 2009;284:33614–33622. doi: 10.1074/jbc.M109.030247. PubMed DOI PMC
Panzeri D., Cassani E., Doria E., Tagliabue G., Forti L., Campion B., Bollini R., Brearley C.A., Pilu R., Nielsen E., et al. A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. New Phytol. 2011;191:70–83. doi: 10.1111/j.1469-8137.2011.03666.x. PubMed DOI
Stiles A., Qian X., Shears S., Grabau E. Metabolic and signaling properties of an Itpk gene family in Glycine max. FEBS Lett. 2008;582:1853–1858. doi: 10.1016/j.febslet.2008.04.054. PubMed DOI PMC
Marathe A., Krishnan V., Mahajan M.M., Thimmegowda V., Dahuja A., Jolly M., Praveen S., Sachdev A. Characterization and molecular modeling of Inositol 1,3,4 tris phosphate 5/6 kinase-2 from Glycine max (L.) Merr.: Comprehending its evolutionary conservancy at functional level. 3 Biotech. 2018;8:50. doi: 10.1007/s13205-017-1076-z. PubMed DOI PMC
Forster B.P., Pakniyat H., Macaulay M., Matheson W., Phillips M.S., Thomas W.T.B., Powell W. Variation in the leaf sodium content of the Hordeum vulgare (Barley) cultivar Maythorpe and its derived mutant cv. Golden promise. Heredity (Edinb). 1994;73:249–253. doi: 10.1038/hdy.1994.130. DOI
Kaur H., Verma P., Petla B.P., Rao V., Saxena S.C., Majee M. Ectopic expression of the ABA-inducible dehydration-responsive chickpea l-myo-inositol 1-phosphate synthase 2 (CaMIPS2) in Arabidopsis enhances tolerance to salinity and dehydration stress. Planta. 2013;237:321–335. doi: 10.1007/s00425-012-1781-0. PubMed DOI
Smits A.H., Ziebell F., Joberty G., Zinn N., Mueller W.F., Clauder-Münster S., Eberhard D., Fälth Savitski M., Grandi P., Jakob P., et al. Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods. 2019;16:1087–1093. doi: 10.1038/s41592-019-0614-5. PubMed DOI
Jiang M., Hu H., Kai J., Traw M.B., Yang S., Zhang X. Different knockout genotypes of OsIAA23 in rice using CRISPR/Cas9 generating different phenotypes. Plant Mol. Biol. 2019;100:467–479. doi: 10.1007/s11103-019-00871-5. PubMed DOI PMC
Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991;19:1349. doi: 10.1093/nar/19.6.1349. PubMed DOI PMC
Liu W., Xie X., Ma X., Li J., Chen J., Liu Y.-G. DSDecode: A Web-Based Tool for Decoding of Sequencing Chromatograms for Genotyping of Targeted Mutations. Mol. Plant. 2018;8:1431–1433. doi: 10.1016/j.molp.2015.05.009. PubMed DOI
Vaculova K., Balounova M., Sedlackova I., Kvasnicka F., Mikulikova R., Belakova S., Benesova K., Pouch M., Ehrenbergerova J. Metodika Prebreedingu Ječmene Jarního s Diferencovaným Obsahem Přirozených Škodlivých Látek v Zrně Pro Šlechtění Odrůd Nesladovnického Typu. 1st ed. Agrotest Fyto, S.R.O.; Kromeriz, Czech Republic: 2011. pp. 12–15.
Chen P.S., Toribara T.Y., Warner H. Microdetermination of Phosphorus. Anal. Chem. 1956;28:1756–1758. doi: 10.1021/ac60119a033. DOI
Daszkowska-Golec A., Skubacz A., Kurowska M., Slota M., Swiergolik D., Szarejko I. Methods for the Simple and Reliable Assessment of Barley Sensitivity to Abiotic Stresses During Early Development. In: Harwood W.A., editor. Barley: Methods and Protocols. Springer Science + Business Media; New York, NY, USA: 2019. pp. 127–151. PubMed