Allelic Variants of CRISPR/Cas9 Induced Mutation in an Inositol Trisphosphate 5/6 Kinase Gene Manifest Different Phenotypes in Barley

. 2020 Feb 05 ; 9 (2) : . [epub] 20200205

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32033421

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738 European Regional Development Fund

Inositol trisphosphate 5/6 kinases (ITPK) constitute a small group of enzymes participating in the sequential phosphorylation of inositol phosphate to inositol hexakisphosphate (IP6), which is a major storage form of phosphate in cereal grains. The development of lines with reduced IP6 content could enhance phosphate and mineral bioavailability. Moreover, plant ITPKs participate in abiotic stress signaling. To elucidate the role of HvITPK1 in IP6 synthesis and stress signaling, a barley itpk1 mutant was created using programmable nuclease Cas9. Homozygous single bp insertion and deletion mutant lines were obtained. The mutants contained altered levels of phosphate in the mature grains, ranging from 65% to 174% of the wild type (WT) content. Homozygous mutant lines were tested for their response to salinity during germination. Interestingly, insertion mutant lines revealed a higher tolerance to salinity stress than deletion mutants. Mature embryos of an insertion mutant itpk1-2 and deletion mutant itpk1-33 were cultivated in vitro on MS medium supplemented with NaCl at 50, 100, and 200 mM. While both mutants grew less well than WT on no or low salt concentrations, the itpk1-2 mutant was affected less than the WT and itpk33 when grown on the highest NaCl concentration. The expression of all ITPKs was induced in roots in response to salt stress. In shoots, the differential effect of high salt on IPTK expression in the two iptk1 mutants was consistent with their different sensitivities to salt stress. The results extend the evidence for the involvement of ITPK genes in phosphate storage and abiotic stress signaling.

Zobrazit více v PubMed

Cosgrove D. Inositolhexakisphosphates. In: Cosgrove D., editor. Inositol Phosphates: Their Chemistry, Biochemistry and Physiology. Elsevier Scientific Publishing Company; New York, NY, USA: 1980. pp. 26–43.

Raboy V. Forward genetics studies of seed phytic acid. Isr. J. Plant Sci. 2007;55:171–181. doi: 10.1560/IJPS.55.2.171. DOI

Suzuki M., Tanaka K., Kuwano M., Yoshida K.T. Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): Implications for the phytic acid biosynthetic pathway. Gene. 2007;405:55–64. doi: 10.1016/j.gene.2007.09.006. PubMed DOI

Meijer H.J.G., Divecha N., Van Den Ende H., Musgrave A., Munnik T. Hyperosmotic stress induces rapid synthesis of phosphatidyl-D-inositol 3,5-bisphosphate in plant cells. Planta. 1999;208:294–298. doi: 10.2135/cropsci2011.05.0285. DOI

Warkentin T.D., Delgerjav O., Arganosa G., Rehman A.U., Bett K.E., Anbessa Y., Rossnagel B., Raboy V. Development and characterization of low-phytate pea. Crop Sci. 2012;52:74–78. doi: 10.2135/cropsci2011.05.0285. DOI

Sakai H., Iwai T., Matsubara C., Usui Y., Okamura M. A decrease in phytic acid content substantially affects the distribution of mineral elements within rice seeds. Plant Sci. 2015;238:170–177. doi: 10.1016/j.plantsci.2015.06.006. PubMed DOI

Jiang M., Liu Y., Liu Y., Tan Y., Huang J., Shu Q. Mutation of inositol 1,3,4-trisphosphate 5/6-kinase6 impairs plant growth and phytic acid synthesis in rice. Plants. 2019;8:114. doi: 10.3390/plants8050114. PubMed DOI PMC

Harada A., Sakai T., Okada K. phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc. Natl. Acad. Sci. USA. 2003;100:8583–8588. doi: 10.1073/pnas.1336802100. PubMed DOI PMC

Franklin-Tong V.E., Drøbak B.K., Allan A.C., Watkins P.A.C., Trewavas A.J. Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate. Plant Cell. 1996;8:1305–1321. doi: 10.2307/3870303. PubMed DOI PMC

Yuan F.-J., Zhao H.-J., Ren X.-L., Zhu S.-L., Fu X.-J., Shu Q.-Y. Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.) Theor. Appl. Genet. 2007;115:945–957. doi: 10.1007/s00122-007-0621-2. PubMed DOI

Wilcox J.R., Premachandra G.S., Young K.A., Raboy V. Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci. 2000;40:1601–1605. doi: 10.2135/cropsci2000.4061601x. DOI

Larson S.R., Raboy V. Linkage mapping of maize and barley myo-inositol 1-phosphate synthase DNA sequences: Correspondence with a low phytic acid mutation. Theor. Appl. Genet. 1999;99:27–36. doi: 10.1007/s001220051205. DOI

Larson S.R., Rutger J.N., Young K.A., Raboy V. Isolation and Genetic Mapping of a Non-Lethal Rice (Oryza sativa L.) Low Phytic Acid Mutation. Crop Sci. 2000;40:1397–1405. doi: 10.2135/cropsci2000.4051397x. DOI

Guttieri M., Bowen D., Dorsch J.A., Raboy V., Souza E. Identification and characterization of a low phytic acid wheat. Crop Sci. 2004;44:418–424. doi: 10.2135/cropsci2004.4180. DOI

Larson S.R., Young K.A., Cook A., Blake T.K., Raboy V. Linkage mapping of two mutations that reduce phytic acid content of barley grain. Theor. Appl. Genet. 1998;97:141–146. doi: 10.1007/s001220050878. DOI

Jang D.A., Fadel J.G., Klasing K.C., Mireles A.J., Ernst R.A., Young K.A., Cook A., Raboy V. Evaluation of low-phytate corn and barley on broiler chick performance. Poult. Sci. 2003;82:1914–1924. doi: 10.1093/ps/82.12.1914. PubMed DOI

Veum T.L., Ledoux D.R., Raboy V. Low-phytate barley cultivars improve the utilization of phosphorus, calcium, nitrogen, energy, and dry matter in diets fed to young swine. J. Anim. Sci. 2007;85:961–971. doi: 10.2527/jas.2006-453. PubMed DOI

Thacker P.A., Rossnagel B.G., Raboy V. Phosphorus digestibility in low-phytate barley fed to finishing pigs. Can. J. Anim. Sci. 2003;83:101–104. doi: 10.4141/A02-040. PubMed DOI

Leytem A.B., Taylor J.B., Raboy V., Plumstead P.W. Dietary low-phytate mutant-M 955 barley grain alters phytate degradation and mineral digestion in sheep fed high-grain diets. Anim. Feed Sci. Technol. 2007;138:13–28. doi: 10.1016/j.anifeedsci.2006.11.005. DOI

Poulsen H.D., Johansen K.S., Hatzack F., Boisen S., Rasmussen S.K. Nutritional value of low-phytate barley evaluated in rats. Acta Agric. Scand. Sect. A Anim. Sci. 2001;51:53–58. doi: 10.1080/090647001300004790a. DOI

Raboy V. Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci. 2009;177:281–296. doi: 10.1016/j.plantsci.2009.06.012. DOI

Pilu R., Panzeri D., Gavazzi G., Rasmussen S.K., Consonni G., Nielsen E. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241) Theor. Appl. Genet. 2003;107:980–987. doi: 10.1007/s00122-003-1316-y. PubMed DOI

Bregitzer P., Raboy V. Effects of four independent low-phytate mutations in barley (Hordeum vulgare L.) on seed phosphorus characteristics and malting quality. Cereal Chem. 2006;83:460–464. doi: 10.1094/CC-83-0460. DOI

Kuo H., Chang T., Chiang S., Wang W., Charng Y., Chiou T. Arabidopsis inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level. Plant J. 2014;80:503–515. doi: 10.1111/tpj.12650. PubMed DOI

Raboy V., Peterson K., Jackson C., Marshall J.M., Hu G., Saneoka H., Bregitzer P. A substantial fraction of barley (Hordeum vulgare L.) low phytic acid mutations have little or no effect on yield across diverse production environments. Plants. 2015;4:225–239. doi: 10.3390/plants4020225. PubMed DOI PMC

Brinch-Pedersen H., Hatzack F., Stöger E., Arcalis E., Pontopidan K., Holm P.B. Heat-stable phytases in transgenic wheat (Triticum aestivum L.): Deposition pattern, thermostability, and phytate hydrolysis. J. Agric. Food Chem. 2006;54:4624–4632. doi: 10.1021/jf0600152. PubMed DOI

Abid N., Khatoon A., Maqbool A., Irfan M., Bashir A., Asif I., Shahid M., Saeed A., Brinch-Pedersen H., Malik K.A. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains. Transgenic Res. 2017;26:109–122. doi: 10.1007/s11248-016-9983-z. PubMed DOI

Holme I.B., Dionisio G., Brinch-Pedersen H., Wendt T., Madsen C.K., Vincze E., Holm P.B. Cisgenic barley with improved phytase activity. Plant Biotechnol. J. 2012;10:237–247. doi: 10.1111/j.1467-7652.2011.00660.x. PubMed DOI

Du H., Liu L., You L., Yang M., Yubing H., Li X., Xiong L. Characterization of an inositol 1,3,4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice. Plant Mol. Biol. 2011;77:547–563. doi: 10.1007/s11103-011-9830-9. PubMed DOI

Marathe A., Krishnan V., Vinutha T., Dahuja A., Jolly M., Sachdev A. Exploring the role of Inositol 1,3,4-trisphosphate 5/6 kinase-2 (GmITPK2) as a dehydration and salinity stress regulator in Glycine max (L.) Merr. through heterologous expression in E. Coli. Plant Physiol. Biochem. 2018;123:331–341. doi: 10.1016/j.plaphy.2017.12.026. PubMed DOI

Zhu J. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002;53:247–273. doi: 10.1146/annurev.arplant.53.091401.143329. PubMed DOI PMC

Loewus F.A., Murthy P.P.N. Myo-Inositol metabolism in plants. Plant Sci. 2000;150:1–19. doi: 10.1016/S0168-9452(99)00150-8. DOI

Aggarwal S., Shukla V., Bhati K.K., Kaur M., Sharma S., Singh A., Mantri S., Pandey A.K. Hormonal regulation and expression profiles of wheat genes involved during phytic acid biosynthesis pathway. Plants. 2015;4:298–319. doi: 10.3390/plants4020298. PubMed DOI PMC

Niu X., Chen Æ.Q., Wang Æ.X. OsITL1 gene encoding an inositol 1,3,4-trisphosphate 5/6-kinase is a negative regulator of osmotic stress signaling. Biotechnol. Lett. 2008;30:1687–1692. doi: 10.1007/s10529-008-9730-5. PubMed DOI

Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F., Hummel A., Bogdanove A.J., Voytas D.F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:756–761. doi: 10.1534/genetics.110.120717. PubMed DOI PMC

Cermak T., Doyle E.L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J., Voytas D.F. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39:e82:1–e82:11. doi: 10.1093/nar/gkr739. PubMed DOI PMC

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA —Guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–822. doi: 10.1126/science.1225829. PubMed DOI PMC

Nekrasov V., Staskawicz B., Weigel D., Jones D.J., Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013;31:691–693. doi: 10.1038/nbt.2655. PubMed DOI

Jiang W., Zhou H., Bi H., Fromm M., Yang B., Weeks D.P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41:1–12. doi: 10.1093/nar/gkt780. PubMed DOI PMC

Shan Q., Wang Y., Li J., Zhang Y., Chen K., Liang Z., Zhang K., Liu J., Xi J.J., Qiu J.-L., et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013;31:686–688. doi: 10.1038/nbt.2650. PubMed DOI

Ma X., Zhang Q., Zhu Q., Liu W., Chen Y., Qiu R., Wang B., Yang Z., Li H., Lin Y., et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicotplants. Mol. Plant. 2015;8:1274–1284. doi: 10.1016/j.molp.2015.04.007. PubMed DOI

Xie K., Minkenberg B., Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA. 2015;112:3570–3575. doi: 10.1073/pnas.1420294112. PubMed DOI PMC

Fauser F., Schiml S., Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 2014;79:348–359. doi: 10.1111/tpj.12554. PubMed DOI

Slaymaker I.M., Gao L., Zetsche B., Scott D.A., Yan W.X., Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2015;351:84–88. doi: 10.1126/science.aad5227. PubMed DOI PMC

Kleinstiver B.P., Pattanayak V., Prew M.S., Tsai S.Q., Nguyen N.T., Zheng Z., Keith Joung J. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529:490–495. doi: 10.1038/nature16526. PubMed DOI PMC

Li C., Zong Y., Wang Y., Jin S., Zhang D., Song Q., Zhang R. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 2018;19:59. doi: 10.1186/s13059-018-1443-z. PubMed DOI PMC

Bo L., Jia-jie W., Dao-lin F. Constructing the barley model for genetic transformation in Triticeae. J. Integr. Agric. 2015;14:453–468. doi: 10.1016/S2095-3119(14)60935-7. DOI

Hamada H., Liu Y., Nagira Y., Miki R., Taoka N., Imai R. Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Sci. Rep. 2018;8:1–7. doi: 10.1038/s41598-018-32714-6. PubMed DOI PMC

Zhang Y., Liang Z., Zong Y., Wang Y., Liu J., Chen K., Qiu J.-L., Gao C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 2016;7:1–8. doi: 10.1038/ncomms12617. PubMed DOI PMC

Abid G., Silue S., Muhovski Y., Jacquemin J.M., Toussaint A., Baudoin J.P. Role of myo-inositol phosphate synthase and sucrose synthase genes in plant seed development. Gene. 2009;439:1–10. doi: 10.1016/j.gene.2009.03.007. PubMed DOI

Bhati K.K., Aggarwal S., Sharma S., Mantri S., Singh S.P., Bhalla S., Kaur J., Tiwari S., Roy J.K., Tuli R., et al. Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (Triticum aestivum L.) Plant Sci. 2014;224:74–85. doi: 10.1016/j.plantsci.2014.04.009. PubMed DOI

Shi J., Hongyu W., Wu Y., Hazebroek J., Meeley R.B., Ertl D.S. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol. 2003;131:507–515. doi: 10.1104/pp.014258. PubMed DOI PMC

Liang G., Zhang H., Lou D., Yu D. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci. Rep. 2016;6:1–8. doi: 10.1038/srep21451. PubMed DOI PMC

Serhantova V., Ehrenbergerova J., Ohnoutkova L. Callus induction and regeneration efficiency of spring barley cultivars registered in the Czech Republic. Plant Soil Environ. 2004;50:456–462. doi: 10.17221/4058-PSE. DOI

Harwood W.A. A protocol for high-throughput Agrobacterium-mediated barley transformation. In: Henry R.J., Furtado A., editors. Cereal Genomics: Methods and Protocols. Humana Press; Totowa, NJ, USA: 2014. pp. 251–260. PubMed

Holme I.B., Wendt T., Gil J., Deleuran L.C., Starker C.G., Voytas D.F., Brinch-Pedersen H. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol. Biol. 2017;95:111–121. doi: 10.1007/s11103-017-0640-6. PubMed DOI

Kapusi E., Corcuera-Gómez M., Melnik S., Stoger E. Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front. Plant Sci. 2017;8:1–11. doi: 10.3389/fpls.2017.00540. PubMed DOI PMC

Lawrenson T., Shorinola O., Stacey N., Li C., Østergaard L., Patron N., Uauy C., Harwood W. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 2015;16:1–13. doi: 10.1186/s13059-015-0826-7. PubMed DOI PMC

Singh M., Kumar M., Albertsen M.C., Young J.K., Cigan A.M. Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.) Plant Mol. Biol. 2018;97:371–383. doi: 10.1007/s11103-018-0749-2. PubMed DOI

Li M., Hensel G., Mascher M., Melzer M., Budhagatapalli N., Rutten T., Himmelbach A., Beier S., Korzun V., Kumlehn J., et al. Leaf variegation and impaired chloroplast development caused by a truncated CCT domain gene in albostrians barley. Plant Cell. 2019;31:1430–1445. doi: 10.1105/tpc.19.00132. PubMed DOI PMC

Holubová K., Hensel G., Vojta P., Tarkowski P., Gene H. Modification of Barley Plant Productivity Through Regulation of Cytokinin Content by Reverse–Genetics Approaches Preparation of Constructs for Silencing. Front. Plant Sci. 2018;9:1–18. doi: 10.3389/fpls.2018.01676. PubMed DOI PMC

Sánchez-León S., Gil-Humanes J., Ozuna C.V., Sousa C., Voytas D.F., Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 2018;16:902–910. doi: 10.1111/pbi.12837. PubMed DOI PMC

Jang G., Lee S., Um T., Hyun Chang S., Yong Lee H., Chung P.J., Kim J.-K., Do Choi Y. Genetic chimerism of CRISPR/Cas9-mediated rice mutants. Plant Biotechnol. Rep. 2016;10:1–11. doi: 10.1007/s11816-016-0414-7. PubMed DOI

Hatzack F., Johansen K.S., Rasmussen S.K. Nutritionally relevant parameters in low-phytate barley (Hordeum vulgare L.) grain mutants. J. Agric. Food Chem. 2000;48:6074–6080. doi: 10.1021/jf000669p. PubMed DOI

Raboy V., Gerbasi P.F., Young K.A., Stoneberg S.D., Pickett S.G., Bauman A.T., Murthy P.P., Sheridan W.F., Ertl D.S. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol. 2000;124:355–368. doi: 10.1104/pp.124.1.355. PubMed DOI PMC

Kim S.I., Tai T.H. Identification of genes necessary for wild-type levels of seed phytic acid in Arabidopsis thaliana using a reverse genetics approach. Mol. Genet. Genomics. 2011;286:119–133. doi: 10.1007/s00438-011-0631-2. PubMed DOI

Nagy R., Grob H., Weder B., Green P., Klein M., Frelet-Barrand A., Schjoerring J.K., Brearley C., Martinoia E. The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporterinvolved in guard cell signaling and phytate storage. J. Biol. Chem. 2009;284:33614–33622. doi: 10.1074/jbc.M109.030247. PubMed DOI PMC

Panzeri D., Cassani E., Doria E., Tagliabue G., Forti L., Campion B., Bollini R., Brearley C.A., Pilu R., Nielsen E., et al. A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. New Phytol. 2011;191:70–83. doi: 10.1111/j.1469-8137.2011.03666.x. PubMed DOI

Stiles A., Qian X., Shears S., Grabau E. Metabolic and signaling properties of an Itpk gene family in Glycine max. FEBS Lett. 2008;582:1853–1858. doi: 10.1016/j.febslet.2008.04.054. PubMed DOI PMC

Marathe A., Krishnan V., Mahajan M.M., Thimmegowda V., Dahuja A., Jolly M., Praveen S., Sachdev A. Characterization and molecular modeling of Inositol 1,3,4 tris phosphate 5/6 kinase-2 from Glycine max (L.) Merr.: Comprehending its evolutionary conservancy at functional level. 3 Biotech. 2018;8:50. doi: 10.1007/s13205-017-1076-z. PubMed DOI PMC

Forster B.P., Pakniyat H., Macaulay M., Matheson W., Phillips M.S., Thomas W.T.B., Powell W. Variation in the leaf sodium content of the Hordeum vulgare (Barley) cultivar Maythorpe and its derived mutant cv. Golden promise. Heredity (Edinb). 1994;73:249–253. doi: 10.1038/hdy.1994.130. DOI

Kaur H., Verma P., Petla B.P., Rao V., Saxena S.C., Majee M. Ectopic expression of the ABA-inducible dehydration-responsive chickpea l-myo-inositol 1-phosphate synthase 2 (CaMIPS2) in Arabidopsis enhances tolerance to salinity and dehydration stress. Planta. 2013;237:321–335. doi: 10.1007/s00425-012-1781-0. PubMed DOI

Smits A.H., Ziebell F., Joberty G., Zinn N., Mueller W.F., Clauder-Münster S., Eberhard D., Fälth Savitski M., Grandi P., Jakob P., et al. Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods. 2019;16:1087–1093. doi: 10.1038/s41592-019-0614-5. PubMed DOI

Jiang M., Hu H., Kai J., Traw M.B., Yang S., Zhang X. Different knockout genotypes of OsIAA23 in rice using CRISPR/Cas9 generating different phenotypes. Plant Mol. Biol. 2019;100:467–479. doi: 10.1007/s11103-019-00871-5. PubMed DOI PMC

Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991;19:1349. doi: 10.1093/nar/19.6.1349. PubMed DOI PMC

Liu W., Xie X., Ma X., Li J., Chen J., Liu Y.-G. DSDecode: A Web-Based Tool for Decoding of Sequencing Chromatograms for Genotyping of Targeted Mutations. Mol. Plant. 2018;8:1431–1433. doi: 10.1016/j.molp.2015.05.009. PubMed DOI

Vaculova K., Balounova M., Sedlackova I., Kvasnicka F., Mikulikova R., Belakova S., Benesova K., Pouch M., Ehrenbergerova J. Metodika Prebreedingu Ječmene Jarního s Diferencovaným Obsahem Přirozených Škodlivých Látek v Zrně Pro Šlechtění Odrůd Nesladovnického Typu. 1st ed. Agrotest Fyto, S.R.O.; Kromeriz, Czech Republic: 2011. pp. 12–15.

Chen P.S., Toribara T.Y., Warner H. Microdetermination of Phosphorus. Anal. Chem. 1956;28:1756–1758. doi: 10.1021/ac60119a033. DOI

Daszkowska-Golec A., Skubacz A., Kurowska M., Slota M., Swiergolik D., Szarejko I. Methods for the Simple and Reliable Assessment of Barley Sensitivity to Abiotic Stresses During Early Development. In: Harwood W.A., editor. Barley: Methods and Protocols. Springer Science + Business Media; New York, NY, USA: 2019. pp. 127–151. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...