Contrasting carbon cycle along tropical forest aridity gradients in West Africa and Amazonia
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NE/I014705/1
RCUK | Natural Environment Research Council (NERC)
NE/P001092/1
RCUK | Natural Environment Research Council (NERC)
PubMed
38605006
PubMed Central
PMC11009382
DOI
10.1038/s41467-024-47202-x
PII: 10.1038/s41467-024-47202-x
Knihovny.cz E-zdroje
- MeSH
- ekosystém MeSH
- koloběh uhlíku MeSH
- lesy * MeSH
- stromy * MeSH
- tropické klima MeSH
- uhlík MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Ghana MeSH
- Názvy látek
- uhlík MeSH
Tropical forests cover large areas of equatorial Africa and play a substantial role in the global carbon cycle. However, there has been a lack of biometric measurements to understand the forests' gross and net primary productivity (GPP, NPP) and their allocation. Here we present a detailed field assessment of the carbon budget of multiple forest sites in Africa, by monitoring 14 one-hectare plots along an aridity gradient in Ghana, West Africa. When compared with an equivalent aridity gradient in Amazonia, the studied West African forests generally had higher productivity and lower carbon use efficiency (CUE). The West African aridity gradient consistently shows the highest NPP, CUE, GPP, and autotrophic respiration at a medium-aridity site, Bobiri. Notably, NPP and GPP of the site are the highest yet reported anywhere for intact forests. Widely used data products substantially underestimate productivity when compared to biometric measurements in Amazonia and Africa. Our analysis suggests that the high productivity of the African forests is linked to their large GPP allocation to canopy and semi-deciduous characteristics.
AMAP CIRAD CNRS INRA IRD Université de Montpellier Montpellier France
Centro Euro Mediterraneo sui Cambiamenti Climatici Leece Italy
Department of Natural Resources Management CSIR College of Science and Technology Kumasi Ghana
Forestry Division Food and Agriculture Organization of the United Nations Panama City Panama
Forestry Research Institute of Ghana Council for Scientific and Industrial Research Kumasi Ghana
Leverhulme Centre for Nature Recovery University of Oxford Oxford United Kingdom
School of Biological Sciences University of Adelaide Adelaide South Australia Australia
Zobrazit více v PubMed
Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science (1979) 329, 834–838 (2010). PubMed
Grace, J., Malhi, Y., Meir, P. & Higuchi, N. Productivity of Tropical Rain Forests. in Terrestrial Global Productivity.10.1016/b978-012505290-0/50018-1 (Academic Press, London, 2001).
Malhi Y, Adu-Bredu S, Asare RA, Lewis SL, Mayaux P. African rainforests: Past, present and future. Philos. Trans. R. Soc. B: Biol. Sci. 2013;368:20120312. doi: 10.1098/rstb.2012.0312. PubMed DOI PMC
Zhao, M. & Running, S. W. Drought-induced reduction in globalterrestrial net primary production from 2000 Through 2009. Science (1979) 329, 940–943 (2010). PubMed
Hubau W, et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature. 2020;579:80–87. doi: 10.1038/s41586-020-2035-0. PubMed DOI PMC
Fauset S, et al. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett. 2012;15:1120–1129. doi: 10.1111/j.1461-0248.2012.01834.x. PubMed DOI
Bennett AC, et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl Acad. Sci. USA. 2021;118:e2003169118. doi: 10.1073/pnas.2003169118. PubMed DOI PMC
Cuni-Sanchez A, et al. High aboveground carbon stock of African tropical montane forests. Nature. 2021;596:536–542. doi: 10.1038/s41586-021-03728-4. PubMed DOI
Lewis SL, et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. B: Biol. Sci. 2013;368:20120295. doi: 10.1098/rstb.2012.0295. PubMed DOI PMC
Moore S, et al. Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa. Glob. Chang Biol. 2018;24:e496–e510. doi: 10.1111/gcb.13907. PubMed DOI
Malhi Y, et al. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Glob. Chang Biol. 2015;21:2283–2295. doi: 10.1111/gcb.12859. PubMed DOI
Ciais, P. et al. Carbon and Other Biogeochemical Cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 6 (Cambridge University Press, 2013).
Pugh, T. A. M. et al. A Large Committed Long-Term Sink of Carbon due to Vegetation Dynamics. Earths Future6, 1413–1432 (2018).
Denman, K. L. et al. Couplings Between Changes in the Climate System and Biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) Ch. 7 (Cambridge University Press, 2007).
Ardö, J. Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa. Carbon Balance Manag10, 1–15 (2015). PubMed PMC
Anderson-Teixeira, K. J. et al. Carbon cycling in mature and regrowth forests globally. Environ. Res. Lett.16, 053009 (2021).
Xu M, Shang H. Contribution of soil respiration to the global carbon equation. J. Plant Physiol. 2016;203:16–28. doi: 10.1016/j.jplph.2016.08.007. PubMed DOI
Schimel D, Stephens BB, Fisher JB. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA. 2015;112:436–441. doi: 10.1073/pnas.1407302112. PubMed DOI PMC
Chiti T, Certini G, Grieco E, Valentini R. The role of soil in storing carbon in tropical rainforests: The case of Ankasa Park, Ghana. Plant Soil. 2010;331:453–461. doi: 10.1007/s11104-009-0265-x. DOI
Fattore, F. et al. Seasonal trends of dry and bulk concentration of nitrogen compounds over a rain forest in Ghana. Biogeosciences11, 3069–3081 (2014).
Fensholt R, Proud SR. Evaluation of Earth Observation based global long term vegetation trends - Comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ. 2012;119:131–147. doi: 10.1016/j.rse.2011.12.015. DOI
Sudmanns M, Tiede D, Augustin H, Lang S. Assessing global Sentinel-2 coverage dynamics and data availability for operational Earth observation (EO) applications using the EO-Compass. Int J. Digit Earth. 2020;13:768–784. doi: 10.1080/17538947.2019.1572799. PubMed DOI PMC
Zhao, M., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ95, 164–176 (2005).
Prentice, I. C. & Cowling, S. A. Dynamic Global Vegetation Models. Encyclopedia of Biodiversity: Second Edition 670–689. 10.1016/B978-0-12-384719-5.00412-3 (Academic Press, 2013).
He Y, Piao S, Li X, Chen A, Qin D. Global patterns of vegetation carbon use efficiency and their climate drivers deduced from MODIS satellite data and process-based models. Agric Meteorol. 2018;256–257:150–158. doi: 10.1016/j.agrformet.2018.03.009. DOI
Purves D, Pacala S. Predictive models of forest dynamics. Science. 2008;320:1452–1453. doi: 10.1126/science.1155359. PubMed DOI
Ise, T., Litton, C. M., Giardina, C. P. & Ito, A. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J. Geophys. Res. Biogeosci.115, 10.1029/2010JG001326 (2010).
Schimel D, et al. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Chang Biol. 2015;21:1762–1776. doi: 10.1111/gcb.12822. PubMed DOI
Pugh, T. A. M. et al. Understanding the uncertainty in global forest carbon turnover. Biogeosciences17, 3961–3989 (2020).
Oliveras I, et al. The influence of taxonomy and environment on leaf trait variation along tropical abiotic gradients. Front. For. Glob. Change. 2020;3:18. doi: 10.3389/ffgc.2020.00018. DOI
Tomlinson KW, et al. Leaf adaptations of evergreen and deciduous trees of semi‐arid and humid savannas on three continents. J. Ecol. 2013;101:430–440. doi: 10.1111/1365-2745.12056. DOI
Mujawamariya M, et al. Complete or overcompensatory thermal acclimation of leaf dark respiration in African tropical trees. N. Phytologist. 2021;229:2548–2561. doi: 10.1111/nph.17038. PubMed DOI PMC
Aguirre‐Gutiérrez J, et al. Functional susceptibility of tropical forests to climate change. Nat. Ecol. Evol. 2022;6:878–889. doi: 10.1038/s41559-022-01747-6. PubMed DOI
Anav, A. et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Rev. Geophys. 53, 785–818 (2015).
Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: A global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sens (Basel)11, 2563 (2019).
Bauer, L., Knapp, N. & Fischer, R. Mapping amazon forest productivity by fusing GEDI lidar waveforms with an individual-based forest model. Remote Sens (Basel)13, 4540 (2021).
Rödig, E. et al. The importance of forest structure for carbon fluxes of the Amazon rainforest. Environ. Res. Lett.13, 054013 (2018).
Wang, L. et al. Evaluation of the latest MODIS GPP products across multiple biomes using global eddy covariance flux data. Remote Sens (Basel)9, 418 (2017).
Martín Belda, D. et al. LPJ-GUESS/LSMv1.0: A next generation Land Surface Model with high ecological realism. Geosci. Model Dev.15, 6709–6745 (2022).
Chiwara P, et al. Estimating terrestrial gross primary productivity in water limited ecosystems across Africa using the Southampton Carbon Flux (SCARF) model. Sci. Total Environ. 2018;630:1472–1483. doi: 10.1016/j.scitotenv.2018.02.314. PubMed DOI
Doughty, C. E. et al. Source and sink carbon dynamics and carbon allocation in the Amazon basin. Global Biogeochem Cycles29, 645–655 (2015).
Araujo-Murakami A, et al. The productivity, allocation and cycling of carbon in forests at the dry margin of the Amazon forest in Bolivia. Plant Ecol. Divers. 2014;7:55–69. doi: 10.1080/17550874.2013.798364. DOI
Scalon MC, et al. Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone. Biogeosciences. 2022;19:3649–3661. doi: 10.5194/bg-19-3649-2022. DOI
Riutta T, et al. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests. Glob. Chang Biol. 2018;24:2913–2928. doi: 10.1111/gcb.14068. PubMed DOI
Morel AC, et al. Carbon dynamics, net primary productivity and human-appropriated net primary productivity across a forest–cocoa farm landscape in West Africa. Glob. Chang Biol. 2019;25:2661–2677. doi: 10.1111/gcb.14661. PubMed DOI
Collalti A, Prentice IC. Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiol. 2019;39:1473–1483. doi: 10.1093/treephys/tpz034. PubMed DOI
Doughty CE, et al. What controls variation in carbon use efficiency among Amazonian tropical forests? Biotropica. 2018;50:16–25. doi: 10.1111/btp.12504. DOI
Kho, L. Carbon cycling in a Bornean tropical forest [PhD thesis]. https://ora.ox.ac.uk/objects/uuid:bfa1f206-97bf-4bcd-a148-521506225c90 (Oxford University, UK, 2013).
Mills MB, et al. Tropical forests post-logging are a persistent net carbon source to the atmosphere. Proc. Natl Acad. Sci. USA. 2023;120:e2214462120. doi: 10.1073/pnas.2214462120. PubMed DOI PMC
Tan, Z. et al. Carbon balance of a primary tropical seasonal rain forest. J. Geophys. Res. Atmos.115, 10.1029/2009JD012913 (2010).
Yang, H. et al. Variations of carbon allocation and turnover time across tropical forests. Global Ecol. Biogeography30, 1271–1285 (2021).
Ceballos-Núñez, V., Müller, M. & Sierra, C. A. Towards better representations of carbon allocation in vegetation: a conceptual framework and mathematical tool. Theor. Ecol.13, 317–332 (2020).
Litton CM, Raich JW, Ryan MG. Carbon allocation in forest ecosystems. Glob. Chang Biol. 2007;13:2089–2109. doi: 10.1111/j.1365-2486.2007.01420.x. DOI
Xia, J. et al. Global Patterns in Net Primary Production Allocation Regulated by Environmental Conditions and Forest Stand Age: A Model-Data Comparison. J. Geophys. Res. Biogeosci.124, 2039–2059 (2019).
Franklin O, et al. Modeling carbon allocation in trees: A search for principles. Tree Physiol. 2012;32:648–666. doi: 10.1093/treephys/tpr138. PubMed DOI
Ostle, N. J. et al. Integrating plant-soil interactions into global carbon cycle models. J. Ecol.97, 851–863 (2009).
Malhi Y, Doughty C, Galbraith D. The allocation of ecosystem net primary productivity in tropical forests. Philos. Trans. R. Soc. B: Biol. Sci. 2011;366:3225–3245. doi: 10.1098/rstb.2011.0062. PubMed DOI PMC
Aragão LEOC, et al. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences. 2009;6:2759–2778. doi: 10.5194/bg-6-2759-2009. DOI
Anderson-Teixeira KJ, Wang MMH, Mcgarvey JC, Lebauer DS. Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db) Glob. Chang Biol. 2016;22:1690–1709. doi: 10.1111/gcb.13226. PubMed DOI
John, D. M. Accumulation and Decay of Litter and Net Production of Forest in Tropical West Africa. Oikos24, 430–435 (1973).
Flack-Prain S, Meir P, Malhi Y, et al. The importance of physiological, structural and trait responses to drought stress in driving spatial and temporal variation in GPP across Amazon forests. Biogeosciences. 16, 4463–4484 (2019).
Gibert, A., Gray, E. F., Westoby, M., Wright, I. J. & Falster, D. S. On the link between functional traits and growth rate: meta-analysis shows effects change with plant size, as predicted. J. Ecol.104, 1488–1503 (2016).
Domingues TF, et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ. 2010;33:959–980. doi: 10.1111/j.1365-3040.2010.02119.x. PubMed DOI
Zhang-Zheng, H. et al. Photosynthetic and water transport strategies of plants along a tropical forest aridity gradient: a test of optimality theory. Preprint at bioRxiv 10.1101/2023.01.10.523419 (2023).
Girardin, C. A. J. et al. Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation. Global Biogeochem Cycles30, 700–715 (2016).
Malhi Y, et al. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob. Chang Biol. 2009;15:1255–1274. doi: 10.1111/j.1365-2486.2008.01780.x. DOI
DeLUCIA EH, Drake JE, Thomas RB, Gonzalez‐Meler M. Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Glob. Chang Biol. 2007;13:1157–1167. doi: 10.1111/j.1365-2486.2007.01365.x. DOI
Rocha, W. et al. Ecosystem productivity and carbon cycling in intact and annually burnt forest at the dry southern limit of the Amazon rainforest (Mato Grosso, Brazil). Plant Ecol. Divers.7, 25–40 (2014).
Jin, W. et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science351, 972–976 (2016). PubMed
Wright, I. J. et al. The worldwide leaf economics spectrum. Nature428, 821–827 (2004). PubMed
McNickle GG, Gonzalez-Meler MA, Lynch DJ, Baltzer JL, Brown JS. The world’s biomes and primary production as a triple tragedy of the commons foraging game played among plants. Proc. R. Soc. B: Biol. Sci. 2016;283:20161993. doi: 10.1098/rspb.2016.1993. PubMed DOI PMC
Schieving, F. & Poorter, H. Carbon gain in a multispecies canopy: The role of specific leaf area and photosynthetic nitrogen-use efficiency in the tragedy of the commons. New Phytologist143, 201–211 (1999).
Farrior CE. Competitive optimization models, attempting to understand the diversity of life. N. Phytologist. 2014;203:1025–1027. doi: 10.1111/nph.12940. PubMed DOI
Bongers F, Poorter L, Hawthorne WD, Sheil D. The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. Ecol. Lett. 2009;12:798–805. doi: 10.1111/j.1461-0248.2009.01329.x. PubMed DOI
Aguirre-Gutiérrez J, et al. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett. 2019;22:855–865. doi: 10.1111/ele.13243. PubMed DOI
Allen, J. R. M. et al. Global vegetation patterns of the past 140,000 years. J. Biogeogr.47, 2073–2090 (2020).
Shanahan, T. M. Quaternary Climate Variation in West Africa. in Oxford Research Encyclopedia of Climate Science.10.1093/acrefore/9780190228620.013.526 (Oxford University Press, 2018).
Miller, C. S., Gosling, W. D., Kemp, D. B., Coe, A. L. & Gilmour, I. Drivers of ecosystem and climate change in tropical West Africa over the past ∼540 000 years. J. Quat. Sci.31, 671–677 (2016).
Norris K, et al. Biodiversity in a forest-agriculture mosaic – The changing face of West African rainforests. Biol. Conserv. 2010;143:2341–2350. doi: 10.1016/j.biocon.2009.12.032. DOI
Achard F, et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Chang Biol. 2014;20:2540–2554. doi: 10.1111/gcb.12605. PubMed DOI PMC
Buchanan GM, Field RH, Bradbury RB, Luraschi B, Vickery JA. The impact of tree loss on carbon management in West Africa. Carbon Manag. 2021;12:623–633. doi: 10.1080/17583004.2021.1994015. DOI
Watson JEM, et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2018;2:599–610. doi: 10.1038/s41559-018-0490-x. PubMed DOI
Malhi Y, et al. The Global Ecosystems Monitoring network: Monitoring ecosystem productivity and carbon cycling across the tropics. Biol. Conserv. 2021;253:108889. doi: 10.1016/j.biocon.2020.108889. DOI
Afreen, T., Singh, H. & Singh, J. S. Influence of changing patterns of precipitation and temperature on tropical soil ecosystem. in Tropical Ecosystems: Structure, Functions and Challenges in the Face of Global Change. 10.1007/978-981-13-8249-9_2 (Springer, Singapore, 2019).
Caton Harrison, T., Washington, R., Engelstaedter, S., Jones, R. G. & Savage, N. H. Influence of orography upon summertime low-level jet dust emission in the central and western sahara. journal of geophysical research: atmospheres126, e2021JD035025 (2021).
Janssen TAJ, et al. Extending the baseline of tropical dry forest loss in Ghana (1984–2015) reveals drivers of major deforestation inside a protected area. Biol. Conserv. 2018;218:163–172. doi: 10.1016/j.biocon.2017.12.004. DOI
Hall, J. B. & Swaine, M. D. Classification and Ecology of Closed-Canopy Forest in Ghana. J. Ecol.64, 913–951 (1976).
Marthews, T. et al. Measuring Tropical Forest Carbon Allocation and Cycling: A RAINFOR-GEM Field Manual for Intensive Census Plots (v3.0). Preprint at https://ora.ox.ac.uk/objects/uuid:f33a0929-4675-43c6-91a3-8cbcda962775/files/m1844bb29c06f7d69207569648142e020 (2015).
del Aguila-Pasquel J, et al. The seasonal cycle of productivity, metabolism and carbon dynamics in a wet aseasonal forest in north-west Amazonia (Iquitos, Peru) Plant Ecol. Divers. 2014;7:71–83. doi: 10.1080/17550874.2013.798365. DOI
Malhi Y, et al. The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru. Plant Ecol. Divers. 2014;7:85–105. doi: 10.1080/17550874.2013.820805. DOI
da Costa, A. C. L. et al. Ecosystem respiration and net primary productivity after 8-10 years of experimental through-fall reduction in an eastern Amazon forest. Plant Ecol. Divers.7, 7–24 (2014).