High aboveground carbon stock of African tropical montane forests
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34433947
DOI
10.1038/s41586-021-03728-4
PII: 10.1038/s41586-021-03728-4
Knihovny.cz E-zdroje
- MeSH
- biomasa MeSH
- datové soubory jako téma MeSH
- deštný prales * MeSH
- geografická kartografie MeSH
- klimatické změny MeSH
- postoj * MeSH
- sekvestrace uhlíku * MeSH
- stromy metabolismus MeSH
- tropické klima * MeSH
- uhlík analýza MeSH
- zachování přírodních zdrojů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
- Názvy látek
- uhlík MeSH
Tropical forests store 40-50 per cent of terrestrial vegetation carbon1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests2. Owing to climatic and soil changes with increasing elevation3, AGC stocks are lower in tropical montane forests compared with lowland forests2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1-164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems.
AMAP Lab Université de Montpellier IRD CNRS INRAE CIRAD Montpellier France
Applied Biology and Ecology Research Unit University of Dschang Dschang Cameroon
Biodiversity and Landscape Unit Gembloux Agro Bio Tech Université de Liege Liège Belgium
Biodiversity Foundation for Africa East Dean UK
Biology Department Université Officielle de Bukavu Bukavu Democratic Republic of the Congo
Biology Department University of Rwanda Kigali Rwanda
Bioversity International Yaoundé Cameroon
Center for Development Research University of Bonn Bonn Germany
Center for International Forestry Research Bogor Indonesia
College of African Wildlife Management Mweka Tanzania
College of Development Studies Addis Ababa University Addis Ababa Ethiopia
College of Natural and Computational Science Addis Ababa University Addis Ababa Ethiopia
Conservation and Landscape Ecology University of Freiburg Freiburg Germany
Conservation Science Group Department of Zoology University of Cambridge Cambridge UK
Dendrochronology Laboratory World Agroforestry Centre Nairobi Kenya
Department of Anthropology George Washington University Washington DC USA
Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
Department of Biological Sciences Florida International University Miami FL USA
Department of Biology University of Burundi Bujumbura Burundi
Department of Biology University of Florence Sesto Fiorentino Italy
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Department of Ecology Université de Kisangani Kisangani Democratic Republic of the Congo
Department of Ecosystem Science and Sustainability Colorado State University Fort Collins CO USA
Department of Environment and Geography University of York York UK
Department of Environment Laboratory of Wood Technology Ghent University Ghent Belgium
Department of Geography and Environmental Sciences University of Dundee Dundee UK
Department of Geography National University of Singapore Singapore Singapore
Department of Geography University College London London UK
Department of Geosciences and Geography University of Helsinki Helsinki Finland
Department of Natural Resources Karatina University Karatina Kenya
Department of Natural Sciences Manchester Metropolitan University Manchester UK
Department of Plant Biology Faculty of Sciences University of Yaoundé 1 Yaoundé Cameroon
Department of Plant Systematics University of Bayreuth Bayreuth Germany
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Division of Vertebrate Zoology Yale Peabody Museum of Natural History New Haven CT USA
European Commission Joint Research Centre Ispra Italy
Faculty of Forestry University of British Columbia Vancouver British Columbia Canada
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Forest Ecology and Forest Management Group Wageningen University Wageningen The Netherlands
Forestry Development Authority of the Government of Liberia Monrovia Liberia
Geography Environment and Geomatics University of Guelph Guelph Ontario Canada
Helmholtz Centre for Environmental Research Leipzig Germany
Independent Botanist Harare Zimbabwe
Institute for Geography Friedrich Alexander University Erlangen Nuremberg Germany
Institute of Botany of the Czech Academy of Science Třeboň Czech Republic
Institute of Forestry and Conservation University of Toronto Toronto Ontario Canada
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
International Centre of Biodiversity and Primate Conservation Dali University Dali China
International Gorilla Conservation Programme Musanze Rwanda
Inventory and Monitoring Program National Park Service Fredericksburg VA USA
Isotope Bioscience Laboratory Ghent University Ghent Belgium
Key Biodiversity Areas Secretariat BirdLife International Cambridge UK
Kunming Institute of Botany Kunming China
Leverhulme Centre for Anthropocene Biodiversity University of York York UK
Missouri Botanical Garden St Louis MO USA
Mountains of the Moon University Fort Portal Uganda
Nigerian Montane Forest Project Yelwa Village Nigeria
Rothamsted Research Harpenden UK
School of Biological Sciences University of Southampton Southampton UK
School of Forestry and Environmental Studies Yale University New Haven CT USA
School of Geography University of Leeds Leeds UK
School of GeoSciences University of Edinburgh Edinburgh UK
School of Life Sciences University of KwaZulu Natal Pietermaritzburg South Africa
School of Life Sciences University of Lincoln Lincoln UK
School of Natural Sciences University of Bangor Bangor UK
Service of Wood Biology Royal Museum for Central Africa Tervuren Belgium
Shaanxi Key Laboratory for Animal Conservation Northwest University Xi'an China
Tropical Biodiversity Section Museo delle Scienze Trento Italy
Tropical Plant Exploration Group Mundemba Cameroon
UK Centre for Ecology and Hydrology Edinburgh UK
UK Research and Innovation London UK
UN Environment World Conservation Monitoring Center Cambridge UK
Université Libre de Bruxelles Brussels Belgium
University of Canterbury Canterbury New Zealand
University of Ghent Ghent Belgium
University of Liberia Monrovia Liberia
Water and Land Resources Center Addis Ababa University Addis Ababa Ethiopia
Zobrazit více v PubMed
Erb, K. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018). PubMed DOI
Spracklen, D. V. & Righelato, R. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11, 2741–2754 (2014). DOI
Fahey, T. J., Sherman, R. E. & Tanne, E. V. J. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. J. Trop. Ecol. 32, 355–367 (2016). DOI
Lewis, S. L. et al. Above-ground biomass and structure of 260 African tropical forests. Phil. Trans. R. Soc. Lond. B 368, 20120295 (2013). DOI
Vilanova, E. et al. Environmental drivers of forest structure and stem turnover across Venezuelan tropical forests. PLoS ONE 13, e0198489 (2018). PubMed DOI PMC
Álvarez-Dávila, E. et al. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS ONE 12, e0171072 (2017). PubMed DOI PMC
Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020). PubMed DOI
Domke, G. et al. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Calvo Buendia, E. et al.) Ch. 4, 48 (IPCC, 2019).
African Mountains Atlas (UNEP, 2014).
Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019). PubMed DOI
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011). PubMed DOI
Booth, B. B. B. et al. High sensitivity of future global warming to land carbon cycle processes. Environ. Res. Lett. 7, 024002 (2012). DOI
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020). DOI
Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403 (2012). DOI
Bastin, J.-F. et al. Pan‐tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr. 27, 1366–1383 (2018). DOI
CCI BIOMASS Product User Guide Year 1 Version 1.0, https://climate.esa.int/sites/default/files/biomass_D4.3_Product_User_Guide_V1.0.pdf (Aberystwyth University and GAMMA Remote Sensing, 2019).
Lefsky, M. A., Keller, M., Pang, Y., de Camargo, P. & Hunter, M. O. Revised method for forest canopy height estimation from the Geoscience Laser Altimeter System waveforms. J. Appl. Remote Sens. 1, 013537 (2007). DOI
Willcock, S. et al. Quantifying and understanding carbon storage and sequestration within the Eastern Arc Mountains of Tanzania, a tropical biodiversity hotspot. Carbon Balance Manag. 9, 2 (2014); correction 12, 20 (2017). PubMed DOI PMC
Bussmann, R. W. Vegetation zonation and nomenclature of African Mountains—an overview. Lyonia 11, 41–66 (2006).
Hamilton, A. Vegetation, climate and soil, altitudinal relationships on the East Usambara Mountains of Tanzania. J. East Afr. Nat. Hist. 87, 85–89 (1998). DOI
Phillips, O., Baker, T., Brienen, R. & Feldpausch, T. RAINFOR Field Manual for Plot Establishment and Remeasurement, http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_2016.pdf (Univ. Leeds, 2016)
Jarvis, A. & Mulligan, M. The climate of cloud forests. Hydrol. Process. 25, 327–343 (2011). DOI
Platts, P. J., Omeny, P. A. & Marchant, R. AFRICLIM: high-resolution climate projections for ecological applications in Africa. Afr. J. Ecol. 53, 103–108 (2015). DOI
McInerny, G. J. & Purves, D. W. Fine‐scale environmental variation in species distribution modelling: regression dilution, latent variables and neighbourly advice. Methods Ecol. Evol. 2, 248–257 (2011). DOI
Poulsen, J. R. et al. Ecological consequences of forest elephant declines for Afrotropical forests. Conserv. Biol. 32, 559–567 (2018). PubMed DOI
Berzaghi, F. et al. Carbon stocks in central African forests enhanced by elephant disturbance. Nat. Geosci. 12, 725–729 (2019); correction 12, 1050 (2019). DOI
Enquist, B. J. et al. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020). PubMed DOI PMC
Lin, T.-C., Hogan, J. A. & Chang, C. T. Tropical cyclone ecology: a scale-link perspective. Trends Ecol. Evol. 35, 594–604 (2020). PubMed DOI
Favalli, M. et al. Lava flow hazard and risk at Mt. Cameroon volcano. Bull. Volcanol. 74, 423–439 (2012). DOI
Stanley, T. & Kirschbaum, D. B. A heuristic approach to global landslide susceptibility mapping. Nat. Hazards 87, 145–164 (2017). DOI
Lovett, J. C. Elevational and latitudinal changes in tree associations and diversity in the Eastern Arc mountains of Tanzania. J. Trop. Ecol. 12, 629–650 (1996). DOI
Hemp, A. et al. Africa’s highest mountain harbours Africa’s tallest trees. Biodivers. Conserv. 26, 103–113 (2017). DOI
Culmsee, H., Leuschner, C., Moser, G. & Pitopang, R. Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. J. Biogeogr. 37, 960–974 (2010). DOI
Enright, N. J. & Ogden, J. in Ecology of the Southern Conifers (eds Enright, N. J. & Hill, R. S.) 271–287 (Melbourne Univ. Press, 1995).
Neale, D. B. & Wheeler, N. C. in The Conifers: Genomes, Variation and Evolution (eds Neale, D. B. & Wheeler, N. C.) 1–21 (Springer, 2019).
Mill, R. R. Towards a biogeography of the Podocarpaceae. Acta Hortic. 615, 137–147 (2003). DOI
Helmer, E. H. et al. Neotropical cloud forests and paramo to contract and dry from declines in cloud immersion and frost. PLoS ONE 14, e0213155 (2019). PubMed DOI PMC
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013). DOI
Turubanova, S., Potapov, P., Tyukavina, A. & Hansen, M. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018). DOI
Pellikka, P. K. E., Lötjönen, M., Siljander, M. & Lens, L. Airborne remote sensing of spatiotemporal change (1955–2004) in indigenous and exotic forest cover in the Taita Hills, Kenya. Int. J. Appl. Earth Obs. Geoinf. 11, 221–232 (2009).
Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 14, 23–29 (2021). DOI
Spira, C., Kirkby, A., Kujirakwinja, D. & Plumptre, A. J. The socio-economics of artisanal mining and bushmeat hunting around protected areas: Kahuzi–Biega National Park and Itombwe nature reserve, eastern Democratic Republic of Congo. Oryx 53, 136–144 (2019). DOI
Bebber, D. P. & Butt, N. Tropical protected areas reduced deforestation carbon emissions by one third from 2000–2012. Sci. Rep. 7, 14005 (2017); 8, 14845 (2018). PubMed DOI PMC
Tegha, K. C. & Sendze, Y. G. Soil organic carbon stocks in Mt Cameroon National Park under different land uses. J. Ecol. Nat. Environ. 8, 20–30 (2016).
Munishi, P. K. T. & Shear, T. H. Carbon storage in afromontane rain forests of the eastern arc mountains of Tanzania: their net contribution to atmospheric carbon. J. Trop. For. Sci. 16, 78–98 (2004).
Wheeler, C. E. et al. Carbon sequestration and biodiversity following 18 years of active tropical forest restoration. For. Ecol. Manage. 373, 44–55 (2016). DOI
Avitabile, V., Baccini, A., Friedl, M. A. & Schmullius, C. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sens. Environ. 117, 366–380 (2012). DOI
Aneseyee, B. A., Soromessa, T. & Belliethathan, S. Carbon sock of Gambella National Park: implication for climate change mitigation. Int. J. Adv. Life Sci. 35, 41–56 (2015).
Lisboa, S. N. et al. Biomass allometric equation and expansion factor for a mountain moist evergreen forest in Mozambique. Carbon Balance Manag. 13, 23 (2018). PubMed DOI PMC
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 22, 610–613 (2011). DOI
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., Baker, T. R. & Phillips, O. L. ForestPlots.net Database, http://www.forestplots.net (ForestPlots, 2009).
Cavanaugh, K. et al. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob. Ecol. Biogeogr. 23, 563–573 (2014). DOI
Lewis, S. L. et al. 2009 Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006 (2009). PubMed DOI
Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014). DOI
Martin, A. R., Doraisami, M. & Thomas, S. C. Global patterns in wood carbon concentration across the world’s trees and forests. Nat. Geosci. 11, 915–920 (2018). DOI
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009). PubMed DOI
Zanne, A. E. et al. Towards a worldwide wood economics spectrum. Dryad https://doi.org/10.5061/dryad.234 (2009).
Clark, D. A. et al. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol. Appl. 11, 371–384 (2001). DOI
Paul, T. S. H., Kimberley, M. O. & Beets, P. N. Thinking outside the square: evidence that plot shape and layout in forest inventories can bias estimates of stand metrics. Methods Ecol. Evol. 10, 381–388 (2019). DOI
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017). DOI
Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016). PubMed DOI PMC
Albrecht, R., Goodman, S., Buechler, D., Blakeslee R. & Christian, H. LIS 0.1 Degree Very High Resolution Gridded Lightning Climatology Data Collection, https://ghrc.nsstc.nasa.gov/pub/lis/climatology/LIS/ (NASA Global Hydrology Resource Center, 2016).
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017). PubMed DOI PMC
Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11, 234–240 (2021). DOI
Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global Datasets of Forest Above-ground Biomass for the year 2017, v1 (Centre for Environmental Data Analysis, 2019).
Saatchi, S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011). PubMed DOI PMC
Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016). DOI
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team nlme: linear and nonlinear mixed effects models. R package version 3.1-151 (2020).
Bates, D., Maechler, M., Bolker B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015). DOI
Lüdecke, D., Ben-Shachar, M., Patil, I. & Makowski, D. Parameters: extracting, computing and exploring the parameters of statistical models using R. J. Open Source Softw. 5, 2445 (2020). DOI
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008). PubMed DOI
Barton, K. MuMIn: multi-model inference. R package version 1.43.17 (2020)
Contrasting carbon cycle along tropical forest aridity gradients in West Africa and Amazonia