Effects of Reoperation Timing on Survival among Recurrent Glioblastoma Patients: A Retrospective Multicentric Descriptive Study
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
grant NU21-03-00195
Ministry of Health of the Czech Republic
conceptual development of research organization - FNOL, 00098892
Ministry of Health of the Czech Republic
conceptual development of research organization - MMCI, 00209805
Ministry of Health of the Czech Republic
conceptual development of research organization - FNB, 65269705
Ministry of Health of the Czech Republic
grant NU20-03-00148
Ministry of Health of the Czech Republic
conceptual development of research organization - FNUSA, 00159816
Ministry of Health of the Czech Republic
PubMed
37173996
PubMed Central
PMC10177480
DOI
10.3390/cancers15092530
PII: cancers15092530
Knihovny.cz E-resources
- Keywords
- glioblastoma, reoperation timing, treatment strategy,
- Publication type
- Journal Article MeSH
Glioblastoma inevitably recurs, but no standard regimen has been established for treating this recurrent disease. Several reports claim that reoperative surgery can improve survival, but the effects of reoperation timing on survival have rarely been investigated. We, therefore, evaluated the relationship between reoperation timing and survival in recurrent GBM. A consecutive cohort of unselected patients (real-world data) from three neuro-oncology cancer centers was analyzed (a total of 109 patients). All patients underwent initial maximal safe resection followed by treatment according to the Stupp protocol. Those meeting the following criteria during progression were indicated for reoperation and were further analyzed in this study: (1) The tumor volume increased by >20-30% or a tumor was rediscovered after radiological disappearance; (2) The patient's clinical status was satisfactory (KS ≥ 70% and PS WHO ≤ gr. 2); (3) The tumor was localized without multifocality; (4) The minimum expected tumor volume reduction was above 80%. A univariate Cox regression analysis of postsurgical survival (PSS) revealed a statistically significant effect of reoperation on PSS from a threshold of 16 months after the first surgery. Cox regression models that stratified the Karnofsky score with age adjustment confirmed a statistically significant improvement in PSS for time-to-progression (TTP) thresholds of 22 and 24 months. The patient groups exhibiting the first recurrence at 22 and 24 months had better survival rates than those exhibiting earlier recurrences. For the 22-month group, the HR was 0.5 with a 95% CI of (0.27, 0.96) and a p-value of 0.036. For the 24-month group, the HR was 0.5 with a 95% CI of (0.25, 0.96) and a p-value of 0.039. Patients with the longest survival were also the best candidates for repeated surgery. Later recurrence of glioblastoma was associated with higher survival rates after reoperation.
See more in PubMed
Alexander B.M., Cloughesy T.F. Adult glioblastoma. J. Clin. Oncol. 2017;35:2402–2409. doi: 10.1200/JCO.2017.73.0119. PubMed DOI
Stupp R., Hegi M.E., Mason W.P., Van Den Bent M.J., Taphoorn M.J., Janzer R.C., Ludwin S.K., Allgeier A., Fisher B., Belanger K., et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase iii study: 5-year analysis of the eortc-ncic trial. Lancet Oncol. 2009;10:459–466. doi: 10.1016/S1470-2045(09)70025-7. PubMed DOI
Stupp R., Mason W.P., Van Den Bent M.J., Weller M., Fisher B., Taphoorn M.J., Belanger K., Brandes A.A., Marosi C., Bogdahn U., et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005;352:987–996. doi: 10.1056/NEJMoa043330. PubMed DOI
Lakomy R., Kazda T., Selingerova I., Poprach A., Pospisil P., Belanova R., Fadrus P., Vybihal V., Smrcka M., Jancalek R., et al. Real-World Evidence in Glioblastoma: Stupp’s Regimen after a Decade. Front. Oncol. 2020;10:840. doi: 10.3389/fonc.2020.00840. PubMed DOI PMC
Sanai N., Berger M.S. Surgical oncology for gliomas: The state of the art. Nat. Rev. Clin. Oncol. 2018;15:112–125. doi: 10.1038/nrclinonc.2017.171. PubMed DOI
Darefsky A.S., King J.T., Jr., Dubrow R. Adult glioblastoma multiforme survival in the temozolomide era: A population-based analysis of Surveillance, Epidemiology, and End Results registries. Cancer. 2012;118:2163–2172. doi: 10.1002/cncr.26494. PubMed DOI PMC
Neth B.J., Carabenciov I.D., Ruff M.W., Johnson D.R. Neurologist. Temporal Trends in Glioblastoma Survival: Progress then Plateau. Neurologist. 2022;27:119–124. doi: 10.1097/NRL.0000000000000393. PubMed DOI
Weller M., Cloughesy T., Perry J.R., Wick W. Standards of care for treatment of recurrent glioblastoma—Are we there yet? Neuro Oncol. 2013;15:4–27. doi: 10.1093/neuonc/nos273. PubMed DOI PMC
Lu G., Rao M., Zhu P., Liang B., El-Nazer R.T., Fonkem E., Bhattacharjee M.B., Zhu J.J. Triple-drug Therapy With Bevacizumab, Irinotecan, and Temozolomide Plus Tumor Treating Fields for Recurrent Glioblastoma: A Retrospective Study. Front. Neurol. 2019;10:42. doi: 10.3389/fneur.2019.00042. PubMed DOI PMC
Kesari S., Ram Z. EF-14 Trial Investigators. Tumor-treating fields plus chemotherapy versus chemotherapy alone for glioblastoma at first recurrence: A post hoc analysis of the EF-14 trial. CNS Oncol. 2017;6:185–193. doi: 10.2217/cns-2016-0049. PubMed DOI PMC
Ansstas G., Tran D.D. Treatment with Tumor-Treating Fields Therapy and Pulse Dose Bevacizumab in Patients with Bevacizumab-Refractory Recurrent Glioblastoma: A Case Series. Case Rep. Neurol. 2016;8:1–9. doi: 10.1159/000442196. PubMed DOI PMC
Marko N.F., Weil R.J., Schroeder J.L., Lang F.F., Suki D., Sawaya R.E. Extent of resection of glioblastoma revisited: Personal ized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery. J. Clin. Oncol. 2014;32:774–782. doi: 10.1200/JCO.2013.51.8886. PubMed DOI PMC
Sanai N., Polley M.Y., McDermott M.W., Parsa A.T., Berger M.S. An extent of resection threshold for newly diagnosed glioblastomas. J. Neurosurg. 2011;115:3–8. doi: 10.3171/2011.2.JNS10998. PubMed DOI
Li Y.M., Suki D., Hess K., Sawaya R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? J. Neurosurg. 2016;124:977–988. doi: 10.3171/2015.5.JNS142087. PubMed DOI
Hervey-Jumper S.L., Berger M.S. Maximizing safe resection of low- and high-grade glioma. J. Neurooncol. 2016;130:269–282. doi: 10.1007/s11060-016-2110-4. PubMed DOI
Sanai N., Berger M.S. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62:753–764; discussion 264–266. doi: 10.1227/01.neu.0000318159.21731.cf. PubMed DOI
Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016;131:803–820. doi: 10.1007/s00401-016-1545-1. PubMed DOI
Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021;23:1231–1251. doi: 10.1093/neuonc/noab106. PubMed DOI PMC
Sporikova Z., Slavkovsky R., Tuckova L., Kalita O., Megova Houdova M., Ehrmann J., Hajduch M., Hrabalek L., Vaverka M. IDH1/2 Mutations in Patients With Diffuse Gliomas: A Single Centre Retrospective Massively Parallel Sequencing Analysis. Appl. Immunohistochem. Mol. Morphol. 2022;30:178–183. doi: 10.1097/PAI.0000000000000997. PubMed DOI PMC
Urbanovska I., Megova M.H., Dwight Z., Kalita O., Uvirova M., Simova J., Tuckova L., Buzrla P., Palecek T., Hajduch M., et al. IDH Mutation Analysis in Glioma Patients by CADMA Compared with SNaPshot Assay and two Immunohistochemical Methods. Pathol. Oncol. Res. 2019;25:971–978. doi: 10.1007/s12253-018-0413-9. PubMed DOI PMC
Kalita O., Sporikova Z., Hajduch M., Megova Houdova M., Slavkovsky R., Hrabalek L., Halaj M., Klementova Y., Dolezel M., Drabek J., et al. The Influence of Gene Aberrations on Survival in Resected IDH Wildtype Glioblastoma Patients: A Single-Institution Study. Curr. Oncol. 2021;28:20122. doi: 10.3390/curroncol28020122. PubMed DOI PMC
Perrini P., Gambacciani C., Weiss A., Pasqualetti F., Delishaj D., Paiar F., Morganti R., Vannozzi R., Lutzemberger L. Survival outcomes following repeat surgery for recurrent glioblastoma: A single-center retrospective analysis. J. Neurooncol. 2017;131:585–591. doi: 10.1007/s11060-016-2330-7. PubMed DOI
Yong R.L., Wu T., Mihatov N., Shen M.J., Brown M.A., Zaghloul K.A., Park G.E., Park J.K. Residual tumor volume and patient survival following reoperation for recurrent glioblastoma. J. Neurosurg. 2014;121:802–809. doi: 10.3171/2014.6.JNS132038. PubMed DOI
Sughrue M.E., Sheean T., Bonney P.A., Maurer A.J., Teo C. Aggressive repeat surgery for focally recurrent primary glioblastoma: Outcomes and theoretical framework. Neurosurg. Focus. 2015;38:E11. doi: 10.3171/2014.12.FOCUS14726. PubMed DOI
Suchorska B., Weller M., Tabatabai G., Senft C., Hau P., Sabel M.C., Herrlinger U., Ketter R., Schlegel U., Marosi C., et al. Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma-results from the director trial. Neuro Oncol. 2016;18:549–556. doi: 10.1093/neuonc/nov326. PubMed DOI PMC
Park J.K., Hodges T., Arko L., Shen M., Dello Iacono D., McNabb A., Olsen Bailey N., Kreisl T.N., Iwamoto F.M., Sul J., et al. Scale to predict survival after surgery for recurrent glioblastoma multiforme. J. Clin. Oncol. 2010;28:3838–3843. doi: 10.1200/JCO.2010.30.0582. PubMed DOI PMC
Park C.K., Kim J.H., Nam D.H., Kim C.Y., Chung S.B., Kim Y.H., Seol H.J., Kim T.M., Choi S.H., Lee S.H., et al. A practical scoring system to determine whether to proceed with surgical resection in recurrent glioblastoma. Neuro Oncol. 2013;15:1096–1101. doi: 10.1093/neuonc/not069. PubMed DOI PMC
Cote D.J., Balak N., Brennum J., Holsgrove D.T., Kitchen N., Kolenda H., Moojen W.A., Schaller K., Robe P.A., Mathiesen T., et al. Ethical difficulties in the innovative surgical treatment of patients with recurrent glioblastoma multi forme. J. Neurosurg. 2017;126:2045–2050. doi: 10.3171/2016.11.JNS162488. PubMed DOI
Stummer W., Reulen H.J., Meinel T., Pichlmeier U., Schumacher W., Tonn J.C., Rohde V., Oppel F., Turowski B., Woiciechowsky C., et al. Extent of resection and survival in glioblastoma multiforme: Identification of and adjustment for bias. Neurosurgery. 2008;62:564–576; discussion 564–576. doi: 10.1227/01.neu.0000317304.31579.17. PubMed DOI
Stummer W., Meinel T., Ewelt C., Martus P., Jakobs O., Felsberg J., Reifenberger G. Prospective cohort study of radio therapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery. J. Neurooncol. 2012;108:89–97. doi: 10.1007/s11060-012-0798-3. PubMed DOI PMC
Stummer W., Tonn J.C., Mehdorn H.M., Nestler U., Franz K., Goetz C., Bink A., Pichlmeier U., ALA-Glioma Study Group Counterbalancing risks and gains from extended resections in malignant glioma surgery: A supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clinical article. J. Neurosurg. 2011;114:613–623. doi: 10.3171/2010.3.JNS097. PubMed DOI
Roh T.H., Kang S.G., Moon J.H., Sung K.S., Park H.H., Kim S.H., Kim E.H., Hong C.K., Suh C.O., Chang J.H. Survival benefit of lobectomy over gross-total resection without lobectomy in cases of glioblastoma in the noneloquent area: A retrospective study. J. Neurosurg. 2019;132:895–901. doi: 10.3171/2018.12.JNS182558. PubMed DOI
Rubin M.C., Sagberg L.M., Jakola A.S., Solheim O. Primary versus recurrent surgery for glioblastoma-a prospective cohort study. Acta Neurochir. 2022;164:429–438. doi: 10.1007/s00701-020-04605-1. PubMed DOI PMC
Coburger J., Wirtz C.R., König R.W. Impact of extent of resection and recurrent surgery on clinical outcome and overall survival in a consecutive series of 170 patients for glioblastoma in intraoperative high field magnetic resonance imaging. J. Neurosurg. Sci. 2017;61:233–244. doi: 10.23736/S0390-5616.16.03284-7. PubMed DOI
Leone A., Colamaria A., Fochi N.P., Sacco M., Landriscina M., Parbonetti G., de Notaris M., Coppola G., De Santis E., Giordano G., et al. Recurrent Glioblastoma Treatment: State of the Art and Future Perspectives in the Precision Medicine Era. Biomedicines. 2022;10:1927. doi: 10.3390/biomedicines10081927. PubMed DOI PMC
Yoo J., Yoon S.J., Kim K.H., Jung I.H., Lim S.H., Kim W., Yoon H.I., Kim S.H., Sung K.S., Roh T.H., et al. Patterns of recurrence according to the extent of resection in patients with IDH-wild-type glioblastoma: A retrospective study. J. Neurosurg. 2021;137:533–543. doi: 10.3171/2021.10.JNS211491. PubMed DOI
Tatari N., Khan S., Livingstone J., Zhai K., Mckenna D., Ignatchenko V., Chokshi C., Gwynne W.D., Singh M., Revill S., et al. The proteomic landscape of glioblastoma recurrence reveals novel and targetable immunoregulatory drivers. Acta Neuropathol. 2022;144:1127–1142. doi: 10.1007/s00401-022-02506-4. PubMed DOI PMC
Wong E.T., Timmons J., Callahan A., O’Loughlin L., Giarusso B., Alsop D.C. Phase I study of low-dose metronomic temozolomide for recurrent malignant gliomas. BMC Cancer. 2016;16:914. doi: 10.1186/s12885-016-2945-2. PubMed DOI PMC
Van Vugt V.A., Piccioni D.E., Brown B.D., Brown T., Saria M.G., Juarez T., Kesari S. Retrospective analysis of safety and feasibility of a 3 days on/11 days off temozolomide dosing regimen in recurrent adult malignant gliomas. CNS Oncol. 2014;3:257–265. doi: 10.2217/cns.14.29. PubMed DOI PMC
Han S.J., Rolston J.D., Molinaro A.M., Clarke J.L., Prados M.D., Chang S.M., Berger M.S., DeSilva A., Butowski N.A. Phase II trialof 7 days on/7 days off temozolmide for recurrent high-grade glioma. Neuro Oncol. 2014;16:1255–1262. doi: 10.1093/neuonc/nou044. PubMed DOI PMC
Omuro A., Chan T.A., Abrey L.E., Khasraw M., Reiner A.S., Kaley T.J., Deangelis L.M., Lassman A.B., Nolan C.P., Gavrilovic I.T., et al. Phase II trial of continuous low-dose temozolomide for patients with recurrent malignant glioma. Neuro Oncol. 2013;15:242–250. doi: 10.1093/neuonc/nos295. PubMed DOI PMC
Archavlis E., Tselis N., Birn G., Ulrich P., Baltas D., Zamboglou N. Survival analysis of HDR brachytherapy versus reoperation versus temozolomide alone: A retrospective cohort analysis of recurrent glioblastoma multiforme. BMJ Open. 2013;3:e002262. doi: 10.1136/bmjopen-2012-002262. PubMed DOI PMC
Norden A.D., Lesser G.J., Drappatz J., Ligon K.L., Hammond S.N., Lee E.Q., Reardon D.R., Fadul C.E., Plotkin S.R., Batchelor T.T., et al. Phase 2 study of dose-intense temozolomide in recurrent glioblastoma. Neuro Oncol. 2013;15:930–935. doi: 10.1093/neuonc/not040. PubMed DOI PMC
Aoki T., Arakawa Y., Ueba T., Oda M., Nishida N., Akiyama Y., Tsukahara T., Iwasaki K., Mikuni N., Miyamoto S. Phase I/II Study of Temozolomide Plus Nimustine Chemotherapy for Recurrent Malignant Gliomas: Kyoto Neuro-oncology Group. Neurol. Med.-Chir. 2017;57:17–27. doi: 10.2176/nmc.oa.2016-0162. PubMed DOI PMC
Wang L., Liang L., Yang T., Qiao Y., Xia Y., Liu L., Li C., Lu P., Jiang X. A pilot clinical study of apatinib plus irinotecan in patients with recurrent high-grade glioma: Clinical Trial/Experimental Study. Medicine. 2017;96:e9053. doi: 10.1097/MD.0000000000009053. PubMed DOI PMC
Reynés G., Martínez-Sales V., Vila V., Balañá C., Pérez-Segura P., Vaz M.A., Benavides M., Gallego O., Palomero I., Gil-Gil M., et al. Phase II trial of irinotecan and metronomic temozolomide in patients with recurrent glioblastoma. Anticancer Drugs. 2016;27:133–137. doi: 10.1097/CAD.0000000000000314. PubMed DOI
Di Cristofori A., Zarino B., Fanizzi C., Fornara G.A., Bertani G., Rampini P., Carrabba G., Caroli M. Analysis of factors influencing the access to concomitant chemo-radiotherapy in elderly patients with high grade gliomas: Role of MMSE, age and tumor volume. J. Neurooncol. 2017;134:377–385. doi: 10.1007/s11060-017-2537-2. PubMed DOI
Franceschi E., Stupp R., van den Bent M.J., van Herpen C., Laigle Donadey F., Gorlia T., Hegi M., Lhermitte B., Strauss L.C., Allgeier A., et al. EORTC 26083 phase I/II trial of dasatinib in combination with CCNU in patients with recurrent glioblastoma. Neuro Oncol. 2012;14:1503–1510. doi: 10.1093/neuonc/nos256. PubMed DOI PMC
Klein J., Juratli T.A., Radev Y., Daubner D., Soucek S., Schackert G., Krex D. Safety and Effectiveness of Bis-Chloroethylnitrosourea Wafer Chemotherapy in Elderly Patients with Recurrent Glioblastoma. Oncology. 2017;93:43–50. doi: 10.1159/000464464. PubMed DOI
Minniti G., Niyazi M., Alongi F., Navarria P., Belka C. Current status and recent advances in reirradiation of glioblastoma. Radiat. Oncol. 2021;16:36. doi: 10.1186/s13014-021-01767-9. PubMed DOI PMC
Tsien C.I., Pugh S.L., Dicker A.P., Raizer J.J., Matuszak M.M., Lallana E.C., Huang J., Algan O., Deb N., Portelance L., et al. NRG Oncology/RTOG1205: A Randomized Phase II Trial of Concurrent Bevacizumab and Reirradiation Versus Bevacizumab Alone as Treatment for Recurrent Glioblastoma. J. Clin. Oncol. 2022;41:JCO2200164. doi: 10.1200/JCO.22.00164. PubMed DOI PMC
Ciammella P., Podgornii A., Galeandro M., D’Abbiero N., Pisanello A., Botti A., Cagni E., Iori M., Iotti C. Hypofractionated stereotactic radiation therapy for recurrent glioblastoma: Single institutional experience. Radiat. Oncol. 2013;8:222. doi: 10.1186/1748-717X-8-222. PubMed DOI PMC
Straube C., Antoni S., Gempt J., Zimmer C., Meyer B., Schlegel J., Schmidt-Graf F., Combs S.E. Re-irradiation in elderly patients with glioblastoma: A single institution experience. J. Neurooncol. 2019;142:327–335. doi: 10.1007/s11060-019-03101-6. PubMed DOI
Bräutigam E., Lampl C., Track C., Nieder C., Pichler J., Hammer J., Geinitz H. Re-irradiation of recurrent glioblastoma as part of a sequential multimodality treatment concept. Clin. Transl. Oncol. 2019;21:582–587. doi: 10.1007/s12094-018-1957-6. PubMed DOI
Zwirner K., Paulsen F., Schittenhelm J., Borchers C., Skardelly M., Zips D., Eckert F. Prognostic parameters and outcome after re-irradiation for progressive glioblastoma. Acta Neurol. Scand. 2017;136:239–245. doi: 10.1111/ane.12719. PubMed DOI
Hasan S., Chen E., Lanciano R., Yang J., Hanlon A., Lamond J., Arrigo S., Ding W., Mikhail M., Ghaneie A., et al. Salvage Fractionated Stereotactic Radiotherapy with or without Chemotherapy and Immunotherapy for Recurrent Glioblastoma Multiforme: A Single Institution Experience. Front. Oncol. 2015;5:106. doi: 10.3389/fonc.2015.00106. PubMed DOI PMC
Pinzi V., Orsi C., Marchetti M., Milanesi I.M., Bianchi L.C., DiMeco F., Cuccarini V., Farinotti M., Ferroli P., Finocchiaro G., et al. Radiosurgery reirradiation for high-grade glioma recurrence: A retrospective analysis. Neurol. Sci. 2015;36:1431–1440. doi: 10.1007/s10072-015-2172-7. PubMed DOI
Greenspoon J.N., Sharieff W., Hirte H., Overholt A., Devillers R., Gunnarsson T., Whitton A. Fractionated stereotactic radiosurgery with concurrent temozolomide chemotherapy for locally recurrent glioblastoma multiforme: A prospective cohort study. OncoTargets Ther. 2014;7:485–490. doi: 10.2147/OTT.S60358. PubMed DOI PMC
Yazici G., Cengiz M., Ozyigit G., Eren G., Yildiz F., Akyol F., Gurkaynak M., Zorlu F. Hypofractionated stereotactic reirradiation for recurrent glioblastoma. J. Neurooncol. 2014;120:117–123. doi: 10.1007/s11060-014-1524-0. PubMed DOI
Straube C., Kessel K.A., Zimmer C., Schmidt-Graf F., Schlegel J., Gempt J., Meyer B., Combs S.E. A Second Course of Radiotherapy in Patients with Recurrent Malignant Gliomas: Clinical Data on Re-irradiation, Prognostic Factors, and Usefulness of Digital Biomarkers. Curr. Treat. Options Oncol. 2019;20:71. doi: 10.1007/s11864-019-0673-y. PubMed DOI
Li X., Jia Z., Yan Y. Efficacy and safety of tumor-treating fields in recurrent glioblastoma: A systematic review and meta-analysis. Acta Neurochir. 2022;164:1985–1993. doi: 10.1007/s00701-022-05192-z. PubMed DOI
Pirzkall A., McGue C., Saraswathy S., Cha S., Liu R., Vandenberg S., Lamborn K.R., Berger M.S., Chang S.M., Nelson S.J. Tumor regrowth between surgery and initiation of adjuvant therapy in patients with newly diagnosed glioblastoma. Neuro Oncol. 2009;11:842–852. doi: 10.1215/15228517-2009-005. PubMed DOI PMC
Villanueva-Meyer J.E., Han S.J., Cha S., Butowski N.A. Early tumor growth between initial resection and radiotherapy of glioblastoma: Incidence and impact on clinical outcomes. J. Neurooncol. 2017;134:213–219. doi: 10.1007/s11060-017-2511-z. PubMed DOI PMC
Palmer J.D., Bhamidipati D., Shukla G., Sharma D., Glass J., Kim L., Evans J.J., Judy K., Farrell C., Andrews D.W., et al. Rapid Early Tumor Progression is Prognostic in Glioblastoma Patients. Am. J. Clin. Oncol. 2019;42:481–486. doi: 10.1097/COC.0000000000000537. PubMed DOI
Lakomy R., Kazda T., Selingerova I., Poprach A., Pospisil P., Belanova R., Fadrus P., Smrcka M., Vybihal V., Jancalek R., et al. Pre-Radiotherapy Progression after Surgery of Newly Diagnosed Glioblastoma: Corroboration of New Prognostic Variable. Diagnostics. 2020;10:676. doi: 10.3390/diagnostics10090676. PubMed DOI PMC
De Barros A., Attal J., Roques M., Nicolau J., Sol J.C., Cohen-Jonathan-Moyal E., Roux F.E. Impact on survival of early tumor growth between surgery and radiotherapy in patients with de novo glioblastoma. J. Neurooncol. 2019;142:489–497. doi: 10.1007/s11060-019-03120-3. PubMed DOI
Wee C.W., Kim E., Kim T.M., Park C.K., Kim J.W., Choi S.H., Yoo R.E., Lee S.T., Kim I.H. Impact of interim progression during the surgery-to-radiotherapy interval and its predictors in glioblastoma treated with temozolomide-based radiochemotherapy. J. Neurooncol. 2017;134:169–175. doi: 10.1007/s11060-017-2505-x. PubMed DOI
Merkel A., Soeldner D., Wendl C., Urkan D., Kuramatsu J.B., Seliger C., Proescholdt M., Eyupoglu I.Y., Hau P., Uhl M. Early postoperative tumor progression predicts clinical outcome in glioblastoma-implication for clinical trials. J. Neurooncol. 2017;132:249–254. doi: 10.1007/s11060-016-2362-z. PubMed DOI PMC
Majós C., Cos M., Castañer S., Pons A., Gil M., Fernández-Coello A., Macià M., Bruna J., Aguilera C. Preradiotherapy MR. Imaging: A Prospective Pilot Study of the Usefulness of Performing an MR Examination Shortly before Radiation Therapy in Patients with Glioblastoma. AJNR Am. J. Neuroradiol. 2016;37:2224–2230. doi: 10.3174/ajnr.A4917. PubMed DOI PMC
Farace P., Amelio D., Ricciardi G.K., Zoccatelli G., Magon S., Pizzini F., Alessandrini F., Sbarbati A., Amichetti M., Beltramello A. Early MRI changes in glioblastoma in the period between surgery and adjuvant therapy. J. Neurooncol. 2013;111:177–185. doi: 10.1007/s11060-012-0997-y. PubMed DOI
Waqar M., Roncaroli F., Lehrer E.J., Palmer J.D., Villanueva-Meyer J., Braunstein S., Hall E., Aznar M., De Witt Hamer P.C., D’Urso P.I., et al. Rapid early progression (REP) of glioblastoma is an independent negative prognostic factor: Results from a systematic review and meta-analysis. Neurooncol. Adv. 2022;4:vdac075. doi: 10.1093/noajnl/vdac075. PubMed DOI PMC
Boiardi A., Silvani A., Eoli M., Lamperti E., Salmaggi A., Gaviani P., Fiumani A., Botturi A., Falcone C., Solari A., et al. Treatment of recurrent glioblastoma: Can local delivery of mitoxantrone improve survival? J. Neurooncol. 2008;88:105–113. doi: 10.1007/s11060-008-9540-6. PubMed DOI
Chen Y.R., Sole J., Ugiliweneza B., Johnson E., Burton E., Woo S.Y., Koutourousiou M., Williams B., Boakye M., Skirboll S. National trends for reoperation in older patients with glioblastoma. World Neurosurg. 2018;113:e179–e189. doi: 10.1016/j.wneu.2018.01.211. PubMed DOI
Delgado-Fernandez J., Garcia-Pallero M.Á., Blasco G., Penanes J.R., Gil-Simoes R., Pulido P., Sola R.G. Usefulness of reintervention in recurrent glioblastoma: An indispensable weapon for increasing survival. World Neurosurg. 2017;108:610–617. doi: 10.1016/j.wneu.2017.09.062. PubMed DOI
Skeie B.S., Enger P.Ø., Brøgger J., Ganz J.C., Thorsen F., Heggdal J.I., Pedersen P.H. Gamma knife surgery versus reoperation for recurrent glioblastoma multiforme. World Neurosurg. 2012;78:658–669. doi: 10.1016/j.wneu.2012.03.024. PubMed DOI
Wann A., Tully P.A., Barnes E.H., Lwin Z., Jeffree R., Drummond K.J., Gan H., Khasraw M. Outcomes after second surgery for recurrent glioblastoma: A retrospective case-control study. J. Neurooncol. 2018;137:409–415. doi: 10.1007/s11060-017-2731-2. PubMed DOI
Zanello M., Roux A., Ursu R., Peeters S., Bauchet L., Noel G., Guyotat J., Le Reste P.J., Faillot T., Litre F., et al. Recurrent glioblastomas in the elderly after maximal first-line treatment: Does preserved overall condition warrant a maximal second-line treatment? J. Neurooncol. 2017;135:285–297. doi: 10.1007/s11060-017-2573-y. PubMed DOI
Chaichana K.L., Zadnik P., Weingart J.D., Olivi A., Gallia G.L., Blakeley J., Lim M., Brem H., Quiñones-Hinojosa A. Multiple resections for patients with glioblastoma: Prolonging survival. J. Neurosurg. 2013;118:812–820. doi: 10.3171/2012.9.JNS1277. PubMed DOI PMC
Stark A.M., Hedderich J., Held-Feindt J., Mehdorn H.M. Glioblastoma–the consequences of advanced patient age on treatment and survival. Neurosurg. Rev. 2007;30:56–61; discussion 61–62. doi: 10.1007/s10143-006-0051-7. PubMed DOI
Azoulay M., Santos F., Shenouda G., Petrecca K., Oweida A., Guiot M.C., Owen S., Panet-Raymond V., Souhami L., Abdulkarim B.S. Benefit of re-operation and salvage therapies for recurrent glioblastoma multiforme: Results froma single institution. J. Neurooncol. 2017;132:419–426. doi: 10.1007/s11060-017-2383-2. PubMed DOI
Clarke J.L., Ennis M.M., Yung W.K., Chang S.M., Wen P.Y., Cloughesy T.F., Deangelis L.M., Robins H.I., Lieberman F.S., Fine H.A., et al. Is surgery at progression a prognostic marker for improved 6-month progression-free survival or overall survival for patients with recurrent glioblastoma? Neuro Oncol. 2011;13:1118–1124. doi: 10.1093/neuonc/nor110. PubMed DOI PMC
Ortega A., Sarmiento J.M., Ly D., Nuno M., Mukherjee D., Black K.L., Patil C.G. Multiple resections and survival of recurrent glioblastoma patients in the temozolomide era. J. Clin. Neurosci. 2016;24:105–111. doi: 10.1016/j.jocn.2015.05.047. PubMed DOI
Tugcu B., Postalci L.S., Gunaldi O., Tanriverdi O., Akdemir H. Efficacy of clinical prognostic factors on survival in patients with glioblastoma. Turk. Neurosurg. 2010;20:117–125. doi: 10.5137/1019-5149.JTN.2461-09.4. PubMed DOI
McGirt M.J., Chaichana K.L., Gathinji M., Attenello F.J., Than K., Olivi A., Weingart J.D., Brem H., Quiñones-Hinojosa A.R. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J. Neurosurg. 2009;110:156–162. doi: 10.3171/2008.4.17536. PubMed DOI
Lu V.M., Jue T.R., McDonald K.L., Rovin R.A. The survival effect of repeat surgery at glioblastoma recurrence and its trend: A systematic review and metaanalysis. World Neurosurg. 2018;115:453–459.e3. doi: 10.1016/j.wneu.2018.04.016. PubMed DOI
Nava F., Tramacere I., Fittipaldo A., Bruzzone M.G., DiMeco F., Fariselli L., Finocchiaro G., Pollo B., Salmaggi A., Silvani A., et al. Survival effect of first- and second-line treatments for patients with primary glioblastoma: A cohort study from a prospective registry, 1997–2010. Neuro Oncol. 2014;16:719–727. doi: 10.1093/neuonc/not316. PubMed DOI PMC
Voisin M.R., Zuccato J.A., Wang J.Z., Zadeh G. Surgery for Recurrent Glioblastoma Multiforme: A Retrospective Case Control Study. World Neurosurg. 2022;166:e624–e631. doi: 10.1016/j.wneu.2022.07.070. PubMed DOI
Goldman D.A., Hovinga K., Reiner A.S., Esquenazi Y., Tabar V., Panageas K.S. The relationship between repeat resection and overall survival in patients with glioblastoma: A time-dependent analysis. J. Neurosurg. 2018;129:1231–1239. doi: 10.3171/2017.6.JNS17393. PubMed DOI PMC
Beyersmann J., Gastmeier P., Wolkewitz M., Schumacher M. An easy mathematical proof showed that time-dependent bias inevitably leads to biased effect estimation. J. Clin. Epidemiol. 2008;61:1216–1221. doi: 10.1016/j.jclinepi.2008.02.008. PubMed DOI
Anderson J.R., Cain K.C., Gelber R.D. Analysis of survival by tumor response. J. Clin. Oncol. 1983;1:710–719. doi: 10.1200/JCO.1983.1.11.710. PubMed DOI
Zhao Y.H., Wang Z.F., Pan Z.Y., Péus D., Delgado-Fernandez J., Pallud J., Li Z.Q. A Meta-Analysis of Survival Outcomes. Following Reoperation in Recurrent Glioblastoma: Time to Consider the Timing of Reoperation. Front. Neurol. 2019;10:286. doi: 10.3389/fneur.2019.00286. PubMed DOI PMC
Clavreul A., Autier L., Lemée J.M., Augereau P., Soulard G., Bauchet L., Figarella-Branger D., Menei P., Network F.G. Management of Recurrent Glioblastomas: What Can We Learn from the French Glioblastoma Biobank? Cancers. 2022;14:5510. doi: 10.3390/cancers14225510. PubMed DOI PMC