The Influence of Gene Aberrations on Survival in Resected IDH Wildtype Glioblastoma Patients: A Single-Institution Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33801093
PubMed Central
PMC8025822
DOI
10.3390/curroncol28020122
PII: curroncol28020122
Knihovny.cz E-zdroje
- Klíčová slova
- biomarkers, glioblastoma, multimodal therapy,
- MeSH
- DNA modifikační methylasy genetika MeSH
- glioblastom * genetika terapie MeSH
- isocitrátdehydrogenasa genetika MeSH
- lidé MeSH
- metylace DNA MeSH
- mutace MeSH
- nádory mozku * genetika terapie MeSH
- prospektivní studie MeSH
- retrospektivní studie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA modifikační methylasy MeSH
- isocitrátdehydrogenasa MeSH
This prospective population-based study on a group of 132 resected IDH-wildtype (IDH-wt) glioblastoma (GBM) patients assesses the prognostic and predictive value of selected genetic biomarkers and clinical factors for GBM as well as the dependence of these values on the applied therapeutic modalities. The patients were treated in our hospital between June 2006 and June 2015. Clinical data and tumor samples were analyzed to determine the frequencies of TP53, MDM2, EGFR, RB1, BCR, and CCND1 gene aberrations and the duplication/deletion statuses of the 9p21.3, 1p36.3, 19q13.32, and 10p11.1 chromosome regions. Cut-off values distinguishing low (LCN) and high (HCN) copy number status for each marker were defined. Additionally, MGMT promoter methylation and IDH1/2 mutation status were investigated retrospectively. Young age, female gender, Karnofsky scores (KS) above 80, chemoradiotherapy, TP53 HCN, and CCND1 HCN were identified as positive prognostic factors, and smoking was identified as a negative prognostic factor. Cox proportional regression models of the chemoradiotherapy patient group revealed TP53 HCN and CCND1 HCN to be positive prognostic factors for both progression-free survival and overall survival. These results confirmed the influence of key clinical factors (age, KS, adjuvant oncotherapy, and smoking) on survival in GBM IDH-wt patients and demonstrated the prognostic and/or predictive importance of CCND1, MDM2, and 22q12.2 aberrations.
Department of Neurosurgery University Hospital Olomouc 1 P Pavlova 6 779 00 Olomouc Czech Republic
Department of Oncology University Hospital Olomouc 1 P Pavlova 6 779 00 Olomouc Czech Republic
Zobrazit více v PubMed
Louis D.N., Ohgaki H., Wiestler O.D., Cavenee W.K., Burger P.C., Jouvet A., Scheithauer B.W., Kleihues P. The 2007 WHO classification of tumours of the central nervous system. [(accessed on 23 October 2020)];Acta Neuropathol. 2007 114:97–109. doi: 10.1007/s00401-007-0243-4. Available online: http://pmc/articles/PMC1929165/?report=abstract. PubMed DOI PMC
Thakkar J.P., Dolecek T.A., Horbinski C., Ostrom Q.T., Lightner D.D., Barnholtz-Sloan J.S., Villano J.V. Epidemiologic and molecular prognostic review of glioblastoma. [(accessed on 14 November 2020)];Cancer Epidemiol. Biomark. Prev. 2014 23:1985–1996. doi: 10.1158/1055-9965.EPI-14-0275. Available online: http://pmc/articles/PMC4185005/?report=abstract. PubMed DOI PMC
Dunn G.P., Rinne M.L., Wykosky J., Genovese G., Quayle S.N., Dunn I.F., Agarwalla P.K., Chheda M.G., Campos B., Wang A., et al. Emerging insights into the molecular and cellular basis of glioblastoma. [(accessed on 14 November 2020)];Genes Dev. 2012 26:756–784. doi: 10.1101/gad.187922.112. Available online: http://pmc/articles/PMC3337451/?report=abstract. PubMed DOI PMC
Braganza M.Z., Rajaraman P., Park Y., Inskip P.D., Freedman N.D., Hollenbeck A.R., De González A.B., Kitahara C.M. Cigarette smoking, alcohol intake, and risk of glioma in the NIH-AARP Diet and Health Study. [(accessed on 14 November 2020)];Br. J. Cancer. 2013 110:242–248. doi: 10.1038/bjc.2013.611. Available online: https://pubmed.ncbi.nlm.nih.gov/24335921/ PubMed DOI PMC
Hou L., Jiang J., Liu B., Han W., Wu Y., Zou X., Nasca P.C., Xue F., Chen Y., Zhang B., et al. Smoking and adult glioma: A population-based case-control study in China. [(accessed on 12 December 2020)];Neuro Oncol. 2016 18:105–113. doi: 10.1093/neuonc/nov146. Available online: https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/nov146. PubMed DOI PMC
Stupp R., Hegi M.E., Mason W.P., Bent M.J.V.D., Taphoorn M.J.B., Janzer R.C., Ludwin S.K., Allgeier A., Fisher B., Belanger K., et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. [(accessed on 24 October 2020)];Lancet Oncol. 2009 10:459–466. doi: 10.1016/S1470-2045(09)70025-7. Available online: https://pubmed.ncbi.nlm.nih.gov/19269895/ PubMed DOI
Liang J., Lv X., Lu C., Ye X., Chen X., Fu J., Luo C., Zhao Y. Prognostic factors of patients with Gliomas—An analysis on 335 patients with Glioblastoma and other forms of Gliomas. [(accessed on 15 November 2020)];BMC Cancer. 2020 20:35. doi: 10.1186/s12885-019-6511-6. Available online: https://bmccancer.biomedcentral.com/articles/10.1186/s12885-019-6511-6. PubMed DOI PMC
Taylor O.G., Brzozowski J.S., Skelding K.A. Glioblastoma multiforme: An overview of emerging therapeutic targets. [(accessed on 15 November 2020)];Front. Oncol. 2019 9:963. doi: 10.3389/fonc.2019.00963. Available online: http://www.frontiersin.org. PubMed DOI PMC
Silantyev A.S., Falzone L., Libra M., Gurina O.I., Kardashova K.S., Nikolouzakis T.K., Nosyrev A.E., Sutton C.W., Mitsias P.D., Tsatsakis A. Current and Future Trends on Diagnosis and Prognosis of Glioblastoma: From Molecular Biology to Proteomics. [(accessed on 15 November 2020)];Cells. 2019 8:863. doi: 10.3390/cells8080863. Available online: https://pubmed.ncbi.nlm.nih.gov/31405017/ PubMed DOI PMC
Molinaro A.M., Taylor J.W., Wiencke J.K., Wrensch M.R. Genetic and molecular epidemiology of adult diffuse glioma. [(accessed on 13 December 2020)];Nat. Rev. Neurol. 2019 15:405–417. doi: 10.1038/s41582-019-0220-2. Available online: http://pmc/articles/PMC7286557/?report=abstract. PubMed DOI PMC
Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. [(accessed on 23 October 2020)];Acta Neuropathol. 2016 131:803–820. doi: 10.1007/s00401-016-1545-1. Available online: https://pubmed.ncbi.nlm.nih.gov/27157931/ PubMed DOI
DeWitt J.C., Jordan J.T., Frosch M.P., Samore W.R., Iafrate A.J., Louis D.N., Lennerz J.K. Cost-effectiveness of IDH testing in diffuse gliomas according to the 2016 WHO classification of tumors of the central nervous system recommendations. [(accessed on 28 January 2019)];Neuro Oncol. 2017 19:1640–1650. doi: 10.1093/neuonc/nox120. Available online: http://www.ncbi.nlm.nih.gov/pubmed/29016871. PubMed DOI PMC
Sanai N., Berger M.S. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62:753–764. doi: 10.1227/01.neu.0000318159.21731.cf. PubMed DOI
Sanai N., Polley M.Y., McDermott M.W., Parsa A.T., Berger M.S. An extent of resection threshold for newly diagnosed glioblastomas. J. Neurosurg. 2011;115:3–8. doi: 10.3171/2011.2.JNS10998. PubMed DOI
Ziu M., Kim B.Y.S., Jiang W., Ryken T., Olson J.J. The role of radiation therapy in treatment of adults with newly diagnosed glioblastoma multiforme: A systematic review and evidence-based clinical practice guideline update. J. Neuro Oncol. 2020;150:215–267. doi: 10.1007/s11060-020-03612-7. PubMed DOI
Xu Y., Geng R., Yuan F., Sun Q., Liu B., Chen Q. Identification of differentially expressed key genes between glioblastoma and low-grade glioma by bioinformatics analysis. [(accessed on 10 December 2020)];PeerJ. 2019 7:e6560. Available online: http://pmc/articles/PMC6409090/?report=abstract. PubMed PMC
Li L., Liu X., Ma X., Deng X., Ji T., Hu P., Wan R., Qiu H., Cui D., Gao L. Identification of key candidate genes and pathways in glioblastoma by integrated bioinformatical analysis. [(accessed on 10 December 2020)];Exp. Ther. Med. 2019 18:3439–3449. doi: 10.3892/etm.2019.7975. Available online: http://bioinformatics.psb.ugent.be/webtools/Venn. PubMed DOI PMC
Galbraith K., Kumar A., Abdullah K.G., Walker J.M., Adams S.H., Prior T., Dimentberg R., Henderson F.C., Mirchia K., Sathe A.A., et al. Molecular Correlates of Long Survival in IDH-Wildtype Glioblastoma Cohorts. [(accessed on 10 December 2020)];J. Neuropathol. Exp. Neurol. 2020 79:843–854. doi: 10.1093/jnen/nlaa059. Available online: https://pubmed.ncbi.nlm.nih.gov/32647886/ PubMed DOI
Dmitrenko V., Iershov A.V., Stetsyuk P.I., Lykhovid A.P., Laptin Y.P., Schwartz D.R., Mekler A.A., Kavsan V.M. Determination of molecular glioblastoma subclasses on the basis of analysis of gene expression. Cytol. Genet. 2014;48:383–391. doi: 10.3103/S0095452714060036. PubMed DOI
Brennan C., Momota H., Hambardzumyan D., Ozawa T., Tandon A., Pedraza A., Holland E. Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations. [(accessed on 22 November 2020)];PLoS ONE. 2009 4:e7752. doi: 10.1371/journal.pone.0007752. Available online: http://pmc/articles/PMC2771920/?report=abstract. PubMed DOI PMC
Phillips H.S., Kharbanda S., Chen R., Forrest W.F., Soriano R.H., Wu T.D., Misra A., Nigro J.M., Colman H., Soroceanu L., et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9:157–173. doi: 10.1016/j.ccr.2006.02.019. PubMed DOI
Liu Y.-Q., Wu F., Li J.-J., Li Y.-F., Liu X., Wang Z., Chai R.-C. Gene Expression Profiling Stratifies IDH-Wildtype Glioblastoma with Distinct Prognoses. [(accessed on 10 December 2020)];Front. Oncol. 2019 9:1433. doi: 10.3389/fonc.2019.01433. Available online: http://pmc/articles/PMC6929203/?report=abstract. PubMed DOI PMC
Ma S., Rudra S., Campian J.L., Dahiya S., Dunn G.P., Johanns T., Goldstein M., Kim A.H., Huang J. Prognostic impact of CDKN2A/B deletion, TERT mutation, and EGFR amplification on histological and molecular IDH-wildtype glioblastoma. [(accessed on 10 December 2020)];Neuro Oncol. Adv. 2020 2 doi: 10.1093/noajnl/vdaa126. Available online: https://academic.oup.com/noa/article/doi/10.1093/noajnl/vdaa126/5908751. PubMed DOI PMC
Christians A., Adel-Horowski A., Banan R., Lehmann U., Bartels S., Behling F., Barrantes-Freer A., Stadelmann C., Rohde V., Stockhammer F., et al. The prognostic role of IDH mutations in homogeneously treated patients with anaplastic astrocytomas and glioblastomas. [(accessed on 19 January 2021)];Acta Neuropathol. Commun. 2019 7:156. doi: 10.1186/s40478-019-0817-0. Available online: http://pmc/articles/PMC6798425/?report=abstract. PubMed DOI PMC
Biau J., Chautard E., de Schlichting E., Dupic G., Pereira B., Fogli A., Müller-Barthélémy M., Dalloz P., Khalil T., Dillies A.F., et al. Radiotherapy plus temozolomide in elderly patients with glioblastoma: A “real-life” report. [(accessed on 19 January 2021)];Radiat. Oncol. 2017 12:197. doi: 10.1186/s13014-017-0929-2. Available online: http://pmc/articles/PMC5719937/?report=abstract. PubMed DOI PMC
Incekara F., van der Voort S.R., Dubbink H.J., Atmodimedjo P.N., Nandoe Tewarie R., Lycklama G., Vincent A.J.P.E., Kros J.M., Klein S., van den Bent M., et al. Topographical Mapping of 436 Newly Diagnosed IDH Wildtype Glioblastoma With vs. Without MGMT Promoter Methylation. [(accessed on 19 January 2021)];Front. Oncol. 2020 10:596. doi: 10.3389/fonc.2020.00596. Available online: https://www.frontiersin.org/article/10.3389/fonc.2020.00596/full. PubMed DOI PMC
Amelot A., de Cremoux P., Quillien V., Polivka M., Adle-Biassette H., Lehmann-Che J., Françoise L., Carpentier A.F., George B., Mandonnet E., et al. IDH-Mutation Is a Weak Predictor of Long-Term Survival in Glioblastoma Patients. [(accessed on 19 January 2021)];PLoS ONE. 2015 10:e0130596. doi: 10.1371/journal.pone.0130596. Available online: http://pmc/articles/PMC4497660/?report=abstract. PubMed DOI PMC
Sheikh S., Radivoyevitch T., Barnholtz-Sloan J.S., Vogelbaum M. Long-term trends in glioblastoma survival: Implications for historical control groups in clinical trials. [(accessed on 1 January 2021)];Neuro Oncol. Pract. 2020 7:158–163. doi: 10.1093/nop/npz046. Available online: https://pubmed.ncbi.nlm.nih.gov/32626584/ PubMed DOI PMC
Stensjøen A.L., Solheim O., Kvistad K.A., Håberg A.K., Salvesen Ø., Berntsen E.M. Growth dynamics of untreated glioblastomas in vivo. [(accessed on 10 December 2020)];Neuro Oncol. 2015 17:1402–1411. doi: 10.1093/neuonc/nov029. Available online: https://pubmed.ncbi.nlm.nih.gov/25758748/ PubMed DOI PMC
Pardee A.B. G1 events and regulation of cell proliferation. [(accessed on 24 November 2020)];Science. 1989 246:603–608. doi: 10.1126/science.2683075. Available online: https://pubmed.ncbi.nlm.nih.gov/2683075/ PubMed DOI
Zhang D., Dai D., Zhou M., Li Z., Wang C., Lu Y., Li Y., Wang J. Inhibition of Cyclin D1 Expression in Human Glioblastoma Cells is Associated with Increased Temozolomide Chemosensitivity. [(accessed on 24 November 2020)];Cell. Physiol. Biochem. 2018 51:2496–2508. doi: 10.1159/000495920. Available online: https://www.karger.com/Article/FullText/495920. PubMed DOI
Laigle-Donadey F., Crinière E., Benouaich A., Lesueur E., Mokhtari K., Hoang-Xuan K., Sanson M. Loss of 22q Chromosome is Related to Glioma Progression and Loss of 10q. [(accessed on 24 November 2020)];J. Neuro Oncol. 2005 76:265–268. doi: 10.1007/s11060-005-7019-2. Available online: https://link.springer.com/article/10.1007/s11060-005-7019-2. PubMed DOI
Nakamura M., Ishida E., Shimada K., Kishi M., Nakase H., Sakaki T., Konishi N. Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. [(accessed on 24 November 2020)];Lab. Investig. 2004 85:165–175. doi: 10.1038/labinvest.3700223. Available online: https://pubmed.ncbi.nlm.nih.gov/15592495/ PubMed DOI
Oskam N.T., Bijleveld E.H., Hulsebos T.J.M. A region of common deletion in 22q13.3 in human glioma associated with astrocytoma progression. [(accessed on 24 November 2020)];Int. J. Cancer. 2000 85:336–339. doi: 10.1002/(SICI)1097-0215(20000201)85:3<336::AID-IJC7>3.0.CO;2-9. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/%28SICI%291097-0215%2820000201%2985%3A3%3C336%3A%3AAID-IJC7%3E3.0.CO%3B2-9. PubMed DOI
Fisher C. The diversity of soft tissue tumours with EWSR1 gene rearrangements: A review. [(accessed on 24 November 2020)];Histopathology. 2014 64:134–150. doi: 10.1111/his.12269. Available online: https://pubmed.ncbi.nlm.nih.gov/24320889/ PubMed DOI
Pandita A., Balasubramaniam A., Perrin R., Shannon P., Guha A. Malignant and benign ganglioglioma: A pathological and molecular study1. [(accessed on 24 November 2020)];Neuro Oncol. 2007 9:124–134. doi: 10.1215/15228517-2006-029. Available online: http://academic.oup.com/neuro-oncology/article/9/2/124/1116583/Malignant-and-benign-ganglioglioma-A-pathological. PubMed DOI PMC
Cimino P.J., McFerrin L., Wirsching H.-G., Arora S., Bolouri H., Rabadan R., Weller M., Holland E.C. Copy number profiling across glioblastoma populations has implications for clinical trial design. [(accessed on 10 December 2020)];Neuro Oncol. 2018 20:1368–1373. doi: 10.1093/neuonc/noy108. Available online: https://academic.oup.com/neuro-oncology/article/20/10/1368/5047422. PubMed DOI PMC
Geisenberger C., Mock A., Warta R., Rapp C., Schwager C., Korshunov A., Nied A.-K., Capper D., Brors B., Jungk C., et al. Molecular profiling of long-term survivors identifies a subgroup of glioblastoma characterized by chromosome 19/20 co-gain. [(accessed on 10 December 2020)];Acta Neuropathol. 2015 130:419–434. doi: 10.1007/s00401-015-1427-y. Available online: https://pubmed.ncbi.nlm.nih.gov/25931051/ PubMed DOI
Mirchia K., Richardson T.E. Beyond IDH-mutation: Emerging molecular diagnostic and prognostic features in adult diffuse gliomas. [(accessed on 10 December 2020)];Cancers. 2020 12:1817. doi: 10.3390/cancers12071817. Available online: http://www.mdpi.com/journal/cancers. PubMed DOI PMC
Mansouri A., Hachem L.D., Mansouri S., Nassiri F., Laperriere N.J., Xia D., I Lindeman N., Wen P.Y., Chakravarti A., Mehta M.P., et al. MGMT promoter methylation status testing to guide therapy for glioblastoma: Refining the approach based on emerging evidence and current challenges. [(accessed on 27 December 2020)];Neuro Oncol. 2019 21:167–178. doi: 10.1093/neuonc/noy132. Available online: https://pubmed.ncbi.nlm.nih.gov/30189035/ PubMed DOI PMC
Radke J., Koch A., Pritsch F., Schumann E., Misch M., Hempt C., Lenz K., Löbel F., Paschereit F., Heppner F.L., et al. Predictive MGMT status in a homogeneous cohort of IDH wildtype glioblastoma patients. [(accessed on 27 December 2020)];Acta Neuropathol. Commun. 2019 7:89. doi: 10.1186/s40478-019-0745-z. Available online: https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0745-z. PubMed DOI PMC
Marchi F., Sahnane N., Cerutti R., Cipriani D., Barizzi J., Stefanini F.M., Epistolio S., Cerati M., Balbi S., Mazzucchelli L., et al. The Impact of Surgery in IDH 1 Wild Type Glioblastoma in Relation with the MGMT Deregulation. [(accessed on 27 December 2020)];Front Oncol. 2020 9:1569. doi: 10.3389/fonc.2019.01569. Available online: https://www.frontiersin.org/article/10.3389/fonc.2019.01569/full. PubMed DOI PMC
Li H.-X., Peng X.-X., Zong Q., Zhang K., Wang M.-X., Liu Y., Han G.-I. Cigarette smoking and risk of adult glioma: A meta-analysis of 24 observational studies involving more than 2.3 million individuals. [(accessed on 22 November 2020)];Onco Targets Ther. 2016 9:3511–3523. Available online: http://pmc/articles/PMC4913539/?report=abstract. PubMed PMC
Gittleman H., Cioffi G., Chunduru P., Molinaro A.M., Berger M.S., E Sloan A., Barnholtz-Sloan J.S. An independently validated nomogram for isocitrate dehydrogenase-wild-type glioblastoma patient survival. [(accessed on 10 December 2020)];Neuro Oncol. Adv. 2019 1 doi: 10.1093/noajnl/vdz007. Available online: https://pubmed.ncbi.nlm.nih.gov/31608326/ PubMed DOI PMC