Unifying framework explaining how parental regulatory divergence can drive gene expression in hybrids and allopolyploids
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-25185S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
21-25185S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
e-INFRA 90254
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.1.01/0.0/0.0/16_025/0007370
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
39379366
PubMed Central
PMC11461870
DOI
10.1038/s41467-024-52546-5
PII: 10.1038/s41467-024-52546-5
Knihovny.cz E-zdroje
- MeSH
- fenotyp MeSH
- genové regulační sítě MeSH
- hybridizace genetická * MeSH
- modely genetické MeSH
- molekulární evoluce MeSH
- polyploidie * MeSH
- promotorové oblasti (genetika) * genetika MeSH
- regulace genové exprese u rostlin MeSH
- transkripční faktory * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- transkripční faktory * MeSH
Hybridization and polyploidy are powerful evolutionary forces, inducing a range of phenotypic outcomes, including non-additive expression, subgenome dominance, deviations in genomic dosage, and transcriptome downsizing. The reasons for these patterns and whether they are universal adaptive responses to genome merging and doubling remain debated. To address this, we develop a thermodynamic model of gene expression based on transcription factor (TF)-promoter binding. Applied to hybridization between species with divergent gene expression levels, cell volumes, or euchromatic ratios, this model distinguishes the effects of hybridization from those of polyploidy. Our results align with empirical observations, suggesting that gene regulation patterns in hybrids and polyploids often stem from the constrained interplay between inherited diverged regulatory networks rather than from subsequent adaptive evolution. In addition, occurrence of certain phenotypic traits depend on specific assumptions about promoter-TF coevolution and their distribution within the hybrid's nucleoplasm, offering new research avenues to understand the underlying mechanisms. In summary, our model explains how the legacy of divergent species directly influences the phenotypic traits of hybrids and allopolyploids.
Zobrazit více v PubMed
Veitia, R. A., Bottani, S. & Birchler, J. A. Gene dosage effects: nonlinearities, genetic interactions, and dosage compensation. Trends Genet.29, 385–393 (2013). PubMed
Yoo, M.-J., Liu, X., Pires, J. C., Soltis, P. S. & Soltis, D. E. Nonadditive gene expression in polyploids. Annu. Rev. Genet.48, 485–517 (2014). PubMed
Comeault, A. A. & Matute, D. R. Genetic divergence and the number of hybridizing species affect the path to homoploid hybrid speciation. Proc. Natl Acad. Sci. USA115, 9761–9766 (2018). PubMed PMC
Stöck, M. et al. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the ‘extended speciation continuum’. Philos. Trans. R. Soc. Lond. B Biol. Sci.376, 20200103 (2021). PubMed PMC
Bartoš, O. et al. The legacy of sexual ancestors in phenotypic variability, gene expression, and homoeolog regulation of asexual hybrids and polyploids. Mol. Biol. Evol.36, 1902–1920 (2019). PubMed PMC
Li, M., Wang, R., Wu, X. & Wang, J. Homoeolog expression bias and expression level dominance (ELD) in four tissues of natural allotetraploid Brassica napus. BMC Genom.21, 330 (2020). PubMed PMC
Gianinetti, A. A criticism of the value of midparent in polyploidization. J. Exp. Bot.64, 4119–4129 (2013). PubMed
Matos, I., Machado, M. P., Schartl, M. & Coelho, M. M. Gene expression dosage regulation in an allopolyploid fish. PLoS ONE10, e0116309 (2015). PubMed PMC
Zhang, M. et al. Effects of parental genetic divergence on gene expression patterns in interspecific hybrids of Camellia. BMC Genom.20, 828 (2019). PubMed PMC
Wang, X., Morton, J. A., Pellicer, J., Leitch, I. J. & Leitch, A. R. Genome downsizing after polyploidy: mechanisms, rates and selection pressures. Plant J.107, 1003–1015 (2021). PubMed
Goncalves, A. et al. Extensive compensatory cis-trans regulation in the evolution of mouse gene expression. Genome Res.22, 2376–2384 (2012). PubMed PMC
Hu, G. & Wendel, J. F. Cis–trans controls and regulatory novelty accompanying allopolyploidization. N. Phytol.221, 1691–1700 (2019). PubMed
Mattioli, K. et al. Cis and trans effects differentially contribute to the evolution of promoters and enhancers. Genome Biol.21, 210 (2020). PubMed PMC
Ren, L. et al. The subgenomes show asymmetric expression of alleles in hybrid lineages of Megalobrama amblycephala × Culter alburnus. Genome Res.29, 1805–1815 (2019). PubMed PMC
Hollister, J. D. & Gaut, B. S. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res.19, 1419–1428 (2009). PubMed PMC
Tulchinsky, A. Y., Johnson, N. A., Watt, W. B. & Porter, A. H. Hybrid incompatibility arises in a sequence-based bioenergetic model of transcription factor binding. Genetics198, 1155–1166 (2014). PubMed PMC
Botet, R. & Keurentjes, J. J. B. The role of transcriptional regulation in hybrid vigor. Front. Plant Sci.11, 410 (2020). PubMed PMC
McClintock, B. The significance of responses of the genome to challenge. Science226, 792–801 (1984). PubMed
GTEx Consortium et al. Genetic effects on gene expression across human tissues. Nature550, 204–213 (2017). PubMed PMC
Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature430, 85–88 (2004). PubMed
Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Regulatory changes underlying expression differences within and between Drosophila species. Nat. Genet.40, 346–350 (2008). PubMed
Tirosh, I., Reikhav, S., Levy, A. A. & Barkai, N. A yeast hybrid provides insight into the evolution of gene expression regulation. Science324, 659–662 (2009). PubMed
Emerson, J. J. et al. Natural selection on cis and trans regulation in yeasts. Genome Res.20, 826–836 (2010). PubMed PMC
Shi, X. et al. Cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids. Nat. Commun.3, 950 (2012). PubMed
Osada, N., Miyagi, R. & Takahashi, A. Cis- and trans-regulatory effects on gene expression in a natural population of drosophila melanogaster. Genetics206, 2139–2148 (2017). PubMed PMC
Chu, D., Zabet, N. R. & Mitavskiy, B. Models of transcription factor binding: sensitivity of activation functions to model assumptions. J. Theor. Biol.257, 419–429 (2009). PubMed
Mueller, F., Stasevich, T. J., Mazza, D. & McNally, J. G. Quantifying transcription factor kinetics: at work or at play? Crit. Rev. Biochem. Mol. Biol.48, 492–514 (2013). PubMed
Porter, A. H., Johnson, N. A. & Tulchinsky, A. Y. A new mechanism for mendelian dominance in regulatory genetic pathways: competitive binding by transcription factors. Genetics205, 101–112 (2017). PubMed PMC
Okubo, K. & Kaneko, K. Evolution of dominance in gene expression pattern associated with phenotypic robustness. BMC Ecol. Evol.21, 110 (2021). PubMed PMC
Bottani, S., Zabet, N. R., Wendel, J. F. & Veitia, R. A. Gene expression dominance in allopolyploids: hypotheses and models. Trends Plant Sci.23, 393–402 (2018). PubMed
Spivakov, M. Spurious transcription factor binding: non-functional or genetically redundant? Bioessays36, 798–806 (2014). PubMed PMC
An, H., Pires, J. C. & Conant, G. C. Gene expression bias between the subgenomes of allopolyploid hybrids is an emergent property of the kinetics of expression. PLOS Computat. Biol.20, e1011803 (2024). PubMed PMC
Coate, J. E. & Doyle, J. J. Quantifying whole transcriptome size, a prerequisite for understanding transcriptome evolution across species: an example from a plant allopolyploid. Genome Biol. Evol.2, 534–546 (2010). PubMed PMC
Coate, J. E. & Doyle, J. J. Variation in transcriptome size: are we getting the message? Chromosoma124, 27–43 (2015). PubMed
Yoo, M.-J., Szadkowski, E. & Wendel, J. F. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity110, 171 (2013). PubMed PMC
Combes, M.-C. et al. Regulatory divergence between parental alleles determines gene expression patterns in hybrids. Genome Biol. Evol.7, 1110–1121 (2015). PubMed PMC
Bell, G. D. M., Kane, N. C., Rieseberg, L. H. & Adams, K. L. RNA-seq analysis of allele-specific expression, hybrid effects, and regulatory divergence in hybrids compared with their parents from natural populations. Genome Biol. Evol.5, 1309–1323 (2013). PubMed PMC
Ren, L. et al. Determination of dosage compensation and comparison of gene expression in a triploid hybrid fish. BMC Genom.18, 38 (2017). PubMed PMC
Zhang, X., Fang, B. & Huang, Y.-F. Transcription factor binding sites are frequently under accelerated evolution in primates. Nat. Commun.14, 783 (2023). PubMed PMC
Wunderlich, Z. & Mirny, L. A. Spatial effects on the speed and reliability of protein-DNA search. Nucleic Acids Res.36, 3570–3578 (2008). PubMed PMC
Stoof, R., Wood, A. & Goñi-Moreno, Á. A model for the spatiotemporal design of gene regulatory circuits †. ACS Synth. Biol.8, 2007–2016 (2019). PubMed
Bottani, S. & Veitia, R. A. Hill function-based models of transcriptional switches: impact of specific, nonspecific, functional and nonfunctional binding. Biol. Rev. Camb. Philos. Soc.92, 953–963 (2017). PubMed
Tsong, A. E., Tuch, B. B., Li, H. & Johnson, A. D. Evolution of alternative transcriptional circuits with identical logic. Nature443, 415–420 (2006). PubMed
Metzger, B. P. H., Wittkopp, P. J. & Coolon Joseph. D. Evolutionary dynamics of regulatory changes underlying gene expression divergence among saccharomyces species. Genome Biol. Evol.9, 843–854 (2017). PubMed PMC
Wickham, H. Ggplot2: Elegant Graphics for Data Analysis 1st edn, Vol. 213 (Springer, New York, NY, 2009).