Unifying framework explaining how parental regulatory divergence can drive gene expression in hybrids and allopolyploids

. 2024 Oct 08 ; 15 (1) : 8714. [epub] 20241008

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39379366

Grantová podpora
21-25185S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
21-25185S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
e-INFRA 90254 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.1.01/0.0/0.0/16_025/0007370 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Odkazy

PubMed 39379366
PubMed Central PMC11461870
DOI 10.1038/s41467-024-52546-5
PII: 10.1038/s41467-024-52546-5
Knihovny.cz E-zdroje

Hybridization and polyploidy are powerful evolutionary forces, inducing a range of phenotypic outcomes, including non-additive expression, subgenome dominance, deviations in genomic dosage, and transcriptome downsizing. The reasons for these patterns and whether they are universal adaptive responses to genome merging and doubling remain debated. To address this, we develop a thermodynamic model of gene expression based on transcription factor (TF)-promoter binding. Applied to hybridization between species with divergent gene expression levels, cell volumes, or euchromatic ratios, this model distinguishes the effects of hybridization from those of polyploidy. Our results align with empirical observations, suggesting that gene regulation patterns in hybrids and polyploids often stem from the constrained interplay between inherited diverged regulatory networks rather than from subsequent adaptive evolution. In addition, occurrence of certain phenotypic traits depend on specific assumptions about promoter-TF coevolution and their distribution within the hybrid's nucleoplasm, offering new research avenues to understand the underlying mechanisms. In summary, our model explains how the legacy of divergent species directly influences the phenotypic traits of hybrids and allopolyploids.

Zobrazit více v PubMed

Veitia, R. A., Bottani, S. & Birchler, J. A. Gene dosage effects: nonlinearities, genetic interactions, and dosage compensation. Trends Genet.29, 385–393 (2013). PubMed

Yoo, M.-J., Liu, X., Pires, J. C., Soltis, P. S. & Soltis, D. E. Nonadditive gene expression in polyploids. Annu. Rev. Genet.48, 485–517 (2014). PubMed

Comeault, A. A. & Matute, D. R. Genetic divergence and the number of hybridizing species affect the path to homoploid hybrid speciation. Proc. Natl Acad. Sci. USA115, 9761–9766 (2018). PubMed PMC

Stöck, M. et al. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the ‘extended speciation continuum’. Philos. Trans. R. Soc. Lond. B Biol. Sci.376, 20200103 (2021). PubMed PMC

Bartoš, O. et al. The legacy of sexual ancestors in phenotypic variability, gene expression, and homoeolog regulation of asexual hybrids and polyploids. Mol. Biol. Evol.36, 1902–1920 (2019). PubMed PMC

Li, M., Wang, R., Wu, X. & Wang, J. Homoeolog expression bias and expression level dominance (ELD) in four tissues of natural allotetraploid Brassica napus. BMC Genom.21, 330 (2020). PubMed PMC

Gianinetti, A. A criticism of the value of midparent in polyploidization. J. Exp. Bot.64, 4119–4129 (2013). PubMed

Matos, I., Machado, M. P., Schartl, M. & Coelho, M. M. Gene expression dosage regulation in an allopolyploid fish. PLoS ONE10, e0116309 (2015). PubMed PMC

Zhang, M. et al. Effects of parental genetic divergence on gene expression patterns in interspecific hybrids of Camellia. BMC Genom.20, 828 (2019). PubMed PMC

Wang, X., Morton, J. A., Pellicer, J., Leitch, I. J. & Leitch, A. R. Genome downsizing after polyploidy: mechanisms, rates and selection pressures. Plant J.107, 1003–1015 (2021). PubMed

Goncalves, A. et al. Extensive compensatory cis-trans regulation in the evolution of mouse gene expression. Genome Res.22, 2376–2384 (2012). PubMed PMC

Hu, G. & Wendel, J. F. Cis–trans controls and regulatory novelty accompanying allopolyploidization. N. Phytol.221, 1691–1700 (2019). PubMed

Mattioli, K. et al. Cis and trans effects differentially contribute to the evolution of promoters and enhancers. Genome Biol.21, 210 (2020). PubMed PMC

Ren, L. et al. The subgenomes show asymmetric expression of alleles in hybrid lineages of Megalobrama amblycephala × Culter alburnus. Genome Res.29, 1805–1815 (2019). PubMed PMC

Hollister, J. D. & Gaut, B. S. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res.19, 1419–1428 (2009). PubMed PMC

Tulchinsky, A. Y., Johnson, N. A., Watt, W. B. & Porter, A. H. Hybrid incompatibility arises in a sequence-based bioenergetic model of transcription factor binding. Genetics198, 1155–1166 (2014). PubMed PMC

Botet, R. & Keurentjes, J. J. B. The role of transcriptional regulation in hybrid vigor. Front. Plant Sci.11, 410 (2020). PubMed PMC

McClintock, B. The significance of responses of the genome to challenge. Science226, 792–801 (1984). PubMed

GTEx Consortium et al. Genetic effects on gene expression across human tissues. Nature550, 204–213 (2017). PubMed PMC

Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature430, 85–88 (2004). PubMed

Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Regulatory changes underlying expression differences within and between Drosophila species. Nat. Genet.40, 346–350 (2008). PubMed

Tirosh, I., Reikhav, S., Levy, A. A. & Barkai, N. A yeast hybrid provides insight into the evolution of gene expression regulation. Science324, 659–662 (2009). PubMed

Emerson, J. J. et al. Natural selection on cis and trans regulation in yeasts. Genome Res.20, 826–836 (2010). PubMed PMC

Shi, X. et al. Cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids. Nat. Commun.3, 950 (2012). PubMed

Osada, N., Miyagi, R. & Takahashi, A. Cis- and trans-regulatory effects on gene expression in a natural population of drosophila melanogaster. Genetics206, 2139–2148 (2017). PubMed PMC

Chu, D., Zabet, N. R. & Mitavskiy, B. Models of transcription factor binding: sensitivity of activation functions to model assumptions. J. Theor. Biol.257, 419–429 (2009). PubMed

Mueller, F., Stasevich, T. J., Mazza, D. & McNally, J. G. Quantifying transcription factor kinetics: at work or at play? Crit. Rev. Biochem. Mol. Biol.48, 492–514 (2013). PubMed

Porter, A. H., Johnson, N. A. & Tulchinsky, A. Y. A new mechanism for mendelian dominance in regulatory genetic pathways: competitive binding by transcription factors. Genetics205, 101–112 (2017). PubMed PMC

Okubo, K. & Kaneko, K. Evolution of dominance in gene expression pattern associated with phenotypic robustness. BMC Ecol. Evol.21, 110 (2021). PubMed PMC

Bottani, S., Zabet, N. R., Wendel, J. F. & Veitia, R. A. Gene expression dominance in allopolyploids: hypotheses and models. Trends Plant Sci.23, 393–402 (2018). PubMed

Spivakov, M. Spurious transcription factor binding: non-functional or genetically redundant? Bioessays36, 798–806 (2014). PubMed PMC

An, H., Pires, J. C. & Conant, G. C. Gene expression bias between the subgenomes of allopolyploid hybrids is an emergent property of the kinetics of expression. PLOS Computat. Biol.20, e1011803 (2024). PubMed PMC

Coate, J. E. & Doyle, J. J. Quantifying whole transcriptome size, a prerequisite for understanding transcriptome evolution across species: an example from a plant allopolyploid. Genome Biol. Evol.2, 534–546 (2010). PubMed PMC

Coate, J. E. & Doyle, J. J. Variation in transcriptome size: are we getting the message? Chromosoma124, 27–43 (2015). PubMed

Yoo, M.-J., Szadkowski, E. & Wendel, J. F. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity110, 171 (2013). PubMed PMC

Combes, M.-C. et al. Regulatory divergence between parental alleles determines gene expression patterns in hybrids. Genome Biol. Evol.7, 1110–1121 (2015). PubMed PMC

Bell, G. D. M., Kane, N. C., Rieseberg, L. H. & Adams, K. L. RNA-seq analysis of allele-specific expression, hybrid effects, and regulatory divergence in hybrids compared with their parents from natural populations. Genome Biol. Evol.5, 1309–1323 (2013). PubMed PMC

Ren, L. et al. Determination of dosage compensation and comparison of gene expression in a triploid hybrid fish. BMC Genom.18, 38 (2017). PubMed PMC

Zhang, X., Fang, B. & Huang, Y.-F. Transcription factor binding sites are frequently under accelerated evolution in primates. Nat. Commun.14, 783 (2023). PubMed PMC

Wunderlich, Z. & Mirny, L. A. Spatial effects on the speed and reliability of protein-DNA search. Nucleic Acids Res.36, 3570–3578 (2008). PubMed PMC

Stoof, R., Wood, A. & Goñi-Moreno, Á. A model for the spatiotemporal design of gene regulatory circuits †. ACS Synth. Biol.8, 2007–2016 (2019). PubMed

Bottani, S. & Veitia, R. A. Hill function-based models of transcriptional switches: impact of specific, nonspecific, functional and nonfunctional binding. Biol. Rev. Camb. Philos. Soc.92, 953–963 (2017). PubMed

Tsong, A. E., Tuch, B. B., Li, H. & Johnson, A. D. Evolution of alternative transcriptional circuits with identical logic. Nature443, 415–420 (2006). PubMed

Metzger, B. P. H., Wittkopp, P. J. & Coolon Joseph. D. Evolutionary dynamics of regulatory changes underlying gene expression divergence among saccharomyces species. Genome Biol. Evol.9, 843–854 (2017). PubMed PMC

Wickham, H. Ggplot2: Elegant Graphics for Data Analysis 1st edn, Vol. 213 (Springer, New York, NY, 2009).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...