• This record comes from PubMed

Inheritance patterns of male asexuality in hybrid males of a water frog Pelophylax esculentus

. 2024 Sep 27 ; 14 (1) : 22221. [epub] 20240927

Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
23-07028K Grantová Agentura České Republiky
23-07028K Grantová Agentura České Republiky
23-07028K Grantová Agentura České Republiky
23-07028K Grantová Agentura České Republiky
RVO 67985904 Akademie Věd České Republiky
RVO 67985904 Akademie Věd České Republiky
RVO 67985904 Akademie Věd České Republiky
RRFU-22-21 Akademie Věd České Republiky
RVO 67985904 Akademie Věd České Republiky
SLG-5411 EMBO

Links

PubMed 39333615
PubMed Central PMC11742031
DOI 10.1038/s41598-024-73043-1
PII: 10.1038/s41598-024-73043-1
Knihovny.cz E-resources

Gametogenesis produces gametes as a piece of genetic information transmitted to the offspring. While during sexual reproduction, progeny inherits a mix of genetic material from both parents, asexually reproducing organisms transfer a copy of maternal or paternal DNA to the progeny clonally. Parthenogenetic, gynogenetic and hybridogenetic animals have developed various mechanisms of gametogenesis, however, their inheritance is not fully understood. Here, we focused on the inheritance of asexual gametogenesis in hybrid Pelophylax esculentus (RL), emerging after crosses of P. lessonae (LL) and P. ridibundus (RR). To understand the mechanisms of gametogenesis in hybrids, we performed three-generation experiments of sexual P. ridibundus females and hybrids from all-male hybrid populations. Using fluorescent in situ hybridization, micronuclei analysis, flow cytometry and genotyping, we found that most adult hybrid males simultaneously produced two types of clonal sperm. Also, most male tadpole progeny in two successive backcrossed generations simultaneously eliminated L and R parental genomes, while some progeny produced only one type of sperm. We hypothesize that the reproductive variability of males producing two kinds of sperm is an adaptive mechanism to reproduce in mixed populations with P. ridibundus and may explain the extensive distribution of the all-male lineage across the European River Basin.

See more in PubMed

Alves, M. J., Coelho, M. M. & Collares-Pereira, M. J. Diversity in the reproductive modes of females of the Rutilus alburnoides complex (Teleostei, Cyprinidae): a way to avoid the genetic constraints of uniparentalism. Mol. Biol. Evol. 15, 1233–1242 (1998).

Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237. 10.1016/j.tree.2005.02.010 (2005). PubMed

Mallet, J. Hybrid speciation. Nature. 446, 279–283. 10.1038/nature05706 (2007). PubMed

Lenormand, T., Engelstädter, J., Johnston, S. E., Wijnker, E. & Haag, C. R. Evolutionary mysteries in meiosis. Philos. Trans. R Soc. Lond. B Biol. Sci. 371, 20160001. 10.1098/rstb.2016.0001 (2016). PubMed PMC

Stöck, M. et al. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the ‘extended speciation continuum’. Philos. Trans. R Soc. Lond. B Biol. Sci. 376, 20200103. 10.1098/rstb.2020.0103 (2021). PubMed PMC

Schlupp, I. The Evolutionary Ecology of Gynogenesis. 10.1146/annurev.ecolsys.36.102003.152629 (2005).

Avise, J. Clonality: The Genetics, Ecology, and Evolution of Sexual Abstinence in Vertebrate Animals (Oxford University Press, 2008).

Choleva, L. et al. Synthesis of clonality and polyploidy in vertebrate animals by hybridization between two sexual species. Evolution. 66, 2191–2203. 10.1111/j.1558-5646.2012.01589.x (2012). PubMed

Schultz, R. J. & Hybridization unisexuality, and polyploidy in the Teleost Poeciliopsis (Poeciliidae) and other vertebrates. Am. Nat. 103, 605–619 (1969).

Lamatsch, D. K. & Stöck, M. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes. in Lost Sex: The Evolutionary Biology of Parthenogenesis (eds Schön, I., Martens, K. & Dijk, P.) 399–432 (Springer Netherlands, doi:10.1007/978-90-481-2770-2_19. (2009).

Lavanchy, G. (ed Schwander, T.) Hybridogenesis. Curr. Biol. 29, 539 10.1086/282629 (2019). PubMed

Dedukh, D. & Krasikova, A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol. Rev. Camb. Philos. Soc. 97, 195–216. 10.1111/brv.12796 (2022). PubMed PMC

Scali, V. Metasexual stick insects: model pathways to losing sex and bringing it back. In: Lost sex: the evolutionary biology of parthenogenesis (2009).

Vrijenhoek, R. C. Unisexual fish: model systems for studying ecology and evolution. Annu. Rev. Ecol. Syst. 25, 71–96 (1994).

Carmona, J. A., Sanjur, O. I., Doadrio, I., Machordom, A. & Vrijenhoek, R. C. Hybridogenetic reproduction and maternal ancestry of polyploid Iberian fish: the Tropidophoxinellus alburnoides complex. Genetics. 146, 983–993 (1997). PubMed PMC

Schmidt, D. J., Bond, N. R., Adams, M. & Hughes, J. M. Cytonuclear evidence for hybridogenetic reproduction in natural populations of the Australian carp gudgeon (Hypseleotris: Eleotridae). Mol. Ecol. 20, 3367–3380. 10.1111/j.1365-294X.2011.05206.x (2011). PubMed

Majtánová, Z. et al. Uniparental genome elimination in Australian carp gudgeons. Genome Biol. Evol. 1310.1093/gbe/evab030 (2021). PubMed PMC

Kimura-Kawaguchi, M. R. et al. Identification of hemiclonal reproduction in three species of Hexagrammos marine reef fishes. J. Fish. Biol. 85, 189–209. 10.1111/jfb.12414 (2014). PubMed

Uzzell, T. & Berger, L. Electrophoretic phenotypes of Rana ridibunda, Rana lessonae, and their hybridogenetic associate, Rana esculenta. Proc. Acad. Nat. Sci. Phila. 127, 13–24 (1975).

Doležálková-Kaštánková, M. et al. All-male hybrids of a tetrapod Pelophylax esculentus share its origin and genetics of maintenance. Biol. Sex. Differ. 9 10.1186/s13293-018-0172-z (2018). PubMed PMC

Dedukh, D. et al. Maintenance of pure hybridogenetic water frog populations: genotypic variability in progeny of diploid and triploid parents. PLoS One. 17, e0268574. 10.1371/journal.pone.0268574 (2022). PubMed PMC

Ogielska, M. Reproduction of Amphibians (CRC, 2009).

Tunner, H. G. Demonstration of the hybrid origin of the common green frog Rana esculenta L. Sci. Nat. 60, 481–482 (1973). PubMed

Berger, L. Morphology of the F1 generation of various crosses within Rana esculenta-complex. Acta Zool. Cracov. 13, 301–324(1968).

Graf, J. D. & Polls-Pelaz, M. Cytogenetic analysis of spermatogenesis in unisexual allotriploid males from a Rana lessonae—Rana kl. esculenta mixed population. First Congr. Herp. 11, 19 (1989).

Heppich, S., Tunner, H. G. & Greilhuber, J. Premeiotic chromosome doubling after genome elimination during spermatogenesis of the species hybrid Rana esculenta. Theor. Appl. Genet. 61, 101–104 (1982). PubMed

Tunner, H. G. & Heppich-Tunner, S. Genome exclusion and two strategies of chromosome duplication in oogenesis of a hybrid frog. Sci. Nat. 78, 32–34 (1991).

Zaleśna, A. et al. Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization. Cytogenet. Genome Res. 134, 206–212. 10.1159/000327716 (2011). PubMed

Arioli, M., Jakob, C. & Reyer, H. U. Genetic diversity in water frog hybrids (Pelophylax esculentus) varies with population structure and geographic location. Mol. Ecol. 19, 1814–1828. 10.1111/j.1365-294X.2010.04603.x (2010). PubMed

Lehtonen, J., Schmidt, D. J., Heubel, K. & Kokko, H. Evolutionary and ecological implications of sexual parasitism. Trends Ecol. Evol. 28, 297–306. 10.1016/j.tree.2012.12.006 (2013). PubMed

Dedukh, D. et al. Variation in hybridogenetic hybrid emergence between populations of water frogs from the Pelophylax esculentus complex. PLoS One. 14, e0224759. 10.1371/journal.pone.0224759 (2019). PubMed PMC

Hotz, H., Guex, G. D., Beerli, P., Semlitsch, R. D. & Pruvost, N. B. M. Hemiclone diversity in the hybridogenetic frog Rana esculenta outside the area of clone formation: the view from protein electrophoresis. J. Zoolog Syst. Evol. Res. 46, 56–62. 10.1111/j.1439-0469.2007.00430.x (2007).

Borkin, L. J. et al. Mass occurrence of polyploid green frogs (Rana esculenta complex) in eastern Ukraine. Russ J. Herpetol. 11, 194–213 (2004). 1026–2296/2004/1103 – 0194.

Vinogradov, A. E., Borkin, L. J., Günther, R. & Rosanov, J. M. Genome elimination in diploid and triploid Rana esculenta males: cytological evidence from DNA flow cytometry. Genome. 33, 619–627 (1990). PubMed

Vinogradov, A. E., Borkin, L. J., Günther, R. & Rosanov, J. M. Two germ cell lineages with genomes of different species in one and the same animal. Hereditas. 114, 245–251 (1991). PubMed

Dedukh, D., Litvinchuk, S., Rosanov, J., Shabanov, D. & Krasikova, A. Mutual maintenance of di- and triploid Pelophylax esculentus hybrids in R-E systems: results from artificial crossings experiments. BMC Evol. Biol. 1710.1186/s12862-017-1063-3 (2017). PubMed PMC

Biriuk, O. V. et al. Gamete production patterns and mating systems in water frogs of the hybridogenetic Pelophylax esculentus complex in north-eastern Ukraine. J. Zoolog Syst. Evol. Res. 54, 215–225. 10.1111/jzs.12132 (2016).

Günther, R. Zum natürlichen Vorkommen und zur Morphologie triploider Teichfrösche, Rana esculenta, L., in der DDR (Anura, Ranidae). Mitt. Zool. Mus. Berl. (1975).

Plötner, J. & Grunwald, C. A mathematical model of the structure and the dynamics of Rana ridibunda/esculenta-♂ ♂-populations (Anura, Ranidae). J. Zoolog Syst. Evol. Res. 29, 201–207 (1991).

Fog, K. Water frogs in Denmark: Population types and biology. Zool. Pol. 39, 305 (1994).

Doležálková, M. et al. Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax. BMC Genet. 1710.1186/s12863-016-0408-z (2016). PubMed PMC

Rybacki, M. Water frogs (Rana esculenta complex) of the Bornholm island, Denmark. Zool. Pol. 39, 331–344 (1994).

Uzzell, T., Günther, R. & Berger, L. Rana ridibunda and Rana esculenta: a leaky hybridogenetic system (Amphibia Salientia). Proc. Acad. Nat. Sci. Phila. 128, 147–171 (1977).

Dedukh, D. et al. Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid European water frogs. PLoS One. 10, e0123304. 10.1371/journal.pone.0123304 (2015). PubMed PMC

Pustovalova, E., Choleva, L., Shabanov, D. & Dedukh, D. The high diversity of gametogenic pathways in amphispermic water frog hybrids from Eastern Ukraine. PeerJ. 10, e13957. 10.7717/peerj.13957 (2022). PubMed PMC

Doležálková-Kaštánková, M. et al. Capture and return of sexual genomes by hybridogenetic frogs provides clonal genome enrichment in a sexual species. Sci. Rep. 11, 1633. 10.1038/s41598-021-81240-5 (2021). PubMed PMC

Ogielska, M. Nucleus-like bodies in gonial cells of Rana esculenta [Amphibia, Anura] tadpoles - a putative way of chromosome elimination. Zool. Pol. 39, 461–474 (1994).

Dedukh, D. et al. Author correction: Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Sci. Rep. 10, 8720 10.1038/s41598-018-26168-z (2020). PubMed PMC

Chmielewska, M. et al. The programmed DNA elimination and formation of micronuclei in germ line cells of the natural hybridogenetic water frog Pelophylax esculentus. Sci. Rep. 8, 7870. 10.1038/s41598-018-26168-z (2018). PubMed PMC

Chmielewska, M. et al. Genome elimination from the germline cells in diploid and triploid male water frogs Pelophylax esculentus. Front. Cell. Dev. Biol. 10, 1008506. 10.3389/fcell.2022.1008506 (2022). PubMed PMC

Günther, R. Die Wasserfrösche Europas. Die Neue Brehm-Bücherei, A. Westarp Wissenschaften (1990).

Plötner, J. Westpaläarktischen Wasserfrösche: von Märtyrern der Wissenschaft zur biologischen Sensation. (2005). https://library.wur.nl/WebQuery/titel/1791692

Berger, L., Rybacki, M. & Hotz, H. Artificial fertilization of water frogs. Amphib-Reptil. 15, 408–413 (1994).

Doležálková-Kaštánková, M., Pyszko, P. & Choleva, L. Early development survival of Pelophylax water frog progeny is primarily affected by paternal genomic input. Front. Biosci. 27, 233. 10.31083/j.fbl2708233 (2022). PubMed

Christiansen, D. G. Gamete types, sex determination and stable equilibria of all-hybrid populations of diploid and triploid edible frogs (Pelophylax esculentus). BMC Evol. Biol. 9 (135). 10.1186/1471-2148-9-135 (2009). PubMed PMC

Cuevas, A. et al. A new PCR-RFLP method for the identification of parental and hybridogenetic western European Water frogs, including the Pelophylax perezi-grafi system. Salamandra, 58(3), 218–230 (2022).

Hauswaldt, J. S. et al. A simplified molecular method for distinguishing among species and ploidy levels in European water frogs (Pelophylax). Mol. Ecol. Resour. 12, 797–805. 10.1111/j.1755-0998.2012.03160.x (2012). PubMed

Plötner, J. et al. Evolution of serum albumin intron-1 is shaped by a 5′ truncated non-long terminal repeat retrotransposon in western palearctic water frogs (Neobatrachia). Mol. Phylogenet Evol. 53, 784–791. 10.1016/j.ympev.2009.07.037 (2009). PubMed PMC

Ragghianti, M. et al. Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and its parental species. Chromosome Res. 3, 497–506 (1995). PubMed

Choleva, L. et al. Formation of hemiclonal reproduction and hybridogenesis in Pelophylax water frogs studied with species-specific cytogenomic probes. Preprint at: BioRxiv. 10.1101/2023.10.29.564577 (2023).

Doležel, J., Binarová, P. & Lcretti, S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant. 31, 113–120 (1989).

Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica. 16, 183–190 (1960).

Borkin, L. J., Vinogradov, A. E., Rosanov, J. M. & Tsaune, I. A. Hemiclonal inheritance in the hybridogenetic complex Rana esculenta: evidence by method of DNA flow cytometry. Dokl. SSSR. 275, 1261–1264 (1987).

Orr, H. A. Haldane’s rule. Annu. Rev. Ecol. Evol. Syst. 28, 195–218 (1997).

Ragghianti, M. et al. Gametogenesis of intergroup hybrids of hemiclonal frogs. Genet. Res. 89, 39–45. 10.1017/S0016672307008610 (2007). PubMed

Christiansen, D. G. & Reyer, H. U. From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs. Evolution. 63, 1754–1768. 10.1111/j.1558-5646.2009.00673.x (2009). PubMed

Christiansen, D. G. A microsatellite-based method for genotyping diploid and triploid water frogs of the Rana esculenta hybrid complex. Mol. Ecol. Notes. 5, 190–193. 10.1111/j.1471-8286.2004.00869 (2005).

Mikulíček, P., Kautman, M., Demovič, B. & Janko, K. When a clonal genome finds its way back to a sexual species: evidence from ongoing but rare introgression in the hybridogenetic water frog complex. J. Evol. Biol. 27, 628–642. 10.1111/jeb.12332 (2014). PubMed

Hofman, S., Pabijan, M., Dziewulska-Szwajkowska, D. & Szymura, J. M. Mitochondrial genome organization and divergence in hybridizing central European waterfrogs of the Pelophylax esculentus complex (Anura, Ranidae). Gene. 491, 71–80. 10.1016/j.gene.2011.08.004 (2012). PubMed

Plötner, J. et al. Widespread unidirectional transfer of mitochondrial DNA: a case in western palaearctic water frogs. J. Evol. Biol. 21, 668–681. 10.1111/j.1420-9101.2008.01527.x (2008). PubMed PMC

Schmeller D.S., Seitz A., Crivelli A. & Veith M. Crossing species’ range borders: interspecies gene exchange mediated by hybridogenesis. Proc. Biol. Sci. 272, 1625–1631. 10.1098/rspb.2005.3129 (2005). PubMed PMC

Hotz, H. Genic diversity among water frog genomes inherited with and without recombination. PhD thesis, University of Zürich, Switzerland (1983).

Hotz, H. et al. Rana ridibunda varies geographically in inducing clonal gametogenesis in interspecies hybrids. J. Exp. Zool. 236, 199–210 (1985).

Uzzell, T., Hotz, H. & Berger, L. Genome exclusion in gametogenesis by an interspecific Rana hybrid: evidence from electrophoresis of individual oocytes. J. Exp. Zool. 214, 251–259 (1980).

Pruvost, N. B. M., Hoffmann, A. & Reyer, H. U. Gamete production patterns, ploidy, and population genetics reveal evolutionary significant units in hybrid water frogs (Pelophylax esculentus). Ecol. Evol. 3, 2933–2946. 10.1002/ece3.687 (2013). PubMed PMC

Guex G. D., Hotz, H., Uzzell, T., Semlitsch, R., Beerli, P., & Pascolini, R. Developmental disturbances in Rana esculenta tadpoles and metamorphs. Mitt. Mus. Nat.kd. Berl., Zool. Reihe.77, 79–86 (2001).

Biriuk, O., Usova, O., Meleshko, O. & Shabanov, D. Stability of spermatogenesis and displays of natural selection at the cellular and individual level in immature representatives of the Pelophylax esculentus complex. Biosyst. Divers. 24, 193–202. 10.15421/011624 (2016).

Vorburger, C. Fixation of deleterious mutations in clonal lineages: evidence from hybridogenetic frogs. Evolution. 55, 2319–2332. 10.1111/j.0014-3820.2001.tb00745.x (2001). PubMed

Christiansen, D. G., Fog, K., Pedersen, B. V. & Boomsma, J. J. Reproduction and hybrid load in all-hybrid populations of Rana esculenta water frogs in Denmark. Evolution. 59, 1348–1361. 10.1111/j.0014-3820.2005.tb01784.x (2005). PubMed

Reyer, H. U., Arioli-Jakob, C. & Arioli, M. Post-zygotic selection against parental genotypes during larval development maintains all-hybrid populations of the frog Pelophylax esculentus. BMC Evol. Biol. 15, 131. 10.1186/s12862-015-0404-3 (2015). PubMed PMC

Guex, G. D., Hotz, H. & Semlitsch, R. D. Deleterious alleles and differential viability in progeny of natural hemiclonal frogs. Evolution. 56, 1036–1044. 10.1111/j.0014-3820.2002.tb01414.x (2002). PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...