Inheritance patterns of male asexuality in hybrid males of a water frog Pelophylax esculentus
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
23-07028K
Grantová Agentura České Republiky
23-07028K
Grantová Agentura České Republiky
23-07028K
Grantová Agentura České Republiky
23-07028K
Grantová Agentura České Republiky
RVO 67985904
Akademie Věd České Republiky
RVO 67985904
Akademie Věd České Republiky
RVO 67985904
Akademie Věd České Republiky
RRFU-22-21
Akademie Věd České Republiky
RVO 67985904
Akademie Věd České Republiky
SLG-5411
EMBO
PubMed
39333615
PubMed Central
PMC11742031
DOI
10.1038/s41598-024-73043-1
PII: 10.1038/s41598-024-73043-1
Knihovny.cz E-resources
- Keywords
- Amphispermy, Crossing experiments, FISH., Male hybridogenesis, Micronuclei, Monospermic, Spermatogenesis,
- MeSH
- Genotype MeSH
- Hybridization, Genetic * MeSH
- In Situ Hybridization, Fluorescence MeSH
- Reproduction, Asexual * genetics MeSH
- Rana esculenta genetics MeSH
- Ranidae genetics physiology MeSH
- Spermatozoa physiology MeSH
- Inheritance Patterns genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Gametogenesis produces gametes as a piece of genetic information transmitted to the offspring. While during sexual reproduction, progeny inherits a mix of genetic material from both parents, asexually reproducing organisms transfer a copy of maternal or paternal DNA to the progeny clonally. Parthenogenetic, gynogenetic and hybridogenetic animals have developed various mechanisms of gametogenesis, however, their inheritance is not fully understood. Here, we focused on the inheritance of asexual gametogenesis in hybrid Pelophylax esculentus (RL), emerging after crosses of P. lessonae (LL) and P. ridibundus (RR). To understand the mechanisms of gametogenesis in hybrids, we performed three-generation experiments of sexual P. ridibundus females and hybrids from all-male hybrid populations. Using fluorescent in situ hybridization, micronuclei analysis, flow cytometry and genotyping, we found that most adult hybrid males simultaneously produced two types of clonal sperm. Also, most male tadpole progeny in two successive backcrossed generations simultaneously eliminated L and R parental genomes, while some progeny produced only one type of sperm. We hypothesize that the reproductive variability of males producing two kinds of sperm is an adaptive mechanism to reproduce in mixed populations with P. ridibundus and may explain the extensive distribution of the all-male lineage across the European River Basin.
See more in PubMed
Alves, M. J., Coelho, M. M. & Collares-Pereira, M. J. Diversity in the reproductive modes of females of the Rutilus alburnoides complex (Teleostei, Cyprinidae): a way to avoid the genetic constraints of uniparentalism. Mol. Biol. Evol. 15, 1233–1242 (1998).
Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237. 10.1016/j.tree.2005.02.010 (2005). PubMed
Mallet, J. Hybrid speciation. Nature. 446, 279–283. 10.1038/nature05706 (2007). PubMed
Lenormand, T., Engelstädter, J., Johnston, S. E., Wijnker, E. & Haag, C. R. Evolutionary mysteries in meiosis. Philos. Trans. R Soc. Lond. B Biol. Sci. 371, 20160001. 10.1098/rstb.2016.0001 (2016). PubMed PMC
Stöck, M. et al. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the ‘extended speciation continuum’. Philos. Trans. R Soc. Lond. B Biol. Sci. 376, 20200103. 10.1098/rstb.2020.0103 (2021). PubMed PMC
Schlupp, I. The Evolutionary Ecology of Gynogenesis. 10.1146/annurev.ecolsys.36.102003.152629 (2005).
Avise, J. Clonality: The Genetics, Ecology, and Evolution of Sexual Abstinence in Vertebrate Animals (Oxford University Press, 2008).
Choleva, L. et al. Synthesis of clonality and polyploidy in vertebrate animals by hybridization between two sexual species. Evolution. 66, 2191–2203. 10.1111/j.1558-5646.2012.01589.x (2012). PubMed
Schultz, R. J. & Hybridization unisexuality, and polyploidy in the Teleost Poeciliopsis (Poeciliidae) and other vertebrates. Am. Nat. 103, 605–619 (1969).
Lamatsch, D. K. & Stöck, M. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes. in Lost Sex: The Evolutionary Biology of Parthenogenesis (eds Schön, I., Martens, K. & Dijk, P.) 399–432 (Springer Netherlands, doi:10.1007/978-90-481-2770-2_19. (2009).
Lavanchy, G. (ed Schwander, T.) Hybridogenesis. Curr. Biol. 29, 539 10.1086/282629 (2019). PubMed
Dedukh, D. & Krasikova, A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol. Rev. Camb. Philos. Soc. 97, 195–216. 10.1111/brv.12796 (2022). PubMed PMC
Scali, V. Metasexual stick insects: model pathways to losing sex and bringing it back. In: Lost sex: the evolutionary biology of parthenogenesis (2009).
Vrijenhoek, R. C. Unisexual fish: model systems for studying ecology and evolution. Annu. Rev. Ecol. Syst. 25, 71–96 (1994).
Carmona, J. A., Sanjur, O. I., Doadrio, I., Machordom, A. & Vrijenhoek, R. C. Hybridogenetic reproduction and maternal ancestry of polyploid Iberian fish: the Tropidophoxinellus alburnoides complex. Genetics. 146, 983–993 (1997). PubMed PMC
Schmidt, D. J., Bond, N. R., Adams, M. & Hughes, J. M. Cytonuclear evidence for hybridogenetic reproduction in natural populations of the Australian carp gudgeon (Hypseleotris: Eleotridae). Mol. Ecol. 20, 3367–3380. 10.1111/j.1365-294X.2011.05206.x (2011). PubMed
Majtánová, Z. et al. Uniparental genome elimination in Australian carp gudgeons. Genome Biol. Evol. 1310.1093/gbe/evab030 (2021). PubMed PMC
Kimura-Kawaguchi, M. R. et al. Identification of hemiclonal reproduction in three species of Hexagrammos marine reef fishes. J. Fish. Biol. 85, 189–209. 10.1111/jfb.12414 (2014). PubMed
Uzzell, T. & Berger, L. Electrophoretic phenotypes of Rana ridibunda, Rana lessonae, and their hybridogenetic associate, Rana esculenta. Proc. Acad. Nat. Sci. Phila. 127, 13–24 (1975).
Doležálková-Kaštánková, M. et al. All-male hybrids of a tetrapod Pelophylax esculentus share its origin and genetics of maintenance. Biol. Sex. Differ. 9 10.1186/s13293-018-0172-z (2018). PubMed PMC
Dedukh, D. et al. Maintenance of pure hybridogenetic water frog populations: genotypic variability in progeny of diploid and triploid parents. PLoS One. 17, e0268574. 10.1371/journal.pone.0268574 (2022). PubMed PMC
Ogielska, M. Reproduction of Amphibians (CRC, 2009).
Tunner, H. G. Demonstration of the hybrid origin of the common green frog Rana esculenta L. Sci. Nat. 60, 481–482 (1973). PubMed
Berger, L. Morphology of the F1 generation of various crosses within Rana esculenta-complex. Acta Zool. Cracov. 13, 301–324(1968).
Graf, J. D. & Polls-Pelaz, M. Cytogenetic analysis of spermatogenesis in unisexual allotriploid males from a Rana lessonae—Rana kl. esculenta mixed population. First Congr. Herp. 11, 19 (1989).
Heppich, S., Tunner, H. G. & Greilhuber, J. Premeiotic chromosome doubling after genome elimination during spermatogenesis of the species hybrid Rana esculenta. Theor. Appl. Genet. 61, 101–104 (1982). PubMed
Tunner, H. G. & Heppich-Tunner, S. Genome exclusion and two strategies of chromosome duplication in oogenesis of a hybrid frog. Sci. Nat. 78, 32–34 (1991).
Zaleśna, A. et al. Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization. Cytogenet. Genome Res. 134, 206–212. 10.1159/000327716 (2011). PubMed
Arioli, M., Jakob, C. & Reyer, H. U. Genetic diversity in water frog hybrids (Pelophylax esculentus) varies with population structure and geographic location. Mol. Ecol. 19, 1814–1828. 10.1111/j.1365-294X.2010.04603.x (2010). PubMed
Lehtonen, J., Schmidt, D. J., Heubel, K. & Kokko, H. Evolutionary and ecological implications of sexual parasitism. Trends Ecol. Evol. 28, 297–306. 10.1016/j.tree.2012.12.006 (2013). PubMed
Dedukh, D. et al. Variation in hybridogenetic hybrid emergence between populations of water frogs from the Pelophylax esculentus complex. PLoS One. 14, e0224759. 10.1371/journal.pone.0224759 (2019). PubMed PMC
Hotz, H., Guex, G. D., Beerli, P., Semlitsch, R. D. & Pruvost, N. B. M. Hemiclone diversity in the hybridogenetic frog Rana esculenta outside the area of clone formation: the view from protein electrophoresis. J. Zoolog Syst. Evol. Res. 46, 56–62. 10.1111/j.1439-0469.2007.00430.x (2007).
Borkin, L. J. et al. Mass occurrence of polyploid green frogs (Rana esculenta complex) in eastern Ukraine. Russ J. Herpetol. 11, 194–213 (2004). 1026–2296/2004/1103 – 0194.
Vinogradov, A. E., Borkin, L. J., Günther, R. & Rosanov, J. M. Genome elimination in diploid and triploid Rana esculenta males: cytological evidence from DNA flow cytometry. Genome. 33, 619–627 (1990). PubMed
Vinogradov, A. E., Borkin, L. J., Günther, R. & Rosanov, J. M. Two germ cell lineages with genomes of different species in one and the same animal. Hereditas. 114, 245–251 (1991). PubMed
Dedukh, D., Litvinchuk, S., Rosanov, J., Shabanov, D. & Krasikova, A. Mutual maintenance of di- and triploid Pelophylax esculentus hybrids in R-E systems: results from artificial crossings experiments. BMC Evol. Biol. 1710.1186/s12862-017-1063-3 (2017). PubMed PMC
Biriuk, O. V. et al. Gamete production patterns and mating systems in water frogs of the hybridogenetic Pelophylax esculentus complex in north-eastern Ukraine. J. Zoolog Syst. Evol. Res. 54, 215–225. 10.1111/jzs.12132 (2016).
Günther, R. Zum natürlichen Vorkommen und zur Morphologie triploider Teichfrösche, Rana esculenta, L., in der DDR (Anura, Ranidae). Mitt. Zool. Mus. Berl. (1975).
Plötner, J. & Grunwald, C. A mathematical model of the structure and the dynamics of Rana ridibunda/esculenta-♂ ♂-populations (Anura, Ranidae). J. Zoolog Syst. Evol. Res. 29, 201–207 (1991).
Fog, K. Water frogs in Denmark: Population types and biology. Zool. Pol. 39, 305 (1994).
Doležálková, M. et al. Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax. BMC Genet. 1710.1186/s12863-016-0408-z (2016). PubMed PMC
Rybacki, M. Water frogs (Rana esculenta complex) of the Bornholm island, Denmark. Zool. Pol. 39, 331–344 (1994).
Uzzell, T., Günther, R. & Berger, L. Rana ridibunda and Rana esculenta: a leaky hybridogenetic system (Amphibia Salientia). Proc. Acad. Nat. Sci. Phila. 128, 147–171 (1977).
Dedukh, D. et al. Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid European water frogs. PLoS One. 10, e0123304. 10.1371/journal.pone.0123304 (2015). PubMed PMC
Pustovalova, E., Choleva, L., Shabanov, D. & Dedukh, D. The high diversity of gametogenic pathways in amphispermic water frog hybrids from Eastern Ukraine. PeerJ. 10, e13957. 10.7717/peerj.13957 (2022). PubMed PMC
Doležálková-Kaštánková, M. et al. Capture and return of sexual genomes by hybridogenetic frogs provides clonal genome enrichment in a sexual species. Sci. Rep. 11, 1633. 10.1038/s41598-021-81240-5 (2021). PubMed PMC
Ogielska, M. Nucleus-like bodies in gonial cells of Rana esculenta [Amphibia, Anura] tadpoles - a putative way of chromosome elimination. Zool. Pol. 39, 461–474 (1994).
Dedukh, D. et al. Author correction: Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Sci. Rep. 10, 8720 10.1038/s41598-018-26168-z (2020). PubMed PMC
Chmielewska, M. et al. The programmed DNA elimination and formation of micronuclei in germ line cells of the natural hybridogenetic water frog Pelophylax esculentus. Sci. Rep. 8, 7870. 10.1038/s41598-018-26168-z (2018). PubMed PMC
Chmielewska, M. et al. Genome elimination from the germline cells in diploid and triploid male water frogs Pelophylax esculentus. Front. Cell. Dev. Biol. 10, 1008506. 10.3389/fcell.2022.1008506 (2022). PubMed PMC
Günther, R. Die Wasserfrösche Europas. Die Neue Brehm-Bücherei, A. Westarp Wissenschaften (1990).
Plötner, J. Westpaläarktischen Wasserfrösche: von Märtyrern der Wissenschaft zur biologischen Sensation. (2005). https://library.wur.nl/WebQuery/titel/1791692
Berger, L., Rybacki, M. & Hotz, H. Artificial fertilization of water frogs. Amphib-Reptil. 15, 408–413 (1994).
Doležálková-Kaštánková, M., Pyszko, P. & Choleva, L. Early development survival of Pelophylax water frog progeny is primarily affected by paternal genomic input. Front. Biosci. 27, 233. 10.31083/j.fbl2708233 (2022). PubMed
Christiansen, D. G. Gamete types, sex determination and stable equilibria of all-hybrid populations of diploid and triploid edible frogs (Pelophylax esculentus). BMC Evol. Biol. 9 (135). 10.1186/1471-2148-9-135 (2009). PubMed PMC
Cuevas, A. et al. A new PCR-RFLP method for the identification of parental and hybridogenetic western European Water frogs, including the Pelophylax perezi-grafi system. Salamandra, 58(3), 218–230 (2022).
Hauswaldt, J. S. et al. A simplified molecular method for distinguishing among species and ploidy levels in European water frogs (Pelophylax). Mol. Ecol. Resour. 12, 797–805. 10.1111/j.1755-0998.2012.03160.x (2012). PubMed
Plötner, J. et al. Evolution of serum albumin intron-1 is shaped by a 5′ truncated non-long terminal repeat retrotransposon in western palearctic water frogs (Neobatrachia). Mol. Phylogenet Evol. 53, 784–791. 10.1016/j.ympev.2009.07.037 (2009). PubMed PMC
Ragghianti, M. et al. Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and its parental species. Chromosome Res. 3, 497–506 (1995). PubMed
Choleva, L. et al. Formation of hemiclonal reproduction and hybridogenesis in Pelophylax water frogs studied with species-specific cytogenomic probes. Preprint at: BioRxiv. 10.1101/2023.10.29.564577 (2023).
Doležel, J., Binarová, P. & Lcretti, S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant. 31, 113–120 (1989).
Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica. 16, 183–190 (1960).
Borkin, L. J., Vinogradov, A. E., Rosanov, J. M. & Tsaune, I. A. Hemiclonal inheritance in the hybridogenetic complex Rana esculenta: evidence by method of DNA flow cytometry. Dokl. SSSR. 275, 1261–1264 (1987).
Orr, H. A. Haldane’s rule. Annu. Rev. Ecol. Evol. Syst. 28, 195–218 (1997).
Ragghianti, M. et al. Gametogenesis of intergroup hybrids of hemiclonal frogs. Genet. Res. 89, 39–45. 10.1017/S0016672307008610 (2007). PubMed
Christiansen, D. G. & Reyer, H. U. From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs. Evolution. 63, 1754–1768. 10.1111/j.1558-5646.2009.00673.x (2009). PubMed
Christiansen, D. G. A microsatellite-based method for genotyping diploid and triploid water frogs of the Rana esculenta hybrid complex. Mol. Ecol. Notes. 5, 190–193. 10.1111/j.1471-8286.2004.00869 (2005).
Mikulíček, P., Kautman, M., Demovič, B. & Janko, K. When a clonal genome finds its way back to a sexual species: evidence from ongoing but rare introgression in the hybridogenetic water frog complex. J. Evol. Biol. 27, 628–642. 10.1111/jeb.12332 (2014). PubMed
Hofman, S., Pabijan, M., Dziewulska-Szwajkowska, D. & Szymura, J. M. Mitochondrial genome organization and divergence in hybridizing central European waterfrogs of the Pelophylax esculentus complex (Anura, Ranidae). Gene. 491, 71–80. 10.1016/j.gene.2011.08.004 (2012). PubMed
Plötner, J. et al. Widespread unidirectional transfer of mitochondrial DNA: a case in western palaearctic water frogs. J. Evol. Biol. 21, 668–681. 10.1111/j.1420-9101.2008.01527.x (2008). PubMed PMC
Schmeller D.S., Seitz A., Crivelli A. & Veith M. Crossing species’ range borders: interspecies gene exchange mediated by hybridogenesis. Proc. Biol. Sci. 272, 1625–1631. 10.1098/rspb.2005.3129 (2005). PubMed PMC
Hotz, H. Genic diversity among water frog genomes inherited with and without recombination. PhD thesis, University of Zürich, Switzerland (1983).
Hotz, H. et al. Rana ridibunda varies geographically in inducing clonal gametogenesis in interspecies hybrids. J. Exp. Zool. 236, 199–210 (1985).
Uzzell, T., Hotz, H. & Berger, L. Genome exclusion in gametogenesis by an interspecific Rana hybrid: evidence from electrophoresis of individual oocytes. J. Exp. Zool. 214, 251–259 (1980).
Pruvost, N. B. M., Hoffmann, A. & Reyer, H. U. Gamete production patterns, ploidy, and population genetics reveal evolutionary significant units in hybrid water frogs (Pelophylax esculentus). Ecol. Evol. 3, 2933–2946. 10.1002/ece3.687 (2013). PubMed PMC
Guex G. D., Hotz, H., Uzzell, T., Semlitsch, R., Beerli, P., & Pascolini, R. Developmental disturbances in Rana esculenta tadpoles and metamorphs. Mitt. Mus. Nat.kd. Berl., Zool. Reihe.77, 79–86 (2001).
Biriuk, O., Usova, O., Meleshko, O. & Shabanov, D. Stability of spermatogenesis and displays of natural selection at the cellular and individual level in immature representatives of the Pelophylax esculentus complex. Biosyst. Divers. 24, 193–202. 10.15421/011624 (2016).
Vorburger, C. Fixation of deleterious mutations in clonal lineages: evidence from hybridogenetic frogs. Evolution. 55, 2319–2332. 10.1111/j.0014-3820.2001.tb00745.x (2001). PubMed
Christiansen, D. G., Fog, K., Pedersen, B. V. & Boomsma, J. J. Reproduction and hybrid load in all-hybrid populations of Rana esculenta water frogs in Denmark. Evolution. 59, 1348–1361. 10.1111/j.0014-3820.2005.tb01784.x (2005). PubMed
Reyer, H. U., Arioli-Jakob, C. & Arioli, M. Post-zygotic selection against parental genotypes during larval development maintains all-hybrid populations of the frog Pelophylax esculentus. BMC Evol. Biol. 15, 131. 10.1186/s12862-015-0404-3 (2015). PubMed PMC
Guex, G. D., Hotz, H. & Semlitsch, R. D. Deleterious alleles and differential viability in progeny of natural hemiclonal frogs. Evolution. 56, 1036–1044. 10.1111/j.0014-3820.2002.tb01414.x (2002). PubMed