Empirical evidence for large X-effects in animals with undifferentiated sex chromosomes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26868373
PubMed Central
PMC4751523
DOI
10.1038/srep21029
PII: srep21029
Knihovny.cz E-zdroje
- MeSH
- chromozom X genetika MeSH
- chromozom Y genetika MeSH
- Ranidae MeSH
- sexuální diferenciace genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Reproductive isolation is crucial for the process of speciation to progress. Sex chromosomes have been assigned a key role in driving reproductive isolation but empirical evidence from natural population processes has been restricted to organisms with degenerated sex chromosomes such as mammals and birds. Here we report restricted introgression at sex-linked compared to autosomal markers in a hybrid zone between two incipient species of European tree frog, Hyla arborea and H. orientalis, whose homologous X and Y sex chromosomes are undifferentiated. This large X-effect cannot result from the dominance or faster-X aspects of Haldane's rule, which are specific to degenerated sex chromosomes, but rather supports a role for faster-heterogametic-sex or faster-male evolutionary processes. Our data suggest a prominent contribution of undifferentiated sex chromosomes to speciation.
Zobrazit více v PubMed
Feder J. L., Egan S. P. & Nosil P. The genomics of speciation-with-gene-flow. Trends Ecol Evol. 28, 342–350 (2012). PubMed
Seehausen O. et al.. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014). PubMed
Charlesworth B., Coyne J. & Barton N. The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. 130, 113–146 (1987).
Masly J. P. & Presgraves D. C. High-resolution genome-wide dissection of the two rules of speciation in Drosophila. PLoS Biol. 5, e243, doi: 10.1371/journal.pbio.0050243 (2007). PubMed DOI PMC
Saether S. A. et al.. Sex chromosome-linked species recognition and evolution of reproductive isolation in flycatchers. Science 318, 95–97 (2007). PubMed
Haldane J. B. S. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12, 101–109 (1922).
Turelli M. The causes of Haldane’s Rule. Science 282, 889–891 (1998). PubMed
Orr H. A. Haldane’s rule. Ann. Rev. Ecol. Syst. 28, 195–218 (1997).
Schilthuizen M., Giesbers M. C. & Beukeboom L. W. Haldane’s rule in the 21st century. Heredity 107, 95–102 (2011). PubMed PMC
Brothers A. N. & Delph L. F. Haldane’s rule is extended to plants with sex chromosomes. Evolution 64, 3643–3648 (2010). PubMed
Turelli M. & Moyle L. C. Asymmetric postmating isolation: Darwin’s corollary to Haldane’s rule. Genetics 176, 1059–1088 (2007). PubMed PMC
Coyne J. A. & Orr H. A. Speciation, 545 pp (Sinauer Associates, 2004).
Presgraves D. C. Sex chromosomes and speciation in Drosophila. Trends Genet. 24, 336–343 (2008). PubMed PMC
Qvarnström A. & Bailey R. I. Speciation through the evolution of sex-linked genes. Heredity 102, 4–15 (2009). PubMed
Lima T. G. Higher levels of sex chromosome heteromorphism are associated with markedly stronger reproductive isolation. Nat. Commun. 5, 4743, doi: 10.1038/ncomms5743 (2014). PubMed DOI
Beukeboom L. & Perrin N. The evolution of sex determination, 222pp (Oxford Univ. Press, 2014).
Muller H. J. In The new systematics (ed Huxley J. S.), 185–268 (Clarendon, 1940).
Turelli M. & Orr H. A. The dominance theory of Haldane’s rule. Genetics 140, 389–402 (1995). PubMed PMC
Parsch J. & Ellegren H. The evolutionary causes and consequences of sex-biased gene expression. Nature Reviews Genetics 14, 83–87 (2013). PubMed
Wu C. I. & Davis A. W. Evolution of postmating reproductive isolation: the composite nature of Haldane’s rule and its genetic bases. Am. Nat. 142, 187–212 (1993). PubMed
Wu C. I., Johnson N. A. & Palopoli M. F. Haldane’s Rule and its legacy: why are there so many sterile males. Trends Ecol. Evol. 11, 281–284 (1996). PubMed
Tao Y. & Hartl D. L. Genetic dissection of hybrid incompatibilities between Drosophila simulans and D. mauritiana. III. Heterogeneous accumulation of hybrid incompatibilities, degree of dominance, and implications for Haldane’s rule. Evolution 57, 2580–2598 (2003). PubMed
McDermott S. R. & Noor M. A. F. The role of meiotic drive in hybrid male sterility. Phil. Trans. R. Soc. B 365, 1265–1272 (2010). PubMed PMC
Presgraves D. C. & Orr H. A. Haldane’s rule in taxa lacking a hemizygous X. Science 282, 952–954 (1998). PubMed
Malone J. H. & Michalak P. Physiological sex predicts hybrid sterility regardless of genotype. Science 319, 59 (2008). PubMed
Barton N. H. & Hewitt G. M. Analysis of hybrid zones. Ann. Rev. Ecol. Syst. 16, 113–148 (1985).
Abbott R. et al.. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013). PubMed
Szymura J. & Barton N. Genetic analysis of a hybrid zone between the fire-bellied toads, Bombina bombina and Bombina variegata, near Cracow in southern Poland. Evolution 40, 1141–1159 (1986). PubMed
Szymura J. M. Analysis of hybrid zones with Bombina. In Hybrid zones and the evolutionary process (ed. Harrison R.), 261–289 (Oxford University Press: New York, 1993).
Hoskin C. J., Higgie M., McDonald K. R. & Moritz C. Reinforcement drives rapid allopatric speciation. Nature 437, 1353–1356 (2005). PubMed
Payseur B. A., Krenz J. G. & Nachman M. W. Differential patterns of introgression across the X chromosome in a hybrid zone between two species of house mice. Evolution 58, 2064–2078 (2004). PubMed
Geraldes A., Ferrand N. & Nachman N. W. Contrasting patterns of introgression at X-linked loci across the hybrid zone between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics 173, 919–933 (2006). PubMed PMC
Carneiro M. C. et al.. Steep clines within a highly permeable genome across a hybrid zone between two subspecies of the European rabbit. Mol. Ecol. 9, 2511–2525 (2013). PubMed PMC
Janoušek V. et al.. Genome-wide architecture of reproductive isolation in a naturally occurring hybrid zone between Mus musculus musculus and M. m. domesticus. Mol. Ecol. 21, 3032–3047 (2012). PubMed PMC
Sankararaman S. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507, 354–357 (2014). PubMed PMC
Saetre G. P. et al.. Sex chromosome evolution and speciation in Ficedula flycatchers. Proc. Biol. Sci. B. 270, 53–59 (2003). PubMed PMC
Carling M. D. & Brumfield R. T. Haldane’s rule in an avian system: using cline theory and divergence population genetics to test for differential introgression of mitochondrial, autosomal, and sex-linked loci across the Passerina bunting hybrid zone. Evolution 62, 2600–2615 (2008). PubMed
Storchova R., Reif J. & Nachman M. W. Female heterogamety and speciation: reduced introgression of the Z chromosome between two species of nightingales. Evolution 64, 456–471 (2010). PubMed PMC
Elgvin T. O. et al.. Hybrid speciation in sparrows II: a role for sex chromosomes? Mol. Ecol. 20, 3823–3837 (2011). PubMed
Taylor S. A., Curry R. L., White T. A., Ferretti V. & Lovette I. Spatiotemporally consistent genomic signatures of reproductive isolation in a moving hybrid zone. Evolution 68, 3066–3081 (2014). PubMed
Hagen R. H. & Scriber J. M. Sex-linked diapause, color and allozyme loci in Papilio glaucus: Linkage analysis and significance in a hybrid zone. J. Hered. 80, 179–185 (1989).
Herrig D. K., Modrick A. J., Brud E. & Llopart A. Introgression in the Drosophila subobscura – D. madeirensis sister species: evidence of gene flow in nuclear genes despite mitochondrial differentiation. Evolution 68, 705–719 (2014). PubMed PMC
Macholán M. et al.. Genetic conflict outweighs heterogametic incompatibility in the mouse hybrid zone? BMC Evol. Biol. 8, 271, doi: 10.1186/1471-2148-8-271 (2008). PubMed DOI PMC
Stöck M. et al.. Cryptic diversity among Western Palearctic tree frogs: postglacial range expansion, range limits, and secondary contacts of three European tree frog lineages (Hyla arborea group). Mol. Phylogenet. Evol. 65, 1–9 (2012). PubMed
Dufresnes C. et al.. Timeframe of speciation inferred from secondary contact zones in the European tree frog radiation (Hyla arborea group). BMC Evol. Biol. 15, 155, doi: 10.1186/s12862-015-0385-2 (2015). PubMed DOI PMC
Stöck M. et al.. Ever-young sex chromosomes in European tree frogs. PLoS Biol. 9, e1001062, doi: 10.1371/journal.pbio.1001062 (2011). PubMed DOI PMC
Dufresnes C. et al.. Range wide sex-chromosome sequence similarity supports occasional XY recombination in European tree frogs (Hyla arborea). PLOS One 9, e97959, doi: 10.1371/journal.pone.0097959 (2014). PubMed DOI PMC
Dufresnes C. et al.. Sex-chromosome homomorphy in Palearctic tree frogs results from both turnovers and X-Y recombination. Mol. Biol. Evol. 32, 2328–2337 (2015). PubMed
Stöck M. et al.. Maintenance of ancestral sex chromosomes in Palearctic tree frogs: direct evidence from Hyla orientalis. Sex. Dev. 7, 261–266 (2013). PubMed
Wysota W., Molewski P. & Sokołowski R. J. Record of the Vistula ice lobe advances in the Late Weichselian glacial sequence in north-central Poland. Quat. Int. 207, 26–41 (2009).
Fitzpatrick B. M. Alternative forms of genomic clines. Ecol. Evol. 3, 1951–1966 (2013). PubMed PMC
Macholan M. et al.. Genetic analysis of autosomal and X-linked markers across a mouse hybrid zone. Evolution 61, 746–771 (2007). PubMed
Dufresnes C. et al.. Sex-chromosome differentiation parallels postglacial range expansion in European tree frogs (Hyla arborea). Evolution 68, 3445–3456 (2014). PubMed
Broquet T., Jaquiery J. & Perrin N. Opportunity for sexual selection and effective population size in the lek-breeding European treefrog (Hyla arborea). Evolution 63, 674–683 (2009). PubMed
Kikuchi K. & Hamaguchi S. Novel sex-determining genes in fish and sex chromosome evolution. Dev. Dyn. 242, 339–353 (2013). PubMed
Malcom J. W., Kudra R. S. & Malone J. H. The sex chromosomes of frogs: variability and tolerance offer clues to genome evolution and function. J. Genomics 2, 68–76 (2014). PubMed PMC
Arntzen J. W., Jehle R., Bardakci F., Burke T. & Wallis G. P. Asymmetric viability of reciprocal-cross hybrids between crested and marbled newts (Triturus cristatus and T. marmoratus). Evolution 63, 1191–1202 (2009). PubMed
Tech C. Postzygotic incompatibilities between the pupfishes, Cyprinodon elegans and Cyprinodon variegatus: hybrid male sterility and sex ratio bias. J. Evol. Biol. 19, 1830–1837 (2006). PubMed
Russell S. T. & Magurran A. E. Intrinsic reproductive isolation between trinidadian populations of the guppy, Poecilia reticulata. J. Evol. Biol. 19, 1294–1303 (2006). PubMed
Mendelson T. C., Imhoff V. E. & Venditti J. J. The accumulation of reproductive barriers during speciation: postmating barriers in two behaviorally isolated species of darters (Percidae: Etheostoma). Evolution 61, 2596–2606 (2007). PubMed
Crow K. D. et al.. Maintenance of species boundaries despite rampant hybridization between three species of reef fishes (Hexagrammidae): Implications for the role of selection. Biol. J. Linnean Soc. 91, 135–147 (2007).
Kitano J., Mori S. & Peichel C. L. Phenotypic divergence and reproductive isolation between sympatric forms of Japanese threespine sticklebacks. Biol. J. Linnean Soc. 91, 671–685 (2007).
Malone J. H., Chrzanowski T. H. & Michalak P. Sterility and gene expression in hybrid males of Xenopus laevis and X. muelleri. PLOS One 2, e781, doi: 10.1371/journal.pone.0000781 (2007). PubMed DOI PMC
Malone J. H. & Fontenot B. E. Patterns of reproductive isolation in toads. PLOS One 3, e3900, doi: 10.1371/journal.pone.0003900 (2008). PubMed DOI PMC
Macaya-Sanz D. et al.. Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species. Heredity 107, 478–486 (2011). PubMed PMC
Broquet T., Berset-Brändli L., Emaresi G. & Fumagalli L. Buccal swabs allow efficient and reliable microsatellite genotyping in amphibians. Conserv. Genet. 8, 509–511 (2007).
Dufresnes C., Brelsford A. & Perrin N. First-generation linkage map for the European tree frog (Hyla arborea) with utility in congeneric species. BMC Res. Notes. 7, 850, doi: 10.1186/1756-0500-7-850 (2014). PubMed DOI PMC
Dufresnes C., Brelsford A., Béziers P. & Perrin N. Stronger transferability but lower variability in transcriptomic- than in anonymous microsatellites: evidence from hylid frogs. Mol. Ecol. Resour. 14, 716–725 (2014). PubMed
Pritchard J. K., Stephens M. & Donnelly P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000). PubMed PMC
Evanno G., Regnaut S. & Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005). PubMed
Earl D. A. & von Holdt B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
Jakobsson M. & Rosenberg N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. In Bioinformatics 23, 1801–1806 (2007). PubMed
Rosenberg N. A. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).
Jombart T. (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008). PubMed
Dufresnes C. et al.. Inferring the degree of incipient speciation in secondary contact zones of closely related lineages of Palearctic green toads (Bufo viridis subgroup). Heredity 113, 9–20 (2014). PubMed PMC
Macholán M. et al.. Assessing multilocus introgression patterns: a case study on the mouse X chromosome in central Europe. Evolution 65, 1428–1446 (2011). PubMed
Sex Chromosome Turnover in Moths of the Diverse Superfamily Gelechioidea