Telemedicine platform for health assessment remotely by an integrated nanoarchitectonics FePS3/rGO and Ti3C2-based wearable device
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35990769
PubMed Central
PMC9376913
DOI
10.1038/s41528-022-00208-1
PII: 208
Knihovny.cz E-zdroje
- Klíčová slova
- Electronic properties and devices, Electronic properties and materials,
- Publikační typ
- časopisecké články MeSH
Due to the emergence of various new infectious (viral/bacteria) diseases, the remote surveillance of infected persons has become most important, especially if hospitals need to isolate infected patients to prevent the spreading of pathogens to health care personnel. Therefore, we develop a remote health monitoring system by integrating a stretchable asymmetric supercapacitor (SASC) as a portable power source with sensors that can monitor the human physical health condition in real-time and remotely. An abnormal body temperature and breathing rate could indicate a person's sickness/infection status. Here we integrated FePS3@graphene-based strain sensor and SASC into an all-in-one textile system and wrapped it around the abdomen to continuously monitor the breathing cycle of the person. The real body temperature was recorded by integrating the temperature sensor with the SASC. The proposed system recorded physiological parameters in real-time and when monitored remotely could be employed as a screening tool for monitoring pathogen infection status.
Zobrazit více v PubMed
Islam, T. & Mukhopadhyay, S. C. Chapter 1: sensors for physiological parameters measurement: physics, characteristics, design and applications. In Wearable sensors applications, designs and implementation; wearable. 1–31 (IOP Publishing Ltd, 2017).
Wu L, Li Z, Li M. Portable human physiological parameters detection system. Int. J. Multimed. Ubiquitous Eng. 2016;11:1–8.
Al Bassam N, Hussain SA. IoT based wearable device to monitor the signs of quarantined remote patients of COVID-19. Inform. Med. Unlocked. 2021;24:100588. doi: 10.1016/j.imu.2021.100588. PubMed DOI PMC
Monaghesh E, Hajizadeh A. The role of telehealth during COVID-19 outbreak: a systematic review based on current evidence. BMC Public Health. 2020;20:1193. doi: 10.1186/s12889-020-09301-4. PubMed DOI PMC
Rida, J. F. A. Development of a remote health care wireless sensor network based on wireless spread spectrum communication networks. Mater. Today: Proc. 10.1016/j.matpr.2021.02.534 (2021).
Mahbub, I., Pullano, S. A., Shamsir, S., Kamrul, S. I. & Pullano, S. A. Chapter 2. Low-power wearable and wireless sensors for advanced healthcare monitoring. In IoT and low-power wireless circuits, architectures, and techniques. 2nd edn, (CRC Press, 2018).
Cheng Z, et al. High-yield production of monolayer FePS3 quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution. Adv. Mater. 2018;30:1707433. doi: 10.1002/adma.201707433. PubMed DOI
Gusmão R, Sofer Z, Pumera M. Exfoliated layered manganese trichalcogenide phosphite (MnPX3, X = S, Se) as electrocatalytic van der waals materials for hydrogen evolution. Adv. Funct. Mater. 2019;29:1805975. doi: 10.1002/adfm.201805975. DOI
Gusmão R, Sofer Z, Pumera M. Metal phosphorous trichalcogenides (MPCh3): from synthesis to contemporary energy challenges. Angew. Chem. Int. Ed. 2019;58:9326–9337. doi: 10.1002/anie.201810309. PubMed DOI
Brec R, Ouvrard G, Rouxel J. Relationship between structure parameters and chemical properties in some MPS3 layered phases. Mater. Res. Bull. 1985;20:1257–1263. doi: 10.1016/0025-5408(85)90118-7. DOI
Joy PA, Vasudevan S. Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni) Phys. Rev. B. 1992;46:5425–5433. doi: 10.1103/PhysRevB.46.5425. PubMed DOI
Wang H, et al. An exfoliated iron phosphorus trisulfide nanosheet with rich sulfur vacancy for efficient dinitrogen fixation and Zn-N2 battery. Nano Energy. 2021;81:105613. doi: 10.1016/j.nanoen.2020.105613. DOI
Glass DE, Jones JP, Shevade AV, Bugga RV. Transition metal phosphorous trisulfides as cathode materials in high temperatures batteries. J. Electrochem. Soc. 2020;167:110512. doi: 10.1149/1945-7111/aba0d4. DOI
Wang M, Tang K. A Facile synthesis of FePS3@C nanocomposites and their enhanced performance in lithium-ion batteries. Dalton Trans. 2019;48:3819–3824. doi: 10.1039/C8DT04866E. PubMed DOI
Ding Y, et al. Facile synthesis of FePS3 nanosheets@MXene composite as a high-performance anode material for sodium storage. Nano-Micro Lett. 2020;12:54. doi: 10.1007/s40820-020-0381-y. PubMed DOI PMC
Mayorga-Martinez CC, et al. Layered metal thiophosphite materials: magnetic, electrochemical, and electronic properties. ACS Appl. Mater. Interfaces. 2017;9:12563–12573. doi: 10.1021/acsami.6b16553. PubMed DOI
Vyskočil J, et al. 2D stacks of MXene Ti3C2 and 1T-Phase WS2 with enhanced capacitive behavior. ChemElectroChem. 2019;6:3982–3986. doi: 10.1002/celc.201900643. DOI
Garg R, Agarwal A, Agarwal M. A review on MXene for energy storage application: effect of interlayer distance. Mater. Res. Express. 2020;7:022001. doi: 10.1088/2053-1591/ab750d. DOI
Jolly S, Paranthaman MP, Naguib M. Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors. Mater. Today Adv. 2021;10:100139. doi: 10.1016/j.mtadv.2021.100139. DOI
Vaghasiya JV, Mayorga-Martinez CC, Pumera M. Smart energy bricks: Ti3C2@polymer electrochemical energy storage inside bricks by 3D printing. Adv. Funct. Mater. 2021;31:2106990. doi: 10.1002/adfm.202106990. DOI
Vaghasiya JV, Mayorga-Martinez CC, Vyskocil J, Sofer Z, Pumera M. Integrated biomonitoring sensing with wearable asymmetric supercapacitors based on Ti3C2 MXene and 1T-Phase WS2 nanosheets. Adv. Funct. Mater. 2020;30:2003673. doi: 10.1002/adfm.202003673. DOI
Levitt A, Zhang J, Dion G, Gogotsi Y, Razal JM. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater. 2020;30:2000739. doi: 10.1002/adfm.202000739. DOI
Qin S, et al. Development and applications of MXene-based functional fibers. ACS Appl. Mater. Interfaces. 2021;13:36655–36669. doi: 10.1021/acsami.1c08985. PubMed DOI
Latiff NM, et al. Cytotoxicity of layered metal phosphorus chalcogenides (MPXY) nanoflakes; FePS3, CoPS3, NiPS3. FlatChem. 2018;12:1–9. doi: 10.1016/j.flatc.2018.11.003. DOI
Ismail N, El-Meligi AA, Temerk YM, Madian M. Synthesis and characterization of layered FePS3 for hydrogen uptake. Int. J. Hydrog. Energy. 2010;35:7827–7834. doi: 10.1016/j.ijhydene.2010.05.061. DOI
Ruiz León D, Manríquez Castro V, Kasaneva J, Ávila RE. Insertion of trivalent cations in the layered MPS3 (Mn, Cd) materials. Mater. Res. Bull. 2002;37:981–989. doi: 10.1016/S0025-5408(02)00719-5. DOI
Shao L, et al. MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials. Compos. Commun. 2020;19:108–113. doi: 10.1016/j.coco.2020.03.006. DOI
Fan Z, et al. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 2018;5:1800750. doi: 10.1002/advs.201800750. PubMed DOI PMC
Zhang YZ, et al. MXene printing and patterned coating for device applications. Adv. Mater. 2020;32:1908486. doi: 10.1002/adma.201908486. PubMed DOI
Abdolhosseinzadeh S, Jiang X, Zhang H, Qiu J, Zhang C. Perspectives on solution processing of two-dimensional MXenes. Mater. Today. 2021;48:214–240. doi: 10.1016/j.mattod.2021.02.010. DOI
Abdolhosseinzadeh S, Heier J, Zhang C. Printing and coating MXenes for electrochemical energy storage devices. J. Phy. Energy. 2020;2:031004. doi: 10.1088/2515-7655/aba47d. DOI
Chia HL, et al. MXene titanium carbide-based biosensor: strong dependence of exfoliation method on performance. Anal. Chem. 2020;92:2452–2459. doi: 10.1021/acs.analchem.9b03634. PubMed DOI
Vaghasiya JV, Mayorga-Martinez CC, Sofer Z, Pumera M. MXene-based flexible supercapacitors: influence of an organic ionic conductor electrolyte on the performance. ACS Appl. Mater. Interfaces. 2020;12:53039–53048. doi: 10.1021/acsami.0c12879. PubMed DOI
Wang Y, et al. Engineering 3D ion transport channels for flexible mxene films with superior capacitive performance. Adv. Funct. Mater. 2019;29:1900326. doi: 10.1002/adfm.201900326. DOI
Chepkasov IV, Ghorbani-Asl M, Popov ZI, Smet JH, Krasheninnikov AV. Alkali metals inside bi-layer graphene and MoS2: insights from first-principles calculations. Nano Energy. 2020;75:104971. doi: 10.1016/j.nanoen.2020.104927. DOI
Xie X, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy. 2016;26:513. doi: 10.1016/j.nanoen.2016.06.005. DOI
Yan J, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017;27:1701264. doi: 10.1002/adfm.201701264. DOI
Hu M, et al. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 2020;49:6666–6693. doi: 10.1039/D0CS00175A. PubMed DOI
Tang H, et al. MXene-2D layered electrode materials for energy storage. Prog. Nat. Sci. Mater. Int. 2018;28:133–147. doi: 10.1016/j.pnsc.2018.03.003. DOI
Manikandan R, et al. Electrochemical behaviour of lithium, sodium and potassium ion electrolytes in a Na0.33V2O5 symmetric pseudocapacitor with high performance and high cyclic stability. ChemElectroChem. 2018;5:101–111. doi: 10.1002/celc.201700923. DOI
Feng E, et al. Long-term anti-freezing active organohydrogel based superior flexible supercapacitor and strain sensor. ACS Sustain. Chem. Eng. 2021;9:7267–7276. doi: 10.1021/acssuschemeng.1c01209. DOI
Vo TT, Lee HJ, Kim SY, Suk JW. Synergistic effect of graphene/silver nanowire hybrid fillers on highly stretchable strain sensors based on spandex composites. Nanomater. 2020;10:2063. doi: 10.3390/nano10102063. PubMed DOI PMC
Cai G, et al. Flexible and wearable strain sensing fabrics. Chem. Eng. J. 2017;325:396–403. doi: 10.1016/j.cej.2017.05.091. DOI
Kim SJ, et al. High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Appl. Mater. Interfaces. 2018;10:3921–3928. doi: 10.1021/acsami.7b15386. PubMed DOI
Liu L, et al. High-performance wearable strain sensor based on MXene@cotton fabric with network structure. Nanomater. 2021;11:889. doi: 10.3390/nano11040889. PubMed DOI PMC
Zhang Y-Z, et al. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 2018;4:eaat0098. doi: 10.1126/sciadv.aat0098. PubMed DOI PMC
Barrett, K. E., Barman, S. M. & Boitano, S. Ganong’s review of medical physiology, 26th edn, (McGraw-Hill Education, 2010).
Zhao Z, et al. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 2016;28:10267–10274. doi: 10.1002/adma.201603679. PubMed DOI
Maveddat A, et al. Severe acute respiratory distress syndrome secondary to coronavirus 2 (SARS-CoV-2) Int J. Occup. Environ. Med. 2020;11:157–178. doi: 10.34172/ijoem.2020.2202. PubMed DOI PMC
Massaroni C, Nicolò A, Schena E, Sacchetti M. Remote respiratory monitoring in the time of COVID-19. Front Physiol. 2020;11:635. doi: 10.3389/fphys.2020.00635. PubMed DOI PMC
Sicari S, Rizzardi A, Coen-Porisini A. Home quarantine patient monitoring in the era of COVID-19 disease. Smart Health. 2022;23:100222. doi: 10.1016/j.smhl.2021.100222. PubMed DOI PMC
Chen X, Jiang S, Li Z, Lo B. A pervasive respiratory monitoring sensor for COVID-19 pandemic. IEEE open J. Eng. Med. Biol. 2021;2:11–16. doi: 10.1109/OJEMB.2020.3042051. PubMed DOI PMC
Christoe MJ, Yuan J, Michael A, Kalantar-Zadeh K. Bluetooth signal attenuation analysis in human body tissue analogues. IEEE Access. 2021;9:85144–85150. doi: 10.1109/ACCESS.2021.3087780. DOI