Telemedicine platform for health assessment remotely by an integrated nanoarchitectonics FePS3/rGO and Ti3C2-based wearable device

. 2022 ; 6 (1) : 73. [epub] 20220815

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35990769

Due to the emergence of various new infectious (viral/bacteria) diseases, the remote surveillance of infected persons has become most important, especially if hospitals need to isolate infected patients to prevent the spreading of pathogens to health care personnel. Therefore, we develop a remote health monitoring system by integrating a stretchable asymmetric supercapacitor (SASC) as a portable power source with sensors that can monitor the human physical health condition in real-time and remotely. An abnormal body temperature and breathing rate could indicate a person's sickness/infection status. Here we integrated FePS3@graphene-based strain sensor and SASC into an all-in-one textile system and wrapped it around the abdomen to continuously monitor the breathing cycle of the person. The real body temperature was recorded by integrating the temperature sensor with the SASC. The proposed system recorded physiological parameters in real-time and when monitored remotely could be employed as a screening tool for monitoring pathogen infection status.

Zobrazit více v PubMed

Islam, T. & Mukhopadhyay, S. C. Chapter 1: sensors for physiological parameters measurement: physics, characteristics, design and applications. In Wearable sensors applications, designs and implementation; wearable. 1–31 (IOP Publishing Ltd, 2017).

Wu L, Li Z, Li M. Portable human physiological parameters detection system. Int. J. Multimed. Ubiquitous Eng. 2016;11:1–8.

Al Bassam N, Hussain SA. IoT based wearable device to monitor the signs of quarantined remote patients of COVID-19. Inform. Med. Unlocked. 2021;24:100588. doi: 10.1016/j.imu.2021.100588. PubMed DOI PMC

Monaghesh E, Hajizadeh A. The role of telehealth during COVID-19 outbreak: a systematic review based on current evidence. BMC Public Health. 2020;20:1193. doi: 10.1186/s12889-020-09301-4. PubMed DOI PMC

Rida, J. F. A. Development of a remote health care wireless sensor network based on wireless spread spectrum communication networks. Mater. Today: Proc. 10.1016/j.matpr.2021.02.534 (2021).

Mahbub, I., Pullano, S. A., Shamsir, S., Kamrul, S. I. & Pullano, S. A. Chapter 2. Low-power wearable and wireless sensors for advanced healthcare monitoring. In IoT and low-power wireless circuits, architectures, and techniques. 2nd edn, (CRC Press, 2018).

Cheng Z, et al. High-yield production of monolayer FePS3 quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution. Adv. Mater. 2018;30:1707433. doi: 10.1002/adma.201707433. PubMed DOI

Gusmão R, Sofer Z, Pumera M. Exfoliated layered manganese trichalcogenide phosphite (MnPX3, X = S, Se) as electrocatalytic van der waals materials for hydrogen evolution. Adv. Funct. Mater. 2019;29:1805975. doi: 10.1002/adfm.201805975. DOI

Gusmão R, Sofer Z, Pumera M. Metal phosphorous trichalcogenides (MPCh3): from synthesis to contemporary energy challenges. Angew. Chem. Int. Ed. 2019;58:9326–9337. doi: 10.1002/anie.201810309. PubMed DOI

Brec R, Ouvrard G, Rouxel J. Relationship between structure parameters and chemical properties in some MPS3 layered phases. Mater. Res. Bull. 1985;20:1257–1263. doi: 10.1016/0025-5408(85)90118-7. DOI

Joy PA, Vasudevan S. Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni) Phys. Rev. B. 1992;46:5425–5433. doi: 10.1103/PhysRevB.46.5425. PubMed DOI

Wang H, et al. An exfoliated iron phosphorus trisulfide nanosheet with rich sulfur vacancy for efficient dinitrogen fixation and Zn-N2 battery. Nano Energy. 2021;81:105613. doi: 10.1016/j.nanoen.2020.105613. DOI

Glass DE, Jones JP, Shevade AV, Bugga RV. Transition metal phosphorous trisulfides as cathode materials in high temperatures batteries. J. Electrochem. Soc. 2020;167:110512. doi: 10.1149/1945-7111/aba0d4. DOI

Wang M, Tang K. A Facile synthesis of FePS3@C nanocomposites and their enhanced performance in lithium-ion batteries. Dalton Trans. 2019;48:3819–3824. doi: 10.1039/C8DT04866E. PubMed DOI

Ding Y, et al. Facile synthesis of FePS3 nanosheets@MXene composite as a high-performance anode material for sodium storage. Nano-Micro Lett. 2020;12:54. doi: 10.1007/s40820-020-0381-y. PubMed DOI PMC

Mayorga-Martinez CC, et al. Layered metal thiophosphite materials: magnetic, electrochemical, and electronic properties. ACS Appl. Mater. Interfaces. 2017;9:12563–12573. doi: 10.1021/acsami.6b16553. PubMed DOI

Vyskočil J, et al. 2D stacks of MXene Ti3C2 and 1T-Phase WS2 with enhanced capacitive behavior. ChemElectroChem. 2019;6:3982–3986. doi: 10.1002/celc.201900643. DOI

Garg R, Agarwal A, Agarwal M. A review on MXene for energy storage application: effect of interlayer distance. Mater. Res. Express. 2020;7:022001. doi: 10.1088/2053-1591/ab750d. DOI

Jolly S, Paranthaman MP, Naguib M. Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors. Mater. Today Adv. 2021;10:100139. doi: 10.1016/j.mtadv.2021.100139. DOI

Vaghasiya JV, Mayorga-Martinez CC, Pumera M. Smart energy bricks: Ti3C2@polymer electrochemical energy storage inside bricks by 3D printing. Adv. Funct. Mater. 2021;31:2106990. doi: 10.1002/adfm.202106990. DOI

Vaghasiya JV, Mayorga-Martinez CC, Vyskocil J, Sofer Z, Pumera M. Integrated biomonitoring sensing with wearable asymmetric supercapacitors based on Ti3C2 MXene and 1T-Phase WS2 nanosheets. Adv. Funct. Mater. 2020;30:2003673. doi: 10.1002/adfm.202003673. DOI

Levitt A, Zhang J, Dion G, Gogotsi Y, Razal JM. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater. 2020;30:2000739. doi: 10.1002/adfm.202000739. DOI

Qin S, et al. Development and applications of MXene-based functional fibers. ACS Appl. Mater. Interfaces. 2021;13:36655–36669. doi: 10.1021/acsami.1c08985. PubMed DOI

Latiff NM, et al. Cytotoxicity of layered metal phosphorus chalcogenides (MPXY) nanoflakes; FePS3, CoPS3, NiPS3. FlatChem. 2018;12:1–9. doi: 10.1016/j.flatc.2018.11.003. DOI

Ismail N, El-Meligi AA, Temerk YM, Madian M. Synthesis and characterization of layered FePS3 for hydrogen uptake. Int. J. Hydrog. Energy. 2010;35:7827–7834. doi: 10.1016/j.ijhydene.2010.05.061. DOI

Ruiz León D, Manríquez Castro V, Kasaneva J, Ávila RE. Insertion of trivalent cations in the layered MPS3 (Mn, Cd) materials. Mater. Res. Bull. 2002;37:981–989. doi: 10.1016/S0025-5408(02)00719-5. DOI

Shao L, et al. MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials. Compos. Commun. 2020;19:108–113. doi: 10.1016/j.coco.2020.03.006. DOI

Fan Z, et al. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 2018;5:1800750. doi: 10.1002/advs.201800750. PubMed DOI PMC

Zhang YZ, et al. MXene printing and patterned coating for device applications. Adv. Mater. 2020;32:1908486. doi: 10.1002/adma.201908486. PubMed DOI

Abdolhosseinzadeh S, Jiang X, Zhang H, Qiu J, Zhang C. Perspectives on solution processing of two-dimensional MXenes. Mater. Today. 2021;48:214–240. doi: 10.1016/j.mattod.2021.02.010. DOI

Abdolhosseinzadeh S, Heier J, Zhang C. Printing and coating MXenes for electrochemical energy storage devices. J. Phy. Energy. 2020;2:031004. doi: 10.1088/2515-7655/aba47d. DOI

Chia HL, et al. MXene titanium carbide-based biosensor: strong dependence of exfoliation method on performance. Anal. Chem. 2020;92:2452–2459. doi: 10.1021/acs.analchem.9b03634. PubMed DOI

Vaghasiya JV, Mayorga-Martinez CC, Sofer Z, Pumera M. MXene-based flexible supercapacitors: influence of an organic ionic conductor electrolyte on the performance. ACS Appl. Mater. Interfaces. 2020;12:53039–53048. doi: 10.1021/acsami.0c12879. PubMed DOI

Wang Y, et al. Engineering 3D ion transport channels for flexible mxene films with superior capacitive performance. Adv. Funct. Mater. 2019;29:1900326. doi: 10.1002/adfm.201900326. DOI

Chepkasov IV, Ghorbani-Asl M, Popov ZI, Smet JH, Krasheninnikov AV. Alkali metals inside bi-layer graphene and MoS2: insights from first-principles calculations. Nano Energy. 2020;75:104971. doi: 10.1016/j.nanoen.2020.104927. DOI

Xie X, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy. 2016;26:513. doi: 10.1016/j.nanoen.2016.06.005. DOI

Yan J, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017;27:1701264. doi: 10.1002/adfm.201701264. DOI

Hu M, et al. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 2020;49:6666–6693. doi: 10.1039/D0CS00175A. PubMed DOI

Tang H, et al. MXene-2D layered electrode materials for energy storage. Prog. Nat. Sci. Mater. Int. 2018;28:133–147. doi: 10.1016/j.pnsc.2018.03.003. DOI

Manikandan R, et al. Electrochemical behaviour of lithium, sodium and potassium ion electrolytes in a Na0.33V2O5 symmetric pseudocapacitor with high performance and high cyclic stability. ChemElectroChem. 2018;5:101–111. doi: 10.1002/celc.201700923. DOI

Feng E, et al. Long-term anti-freezing active organohydrogel based superior flexible supercapacitor and strain sensor. ACS Sustain. Chem. Eng. 2021;9:7267–7276. doi: 10.1021/acssuschemeng.1c01209. DOI

Vo TT, Lee HJ, Kim SY, Suk JW. Synergistic effect of graphene/silver nanowire hybrid fillers on highly stretchable strain sensors based on spandex composites. Nanomater. 2020;10:2063. doi: 10.3390/nano10102063. PubMed DOI PMC

Cai G, et al. Flexible and wearable strain sensing fabrics. Chem. Eng. J. 2017;325:396–403. doi: 10.1016/j.cej.2017.05.091. DOI

Kim SJ, et al. High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Appl. Mater. Interfaces. 2018;10:3921–3928. doi: 10.1021/acsami.7b15386. PubMed DOI

Liu L, et al. High-performance wearable strain sensor based on MXene@cotton fabric with network structure. Nanomater. 2021;11:889. doi: 10.3390/nano11040889. PubMed DOI PMC

Zhang Y-Z, et al. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 2018;4:eaat0098. doi: 10.1126/sciadv.aat0098. PubMed DOI PMC

Barrett, K. E., Barman, S. M. & Boitano, S. Ganong’s review of medical physiology, 26th edn, (McGraw-Hill Education, 2010).

Zhao Z, et al. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 2016;28:10267–10274. doi: 10.1002/adma.201603679. PubMed DOI

Maveddat A, et al. Severe acute respiratory distress syndrome secondary to coronavirus 2 (SARS-CoV-2) Int J. Occup. Environ. Med. 2020;11:157–178. doi: 10.34172/ijoem.2020.2202. PubMed DOI PMC

Massaroni C, Nicolò A, Schena E, Sacchetti M. Remote respiratory monitoring in the time of COVID-19. Front Physiol. 2020;11:635. doi: 10.3389/fphys.2020.00635. PubMed DOI PMC

Sicari S, Rizzardi A, Coen-Porisini A. Home quarantine patient monitoring in the era of COVID-19 disease. Smart Health. 2022;23:100222. doi: 10.1016/j.smhl.2021.100222. PubMed DOI PMC

Chen X, Jiang S, Li Z, Lo B. A pervasive respiratory monitoring sensor for COVID-19 pandemic. IEEE open J. Eng. Med. Biol. 2021;2:11–16. doi: 10.1109/OJEMB.2020.3042051. PubMed DOI PMC

Christoe MJ, Yuan J, Michael A, Kalantar-Zadeh K. Bluetooth signal attenuation analysis in human body tissue analogues. IEEE Access. 2021;9:85144–85150. doi: 10.1109/ACCESS.2021.3087780. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Wearable sensors for telehealth based on emerging materials and nanoarchitectonics

. 2023 ; 7 (1) : 26. [epub] 20230602

Black phosphorous-based human-machine communication interface

. 2023 Jan 03 ; 14 (1) : 2. [epub] 20230103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...