Black phosphorous-based human-machine communication interface

. 2023 Jan 03 ; 14 (1) : 2. [epub] 20230103

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36596775
Odkazy

PubMed 36596775
PubMed Central PMC9810665
DOI 10.1038/s41467-022-34482-4
PII: 10.1038/s41467-022-34482-4
Knihovny.cz E-zdroje

Assistive technology involving auditory feedback is generally utilized by those who are visually impaired or have speech and language difficulties. Therefore, here we concentrate on an auditory human-machine interface that uses audio as a platform for conveying information between visually or speech-disabled users and society. We develop a piezoresistive tactile sensor based on a black phosphorous and polyaniline (BP@PANI) composite by the facile chemical oxidative polymerization of aniline on cotton fabric. Taking advantage of BP's puckered honeycomb lattice structure and superior electrical properties as well as the vast wavy fabric surface, this BP@PANI-based tactile sensor exhibits excellent sensitivity, low-pressure sensitivity, reasonable response time, and good cycle stability. For a real-world application, a prototype device employs six BP@PANI tactile sensors that correspond to braille characters and can convert pressed text into audio on reading or typing to assist visually or speech-disabled persons. Overall, this research offers promising insight into the material candidates and strategies for the development of auditory feedback devices based on layered and 2D materials for human-machine interfaces.

Zobrazit více v PubMed

Luo N, et al. Hollow-structured graphene-silicone-composite-based piezoresistive sensors: decoupled property tuning and bending reliability. Adv. Mater. 2017;29:1702675. doi: 10.1002/adma.201702675. PubMed DOI

Sundaram S, et al. Learning the signatures of the human grasp using a scalable tactile glove. Nature. 2019;569:698–702. doi: 10.1038/s41586-019-1234-z. PubMed DOI

Lee S, et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science. 2020;370:966–970. doi: 10.1126/science.abc9735. PubMed DOI

Dagdeviren C, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extrem. Mech. Lett. 2016;9:269–281. doi: 10.1016/j.eml.2016.05.015. DOI

Choudhry I, Khalid HR, Lee H-K. Flexible piezoelectric transducers for energy harvesting and sensing from human kinematics. ACS Appl. Electron. Mater. 2020;2:3346–3357. doi: 10.1021/acsaelm.0c00636. DOI

Asghar W, et al. Piezocapacitive flexible e-skin pressure sensors having magnetically grown microstructures. Adv. Mater. Technol. 2020;5:1900934. doi: 10.1002/admt.201900934. DOI

Ma, Z. et al. Recent progress in flexible capacitive sensors: structures and properties. Nano Mater. Sci. 10.1016/j.nanoms.2021.11.002 (2022).

Tang CY, et al. Low-entropy structured wearable film sensor with piezoresistive-piezoelectric hybrid effect for 3D mechanical signal screening. Nano Energy. 2021;90:106603. doi: 10.1016/j.nanoen.2021.106603. DOI

Su T, et al. MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy. 2021;87:106151. doi: 10.1016/j.nanoen.2021.106151. DOI

Guan X, et al. Flexible piezoresistive sensors with wide-range pressure measurements based on a graded nest-like architecture. ACS Appl. Mater. Interfaces. 2020;12:26137–26144. doi: 10.1021/acsami.0c03326. PubMed DOI

Chen S, et al. Recent developments in graphene-based tactile sensors and e-skins. Adv. Mater. Technol. 2018;3:1700248. doi: 10.1002/admt.201700248. DOI

Chen W, et al. Structural engineering for high sensitivity, ultrathin pressure sensors based on wrinkled graphene and anodic aluminum oxide membrane. ACS Appl. Mater. Interfaces. 2017;9:24111–24117. doi: 10.1021/acsami.7b05515. PubMed DOI

Vaghasiya JV, et al. Flexible wearable mxene Ti3C2-based power patch running on sweat. Biosens. Bioelectron. 2022;205:114092. doi: 10.1016/j.bios.2022.114092. PubMed DOI

Vaghasiya JV, et al. MXene-based flexible supercapacitors: influence of an organic ionic conductor electrolyte on the performance. ACS Appl. Mater. Interfaces. 2020;12:53039–53048. doi: 10.1021/acsami.0c12879. PubMed DOI

Zeng R, et al. CRISPR-Cas12a-driven mxene-PEDOT:PSS piezoresistive wireless biosensor. Nano Energy. 2021;82:105711. doi: 10.1016/j.nanoen.2020.105711. DOI

Vaghasiya JV, et al. Integrated biomonitoring sensing with wearable asymmetric supercapacitors based on Ti3C2 mxene and 1T-Phase WS2 nanosheets. Adv. Funct. Mater. 2020;30:2003673. doi: 10.1002/adfm.202003673. DOI

Vaghasiya JV, Mayorga-Martinez CC, Pumera M. Flexible energy generation and storage devices: focus on key role of heterocyclic solid-state organic ionic conductors. Chem. Soc. Rev. 2020;49:7819–7844. doi: 10.1039/D0CS00698J. PubMed DOI

Yue Y, et al. 3D Hybrid porous mxene-sponge network and its application in piezoresistive sensor. Nano Energy. 2018;50:79–87. doi: 10.1016/j.nanoen.2018.05.020. DOI

Ma Y, et al. A Highly flexible and sensitive piezoresistive sensor based on mxene with greatly changed interlayer distances. Nat. Commun. 2017;8:1207. doi: 10.1038/s41467-017-01136-9. PubMed DOI PMC

Yang T, et al. Mechanical sensors based on two-dimensional materials: Sensing mechanisms, structural designs and wearable applications. iScience. 2022;25:103728. doi: 10.1016/j.isci.2021.103728. PubMed DOI PMC

Ma W, et al. Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators. Adv. Mater. 2020;32:1905795. doi: 10.1002/adma.201905795. PubMed DOI

Zhang Z, et al. Strain-modulated bandgap and piezo-resistive effect in black phosphorus field-effect transistors. Nano Lett. 2017;17:6097–6103. doi: 10.1021/acs.nanolett.7b02624. PubMed DOI

Huang L, et al. Strain induced piezoelectric effect in black phosphorus and mos2 van der waals heterostructure. Sci. Rep. 2015;5:16448. doi: 10.1038/srep16448. PubMed DOI PMC

Vaghasiya JV, et al. Real-time biomonitoring device based on 2d black phosphorus and polyaniline nanocomposite flexible supercapacitors. Small. 2021;17:2102337. doi: 10.1002/smll.202102337. PubMed DOI

Selamneni V, Amogh BS, Sahatiya P. Highly air-stabilized black phosphorus on disposable paper substrate as a tunnelling effect-based highly sensitive piezoresistive strain sensor. Med. Devices Sens. 2020;3:e10099. doi: 10.1002/mds3.10099. DOI

Moghaddam AS, et al. Black phosphorus nanoflakes/polyaniline hybrid material for high-performance pseudocapacitors. J. Phys. Chem. C. 2017;121:20532. doi: 10.1021/acs.jpcc.7b06958. DOI

Lu L, et al. Flexible noncontact sensing for human-machine interaction. Adv. Mater. 2021;33:2100218. doi: 10.1002/adma.202100218. PubMed DOI

Wang H, Ma X, Hao Y. Electronic devices for human-machine interfaces. Adv. Mater. Interfaces. 2017;4:1600709. doi: 10.1002/admi.201600709. DOI

Vaghasiya JV, Mayorga-Martinez CC, Pumera M. Telemedicine platform for health assessment remotely by an integrated nanoarchitectonics FePS3/rGO and Ti3C2-based wearable device. npj Flex. Electron. 2022;6:73. doi: 10.1038/s41528-022-00208-1. PubMed DOI PMC

Zhao X-F, et al. A skin-like sensor for intelligent Braille recognition. Nano Energy. 2020;68:104346. doi: 10.1016/j.nanoen.2019.104346. DOI

Qu X, et al. Refreshable braille display system based on triboelectric nanogenerator and dielectric elastomer. Adv. Funct. Mater. 2021;31:2006612. doi: 10.1002/adfm.202006612. DOI

Bae K, et al. Large-area, crosstalk-free, flexible tactile sensor matrix pixelated by mesh layers. ACS Appl. Mater. Interfaces. 2021;13:12259–12267. doi: 10.1021/acsami.0c21671. PubMed DOI

Basciftci F, Eldem A. An interactive and multi-functional refreshable Braille device for the visually impaired. Displays. 2016;41:33–41. doi: 10.1016/j.displa.2015.11.001. DOI

Li D, et al. Miniaturization of mechanical actuators in skin-integrated electronics for haptic interfaces. Microsyst. Nanoeng. 2021;7:85. doi: 10.1038/s41378-021-00301-x. PubMed DOI PMC

Song SJ, et al. Comparison of cytotoxicity of black phosphorus nanosheets in different types of fibroblasts. Biomater. Res. 2019;23:23. doi: 10.1186/s40824-019-0174-x. PubMed DOI PMC

Mohammadi AM, et al. Thick and freestanding mxene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A. 2018;6:22123–22133. doi: 10.1039/C8TA05807E. DOI

Sarswat PK, et al. Structural and electrical irregularities caused by selected dopants in black-phosphorus. ECS J. Solid State Sci. Technol. 2016;5:Q3026–Q3032. doi: 10.1149/2.0061611jss. DOI

Yew YT, et al. Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Mater. Chem. Front. 2017;1:1130–1136. doi: 10.1039/C6QM00341A. DOI

Cui S, et al. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 2015;6:8632. doi: 10.1038/ncomms9632. PubMed DOI PMC

Li T, et al. A Flexible pressure sensor based on an mxene-textile network structure. J. Mater. Chem. C. 2019;7:1022–1027. doi: 10.1039/C8TC04893B. DOI

Zhou Z, et al. Supersensitive all-fabric pressure sensors using printed textile electrode arrays for human motion monitoring and human–machine interaction. J. Mater. Chem. C. 2018;6:13120–13127. doi: 10.1039/C8TC02716A. DOI

Chang S, et al. A high-sensitivity and low-hysteresis flexible pressure sensor based on carbonized cotton fabric. Sens. Actuator A: Phys. 2019;294:45–53. doi: 10.1016/j.sna.2019.05.011. DOI

Chen X, et al. A High compressibility pressure-sensitive structure based on CB@PU yarn network. Sensors. 2018;18:4141. doi: 10.3390/s18124141. PubMed DOI PMC

Chen W, et al. Flexible pressure sensor with high sensitivity and low hysteresis based on ahierarchically microstructured electrode. IEEE Electron Device Lett. 2018;39:288–291. doi: 10.1109/LED.2017.2784538. DOI

Amjadi M, Kyung KU, Park I, Sitti M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 2016;26:1678–1698. doi: 10.1002/adfm.201504755. DOI

Yang T, Xie D, Li Z, Zhu H. Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance. Mater. Sci. Eng. R.-Rep. 2017;115:1–37. doi: 10.1016/j.mser.2017.02.001. DOI

Li X, et al. Ultracomfortable hierarchical nano network for highly sensitive pressure sensor. ACS Nano. 2020;14:9605–9612. doi: 10.1021/acsnano.9b10230. PubMed DOI

Ren H, et al. Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano. 2019;13:5541–5548. doi: 10.1021/acsnano.9b00395. PubMed DOI

Wang Q, Jian M, Wang C, Zhang Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 2017;27:1–9.

Chen T, et al. Highly sensitive and wide-detection range pressure sensor constructed on a hierarchical-structured conductive fabric as a human-machine interface. Nanoscale. 2020;12:21271–21279. doi: 10.1039/D0NR05976E. PubMed DOI

Shi J, et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small. 2018;14:1800819. doi: 10.1002/smll.201800819. PubMed DOI

Ge G, et al. A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale. 2018;10:10033–10040. doi: 10.1039/C8NR02813C. PubMed DOI

Kim K-H, et al. Wearable resistive pressure sensor based on highly flexible carbon composite conductors with irregular surface morphology. ACS Appl. Mater. Interfaces. 2017;9:17499–17507. doi: 10.1021/acsami.7b06119. PubMed DOI

Gao X, et al. Flexible stannum-doped SrTiO3 nano fiber membranes for highly sensitive and reliable piezoresistive pressure sensors. ACS Appl. Mater. Interfaces. 2021;13:52811–52821. doi: 10.1021/acsami.1c17789. PubMed DOI

Qi K, et al. A Highly stretchable nanofiber-based electronic skin with pressure-, strain-, and flexion-sensitive properties for health and motion monitoring. ACS Appl. Mater. Interfaces. 2017;9:42951–42960. doi: 10.1021/acsami.7b07935. PubMed DOI

Liu M, et al. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017;29:1–9. doi: 10.1002/adma.201703700. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Wearable sensors for telehealth based on emerging materials and nanoarchitectonics

. 2023 ; 7 (1) : 26. [epub] 20230602

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.21311748

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...