Black phosphorous-based human-machine communication interface
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36596775
PubMed Central
PMC9810665
DOI
10.1038/s41467-022-34482-4
PII: 10.1038/s41467-022-34482-4
Knihovny.cz E-zdroje
- MeSH
- hmat * MeSH
- komunikace * MeSH
- lidé MeSH
- poruchy řeči MeSH
- řeč MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polyaniline MeSH Prohlížeč
Assistive technology involving auditory feedback is generally utilized by those who are visually impaired or have speech and language difficulties. Therefore, here we concentrate on an auditory human-machine interface that uses audio as a platform for conveying information between visually or speech-disabled users and society. We develop a piezoresistive tactile sensor based on a black phosphorous and polyaniline (BP@PANI) composite by the facile chemical oxidative polymerization of aniline on cotton fabric. Taking advantage of BP's puckered honeycomb lattice structure and superior electrical properties as well as the vast wavy fabric surface, this BP@PANI-based tactile sensor exhibits excellent sensitivity, low-pressure sensitivity, reasonable response time, and good cycle stability. For a real-world application, a prototype device employs six BP@PANI tactile sensors that correspond to braille characters and can convert pressed text into audio on reading or typing to assist visually or speech-disabled persons. Overall, this research offers promising insight into the material candidates and strategies for the development of auditory feedback devices based on layered and 2D materials for human-machine interfaces.
Zobrazit více v PubMed
Luo N, et al. Hollow-structured graphene-silicone-composite-based piezoresistive sensors: decoupled property tuning and bending reliability. Adv. Mater. 2017;29:1702675. doi: 10.1002/adma.201702675. PubMed DOI
Sundaram S, et al. Learning the signatures of the human grasp using a scalable tactile glove. Nature. 2019;569:698–702. doi: 10.1038/s41586-019-1234-z. PubMed DOI
Lee S, et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science. 2020;370:966–970. doi: 10.1126/science.abc9735. PubMed DOI
Dagdeviren C, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extrem. Mech. Lett. 2016;9:269–281. doi: 10.1016/j.eml.2016.05.015. DOI
Choudhry I, Khalid HR, Lee H-K. Flexible piezoelectric transducers for energy harvesting and sensing from human kinematics. ACS Appl. Electron. Mater. 2020;2:3346–3357. doi: 10.1021/acsaelm.0c00636. DOI
Asghar W, et al. Piezocapacitive flexible e-skin pressure sensors having magnetically grown microstructures. Adv. Mater. Technol. 2020;5:1900934. doi: 10.1002/admt.201900934. DOI
Ma, Z. et al. Recent progress in flexible capacitive sensors: structures and properties. Nano Mater. Sci. 10.1016/j.nanoms.2021.11.002 (2022).
Tang CY, et al. Low-entropy structured wearable film sensor with piezoresistive-piezoelectric hybrid effect for 3D mechanical signal screening. Nano Energy. 2021;90:106603. doi: 10.1016/j.nanoen.2021.106603. DOI
Su T, et al. MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy. 2021;87:106151. doi: 10.1016/j.nanoen.2021.106151. DOI
Guan X, et al. Flexible piezoresistive sensors with wide-range pressure measurements based on a graded nest-like architecture. ACS Appl. Mater. Interfaces. 2020;12:26137–26144. doi: 10.1021/acsami.0c03326. PubMed DOI
Chen S, et al. Recent developments in graphene-based tactile sensors and e-skins. Adv. Mater. Technol. 2018;3:1700248. doi: 10.1002/admt.201700248. DOI
Chen W, et al. Structural engineering for high sensitivity, ultrathin pressure sensors based on wrinkled graphene and anodic aluminum oxide membrane. ACS Appl. Mater. Interfaces. 2017;9:24111–24117. doi: 10.1021/acsami.7b05515. PubMed DOI
Vaghasiya JV, et al. Flexible wearable mxene Ti3C2-based power patch running on sweat. Biosens. Bioelectron. 2022;205:114092. doi: 10.1016/j.bios.2022.114092. PubMed DOI
Vaghasiya JV, et al. MXene-based flexible supercapacitors: influence of an organic ionic conductor electrolyte on the performance. ACS Appl. Mater. Interfaces. 2020;12:53039–53048. doi: 10.1021/acsami.0c12879. PubMed DOI
Zeng R, et al. CRISPR-Cas12a-driven mxene-PEDOT:PSS piezoresistive wireless biosensor. Nano Energy. 2021;82:105711. doi: 10.1016/j.nanoen.2020.105711. DOI
Vaghasiya JV, et al. Integrated biomonitoring sensing with wearable asymmetric supercapacitors based on Ti3C2 mxene and 1T-Phase WS2 nanosheets. Adv. Funct. Mater. 2020;30:2003673. doi: 10.1002/adfm.202003673. DOI
Vaghasiya JV, Mayorga-Martinez CC, Pumera M. Flexible energy generation and storage devices: focus on key role of heterocyclic solid-state organic ionic conductors. Chem. Soc. Rev. 2020;49:7819–7844. doi: 10.1039/D0CS00698J. PubMed DOI
Yue Y, et al. 3D Hybrid porous mxene-sponge network and its application in piezoresistive sensor. Nano Energy. 2018;50:79–87. doi: 10.1016/j.nanoen.2018.05.020. DOI
Ma Y, et al. A Highly flexible and sensitive piezoresistive sensor based on mxene with greatly changed interlayer distances. Nat. Commun. 2017;8:1207. doi: 10.1038/s41467-017-01136-9. PubMed DOI PMC
Yang T, et al. Mechanical sensors based on two-dimensional materials: Sensing mechanisms, structural designs and wearable applications. iScience. 2022;25:103728. doi: 10.1016/j.isci.2021.103728. PubMed DOI PMC
Ma W, et al. Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators. Adv. Mater. 2020;32:1905795. doi: 10.1002/adma.201905795. PubMed DOI
Zhang Z, et al. Strain-modulated bandgap and piezo-resistive effect in black phosphorus field-effect transistors. Nano Lett. 2017;17:6097–6103. doi: 10.1021/acs.nanolett.7b02624. PubMed DOI
Huang L, et al. Strain induced piezoelectric effect in black phosphorus and mos2 van der waals heterostructure. Sci. Rep. 2015;5:16448. doi: 10.1038/srep16448. PubMed DOI PMC
Vaghasiya JV, et al. Real-time biomonitoring device based on 2d black phosphorus and polyaniline nanocomposite flexible supercapacitors. Small. 2021;17:2102337. doi: 10.1002/smll.202102337. PubMed DOI
Selamneni V, Amogh BS, Sahatiya P. Highly air-stabilized black phosphorus on disposable paper substrate as a tunnelling effect-based highly sensitive piezoresistive strain sensor. Med. Devices Sens. 2020;3:e10099. doi: 10.1002/mds3.10099. DOI
Moghaddam AS, et al. Black phosphorus nanoflakes/polyaniline hybrid material for high-performance pseudocapacitors. J. Phys. Chem. C. 2017;121:20532. doi: 10.1021/acs.jpcc.7b06958. DOI
Lu L, et al. Flexible noncontact sensing for human-machine interaction. Adv. Mater. 2021;33:2100218. doi: 10.1002/adma.202100218. PubMed DOI
Wang H, Ma X, Hao Y. Electronic devices for human-machine interfaces. Adv. Mater. Interfaces. 2017;4:1600709. doi: 10.1002/admi.201600709. DOI
Vaghasiya JV, Mayorga-Martinez CC, Pumera M. Telemedicine platform for health assessment remotely by an integrated nanoarchitectonics FePS3/rGO and Ti3C2-based wearable device. npj Flex. Electron. 2022;6:73. doi: 10.1038/s41528-022-00208-1. PubMed DOI PMC
Zhao X-F, et al. A skin-like sensor for intelligent Braille recognition. Nano Energy. 2020;68:104346. doi: 10.1016/j.nanoen.2019.104346. DOI
Qu X, et al. Refreshable braille display system based on triboelectric nanogenerator and dielectric elastomer. Adv. Funct. Mater. 2021;31:2006612. doi: 10.1002/adfm.202006612. DOI
Bae K, et al. Large-area, crosstalk-free, flexible tactile sensor matrix pixelated by mesh layers. ACS Appl. Mater. Interfaces. 2021;13:12259–12267. doi: 10.1021/acsami.0c21671. PubMed DOI
Basciftci F, Eldem A. An interactive and multi-functional refreshable Braille device for the visually impaired. Displays. 2016;41:33–41. doi: 10.1016/j.displa.2015.11.001. DOI
Li D, et al. Miniaturization of mechanical actuators in skin-integrated electronics for haptic interfaces. Microsyst. Nanoeng. 2021;7:85. doi: 10.1038/s41378-021-00301-x. PubMed DOI PMC
Song SJ, et al. Comparison of cytotoxicity of black phosphorus nanosheets in different types of fibroblasts. Biomater. Res. 2019;23:23. doi: 10.1186/s40824-019-0174-x. PubMed DOI PMC
Mohammadi AM, et al. Thick and freestanding mxene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A. 2018;6:22123–22133. doi: 10.1039/C8TA05807E. DOI
Sarswat PK, et al. Structural and electrical irregularities caused by selected dopants in black-phosphorus. ECS J. Solid State Sci. Technol. 2016;5:Q3026–Q3032. doi: 10.1149/2.0061611jss. DOI
Yew YT, et al. Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Mater. Chem. Front. 2017;1:1130–1136. doi: 10.1039/C6QM00341A. DOI
Cui S, et al. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 2015;6:8632. doi: 10.1038/ncomms9632. PubMed DOI PMC
Li T, et al. A Flexible pressure sensor based on an mxene-textile network structure. J. Mater. Chem. C. 2019;7:1022–1027. doi: 10.1039/C8TC04893B. DOI
Zhou Z, et al. Supersensitive all-fabric pressure sensors using printed textile electrode arrays for human motion monitoring and human–machine interaction. J. Mater. Chem. C. 2018;6:13120–13127. doi: 10.1039/C8TC02716A. DOI
Chang S, et al. A high-sensitivity and low-hysteresis flexible pressure sensor based on carbonized cotton fabric. Sens. Actuator A: Phys. 2019;294:45–53. doi: 10.1016/j.sna.2019.05.011. DOI
Chen X, et al. A High compressibility pressure-sensitive structure based on CB@PU yarn network. Sensors. 2018;18:4141. doi: 10.3390/s18124141. PubMed DOI PMC
Chen W, et al. Flexible pressure sensor with high sensitivity and low hysteresis based on ahierarchically microstructured electrode. IEEE Electron Device Lett. 2018;39:288–291. doi: 10.1109/LED.2017.2784538. DOI
Amjadi M, Kyung KU, Park I, Sitti M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 2016;26:1678–1698. doi: 10.1002/adfm.201504755. DOI
Yang T, Xie D, Li Z, Zhu H. Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance. Mater. Sci. Eng. R.-Rep. 2017;115:1–37. doi: 10.1016/j.mser.2017.02.001. DOI
Li X, et al. Ultracomfortable hierarchical nano network for highly sensitive pressure sensor. ACS Nano. 2020;14:9605–9612. doi: 10.1021/acsnano.9b10230. PubMed DOI
Ren H, et al. Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano. 2019;13:5541–5548. doi: 10.1021/acsnano.9b00395. PubMed DOI
Wang Q, Jian M, Wang C, Zhang Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 2017;27:1–9.
Chen T, et al. Highly sensitive and wide-detection range pressure sensor constructed on a hierarchical-structured conductive fabric as a human-machine interface. Nanoscale. 2020;12:21271–21279. doi: 10.1039/D0NR05976E. PubMed DOI
Shi J, et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small. 2018;14:1800819. doi: 10.1002/smll.201800819. PubMed DOI
Ge G, et al. A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale. 2018;10:10033–10040. doi: 10.1039/C8NR02813C. PubMed DOI
Kim K-H, et al. Wearable resistive pressure sensor based on highly flexible carbon composite conductors with irregular surface morphology. ACS Appl. Mater. Interfaces. 2017;9:17499–17507. doi: 10.1021/acsami.7b06119. PubMed DOI
Gao X, et al. Flexible stannum-doped SrTiO3 nano fiber membranes for highly sensitive and reliable piezoresistive pressure sensors. ACS Appl. Mater. Interfaces. 2021;13:52811–52821. doi: 10.1021/acsami.1c17789. PubMed DOI
Qi K, et al. A Highly stretchable nanofiber-based electronic skin with pressure-, strain-, and flexion-sensitive properties for health and motion monitoring. ACS Appl. Mater. Interfaces. 2017;9:42951–42960. doi: 10.1021/acsami.7b07935. PubMed DOI
Liu M, et al. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017;29:1–9. doi: 10.1002/adma.201703700. PubMed DOI
figshare
10.6084/m9.figshare.21311748