Wearable sensors for telehealth based on emerging materials and nanoarchitectonics

. 2023 ; 7 (1) : 26. [epub] 20230602

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37304907

Wearable sensors have made significant progress in sensing physiological and biochemical markers for telehealth. By monitoring vital signs like body temperature, arterial oxygen saturation, and breath rate, wearable sensors provide enormous potential for the early detection of diseases. In recent years, significant advancements have been achieved in the development of wearable sensors based on two-dimensional (2D) materials with flexibility, excellent mechanical stability, high sensitivity, and accuracy introducing a new approach to remote and real-time health monitoring. In this review, we outline 2D materials-based wearable sensors and biosensors for a remote health monitoring system. The review focused on five types of wearable sensors, which were classified according to their sensing mechanism, such as pressure, strain, electrochemical, optoelectronic, and temperature sensors. 2D material capabilities and their impact on the performance and operation of the wearable sensor are outlined. The fundamental sensing principles and mechanism of wearable sensors, as well as their applications are explored. This review concludes by discussing the remaining obstacles and future opportunities for this emerging telehealth field. We hope that this report will be useful to individuals who want to design new wearable sensors based on 2D materials and it will generate new ideas.

Zobrazit více v PubMed

Straits research, Wearable sensors market, https://straitsresearch.com/report/wearable-sensors-market (accessed March 27, 2023).

Ha M, Lim S, Ko H. Wearable and flexible sensors for user-interactive health-monitoring devices. J. Mater. Chem. B. 2018;6:4043–4064. doi: 10.1039/C8TB01063C. PubMed DOI

Wang M, et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 2022;6:1225–1235. doi: 10.1038/s41551-022-00916-z. PubMed DOI PMC

Zhang R, Jiang J, Wu W. Wearable chemical sensors based on 2D materials for healthcare applications. Nanoscale. 2023;15:3079–3105. doi: 10.1039/D2NR05447G. PubMed DOI

Monaghesh E, Hajizadeh A. The role of telehealth during COVID-19 outbreak: a systematic review based on current evidence. BMC Public Health. 2020;20:1193. doi: 10.1186/s12889-020-09301-4. PubMed DOI PMC

Lopez LJR, Garcia AR, Aponte GP. Internet of things in healthcare monitoring to enhance acquisition performance of respiratory disorder sensors. Int. J. Distrib. Sens. Netw. 2019;15:337–341.

Vaghasiya JV, Mayorga-Martinez CC, Vyskocil J, Pumera M. Flexible wearable MXene Ti3C2-Based power patch running on sweat. Biosens. Bioelectron. 2022;205:114092. doi: 10.1016/j.bios.2022.114092. PubMed DOI

Bandodkar AJ, et al. Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. Nat. Electron. 2020;3:554–562. doi: 10.1038/s41928-020-0443-7. DOI

Chen X, et al. Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics. Adv. Energy Mater. 2019;10:1902769. doi: 10.1002/aenm.201902769. DOI

Qiao Y, et al. Graphene-based wearable sensors. Nanoscale. 2019;11:18923–18945. doi: 10.1039/C9NR05532K. PubMed DOI

Rohaizad N, Mayorga-Martinez CC, Fojtu M, Latiff NM, Pumera M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem. Soc. Rev. 2021;50:619–657. doi: 10.1039/D0CS00150C. PubMed DOI

Garg M, Gupta A, Sharma AL, Singh S. Advancements in 2D materials-based biosensors for oxidative stress biomarkers. ACS Appl. Bio Mater. 2021;4:5944–5960. doi: 10.1021/acsabm.1c00625. PubMed DOI

Pang Y, Yang Z, Yang Y, Ren TL. Wearable electronics based on 2D materials for human physiological information detection. Small. 2020;16:1901124. doi: 10.1002/smll.201901124. PubMed DOI

Vaghasiya JV, Mayorga-Martinez CC, Pumera M. Telemedicine platform for health assessment remotely by an integrated nanoarchitectonics FePS3/rGO and Ti3C2-based wearable device. npj Flex. Electron. 2022;6:73. doi: 10.1038/s41528-022-00208-1. PubMed DOI PMC

Mathew M, Radhakrishnan S, Vaidyanathan A, Chakraborty B, Rout CS. Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments. Anal. Bioanal. Chem. 2021;413:727–762. doi: 10.1007/s00216-020-03002-y. PubMed DOI PMC

Cheng Y, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano. 2020;14:2145–2155. doi: 10.1021/acsnano.9b08952. PubMed DOI

Kang M, et al. Wireless graphene-based thermal patch for obtaining temperature distribution and performing thermography. Sci. Adv. 2022;8:eabm6693. doi: 10.1126/sciadv.abm6693. PubMed DOI PMC

Lee KH, et al. Muscle fatigue sensor based on Ti3C2Tx MXene hydrogel. Small Methods. 2021;5:2100819. doi: 10.1002/smtd.202100819. PubMed DOI

Chao M, et al. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano. 2021;15:9746–9758. doi: 10.1021/acsnano.1c00472. PubMed DOI

Zhang S, et al. A wearable battery-free wireless and skin-interfaced microfluidics integrated electrochemical sensing patch for on-site biomarkers monitoring in human perspiration. Biosens. Bioelectron. 2021;175:112844. doi: 10.1016/j.bios.2020.112844. PubMed DOI

Torrente-Rodrıguez RM, et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mhealth system. Matter. 2020;2:921–937. doi: 10.1016/j.matt.2020.01.021. PubMed DOI PMC

Nan X, et al. Review of flexible wearable sensor devices for biomedical application. Micromachines. 2022;13:1395. doi: 10.3390/mi13091395. PubMed DOI PMC

Ahmed A, et al. Two-dimensional MXenes: New frontier of wearable and flexible electronics. InfoMat. 2022;4:e12295. doi: 10.1002/inf2.12295. DOI

Kim J, et al. 2D Materials for skin-mountable electronic devices. Adv. Mater. 2021;33:2005858. doi: 10.1002/adma.202005858. PubMed DOI

Xie L, et al. Intelligent wearable devices based on nanomaterials and nanostructures for healthcare. Nanoscale. 2023;15:405–433. doi: 10.1039/D2NR04551F. PubMed DOI

Martin C, Kpstarelos K, Prato M, Bianco A. Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chem. Commun. 2019;55:5540–5546. doi: 10.1039/C9CC01205B. PubMed DOI

Shanmugam V. A review of the synthesis, properties, and applications of 2D materials. Part Part Syst. Charact. 2022;39:2200031. doi: 10.1002/ppsc.202200031. DOI

Khan K, et al. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C. 2020;8:387–440. doi: 10.1039/C9TC04187G. DOI

Chia HL, Mayorga-Martinez CC, Pumera M. Doping and decorating 2D materials for biosensing: benefits and drawbacks. Adv. Funct. Mater. 2021;31:2102555. doi: 10.1002/adfm.202102555. DOI

Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: the new two-dimensional nanomaterial, Angew. Chem. Int. Ed. 2009;48:7752–7777. doi: 10.1002/anie.200901678. PubMed DOI

Aziz A, et al. Environmental significance of wearable sensors based on MXene and graphene. Trends Environ. Anal. Chem. 2022;36:e00180. doi: 10.1016/j.teac.2022.e00180. DOI

Mia AK, Meyyappan M, Giri PK. Two-dimensional transition metal dichalcogenide based biosensors: from fundamentals to healthcare applications. Biosensors. 2023;13:169. doi: 10.3390/bios13020169. PubMed DOI PMC

Yang T, et al. Mechanical sensors based on two-dimensional materials: Sensing mechanisms, structural designs and wearable applications. iScience. 2022;25:103728. doi: 10.1016/j.isci.2021.103728. PubMed DOI PMC

Zho X, et al. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano. 2020;14:8793–8805. doi: 10.1021/acsnano.0c03391. PubMed DOI

Meng K, et al. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022;34:2109357. doi: 10.1002/adma.202109357. PubMed DOI

Zhang F, et al. A highly accurate flexible sensor system for human blood pressure and heart rate monitoring based on graphene/sponge. RSC Adv. 2022;12:2391–2398. doi: 10.1039/D1RA08608A. PubMed DOI PMC

Huo Z, Wei Y, Wang Y, Wang ZL, Sun Q. Integrated self-powered sensors based on 2D material devices. Adv. Funct. Mater. 2022;32:2206900. doi: 10.1002/adfm.202206900. DOI

Sharma S, Chhetry A, Sharifuzzaman M, Yoon H, Park JY. Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl. Mater. Interfaces. 2020;12:22212–22224. doi: 10.1021/acsami.0c05819. PubMed DOI

Souri H, et al. Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications. Adv. Int. syst. 2020;2:2000039. doi: 10.1002/aisy.202000039. DOI

He J, et al. A Universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor. Nano Energy. 2019;59:422–433. doi: 10.1016/j.nanoen.2019.02.036. DOI

Guo Y, Zhong M, Fang Z, Wan P, Yu G. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 2019;19:1143–1150. doi: 10.1021/acs.nanolett.8b04514. PubMed DOI

Yang L, et al. Wearable Pressure Sensors Based on MXene/tissue papers for wireless human health monitoring. ACS Appl. Mater. Interfaces. 2021;13:60531–60543. doi: 10.1021/acsami.1c22001. PubMed DOI

Xing H, et al. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sens. Actuators B Chem. 2022;361:131704. doi: 10.1016/j.snb.2022.131704. DOI

Vaghasiya JV, Mayorga-Martinez CC, Vyskocil J, Pumera M. Black phosphorous-based human-machine communication interface. Nat. Commun. 2022;14:2. doi: 10.1038/s41467-022-34482-4. PubMed DOI PMC

Vaghasiya JV, Mayorga-Martinez CC, Vyskocil J, Sofer Z, Pumera M. Integrated biomonitoring sensing with wearable asymmetric supercapacitors based on Ti3C2 MXene and 1T-Phase WS2 nanosheets. Adv. Funct. Mater. 2020;30:2003673. doi: 10.1002/adfm.202003673. DOI

Vaghasiya JV, Křípalová K, Hermanová S, Mayorga-Martinez CC, Pumera M. Real-time biomonitoring device based on 2D black phosphorus and polyaniline nanocomposite flexible supercapacitors. Small. 2021;17:2102337. doi: 10.1002/smll.202102337. PubMed DOI

Yi Q, et al. A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy. 2022;101:107511. doi: 10.1016/j.nanoen.2022.107511. DOI

He Y, et al. Wearable strain sensors based on a porous polydimethylsiloxane hybrid with carbon nanotubes and graphene. ACS Appl. Mater. Interfaces. 2021;13:15572–15583. doi: 10.1021/acsami.0c22823. PubMed DOI

Jiang Y, Chen Y, Wang W, Yu D. A wearable strain sensor based on polyurethane nanofiber membrane with silver nanowires/polyaniline electrically conductive dual-network. Colloids Surf. A Physicochem. Eng. Asp. 2021;626:127477. doi: 10.1016/j.colsurfa.2021.127477. DOI

Zhou K, Dai K, liu C, Shen C. Flexible conductive polymer composites for smart wearable strain sensors. SmartMat. 2020;1:e1010. doi: 10.1002/smm2.1010. DOI

Chao M, et al. Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy. 2020;78:105187. doi: 10.1016/j.nanoen.2020.105187. DOI

Zhang S, et al. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. npj Flex. Electron. 2022;6:11. doi: 10.1038/s41528-022-00140-4. DOI

Lee H, et al. Porous microneedles on a paper for screening test of prediabetes. Med Devices Sens. 2020;3:e10099. doi: 10.1002/mds3.10109. DOI

Sankar V, et al. Waterproof flexible polymer-functionalized graphene-based piezoresistive strain sensor for structural health monitoring and wearable devices. ACS Omega. 2020;5:12682–12691. doi: 10.1021/acsomega.9b04205. PubMed DOI PMC

Cao Y, et al. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection. Nano Energy. 2022;92:106689. doi: 10.1016/j.nanoen.2021.106689. DOI

Polat EO, et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 2019;5:eaaw7846. doi: 10.1126/sciadv.aaw7846. PubMed DOI PMC

Akinwande D, Kireev D. Wearable graphene sensors use ambient light to monitor health. Nature. 2019;576:220–221. doi: 10.1038/d41586-019-03483-7. PubMed DOI

Lei Y, et al. A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small. 2019;15:1901190. doi: 10.1002/smll.201901190. PubMed DOI

Torrente-Rodrıguez RM, et al. SARS-CoV-2 RapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter. 2020;3:1981–1998. doi: 10.1016/j.matt.2020.09.027. PubMed DOI PMC

Shao Y, et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 2022;13:3223. doi: 10.1038/s41467-022-30648-2. PubMed DOI PMC

Li D, et al. Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 2020;12:36. doi: 10.1007/s40820-020-0374-x. PubMed DOI PMC

Iqbal A, Hong J, Koo CM. Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 2021;8:9. doi: 10.1186/s40580-021-00259-6. PubMed DOI PMC

Li N, et al. MXenes: an emerging platform for wearable electronics and looking beyond. Matter. 2021;4:377–407. doi: 10.1016/j.matt.2020.10.024. DOI

Jin X, et al. Highly stable Ti3C2Tx MXene-based sandwich-like structure via interfacial self-assembly of nitrogen-rich polymer network for superior sodium-ion storage performance. Chem. Eng. J. 2023;451:138763. doi: 10.1016/j.cej.2022.138763. DOI

Bhat A, et al. Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. npj 2D mater. Appl. 2021;5:61. doi: 10.1038/s41699-021-00239-8. DOI

Shuck CE, et al. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 2020;22:1901241. doi: 10.1002/adem.201901241. DOI

Yu M, Feng X. Scalable manufacturing of MXene films: moving toward industrialization. Matter. 2020;3:335–336. doi: 10.1016/j.matt.2020.07.011. DOI

Shaik T, et al. Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 2023;13:e1485.

Li Y, et al. Integrated wearable smart sensor system for real-time multi-parameter respiration health monitoring. Cell Rep. Phy. Sci. 2023;4:101191. doi: 10.1016/j.xcrp.2022.101191. DOI

Gupta S, et al. Ultra-thin chips for high-performance flexible electronics. npj Flex. Electron. 2018;2:8. doi: 10.1038/s41528-018-0021-5. DOI

Zhang J, et al. Smart soft contact lenses for continuous 24-hour monitoring of intraocular pressure in glaucoma care. Nat. Commun. 2022;13:5518. doi: 10.1038/s41467-022-33254-4. PubMed DOI PMC

Cai, et al. Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 2020;6:eabb5367. doi: 10.1126/sciadv.abb5367. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...