Wearable sensors for telehealth based on emerging materials and nanoarchitectonics
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37304907
PubMed Central
PMC10237062
DOI
10.1038/s41528-023-00261-4
PII: 261
Knihovny.cz E-zdroje
- Klíčová slova
- Materials for devices, Two-dimensional materials,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Wearable sensors have made significant progress in sensing physiological and biochemical markers for telehealth. By monitoring vital signs like body temperature, arterial oxygen saturation, and breath rate, wearable sensors provide enormous potential for the early detection of diseases. In recent years, significant advancements have been achieved in the development of wearable sensors based on two-dimensional (2D) materials with flexibility, excellent mechanical stability, high sensitivity, and accuracy introducing a new approach to remote and real-time health monitoring. In this review, we outline 2D materials-based wearable sensors and biosensors for a remote health monitoring system. The review focused on five types of wearable sensors, which were classified according to their sensing mechanism, such as pressure, strain, electrochemical, optoelectronic, and temperature sensors. 2D material capabilities and their impact on the performance and operation of the wearable sensor are outlined. The fundamental sensing principles and mechanism of wearable sensors, as well as their applications are explored. This review concludes by discussing the remaining obstacles and future opportunities for this emerging telehealth field. We hope that this report will be useful to individuals who want to design new wearable sensors based on 2D materials and it will generate new ideas.
Zobrazit více v PubMed
Straits research, Wearable sensors market, https://straitsresearch.com/report/wearable-sensors-market (accessed March 27, 2023).
Ha M, Lim S, Ko H. Wearable and flexible sensors for user-interactive health-monitoring devices. J. Mater. Chem. B. 2018;6:4043–4064. doi: 10.1039/C8TB01063C. PubMed DOI
Wang M, et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 2022;6:1225–1235. doi: 10.1038/s41551-022-00916-z. PubMed DOI PMC
Zhang R, Jiang J, Wu W. Wearable chemical sensors based on 2D materials for healthcare applications. Nanoscale. 2023;15:3079–3105. doi: 10.1039/D2NR05447G. PubMed DOI
Monaghesh E, Hajizadeh A. The role of telehealth during COVID-19 outbreak: a systematic review based on current evidence. BMC Public Health. 2020;20:1193. doi: 10.1186/s12889-020-09301-4. PubMed DOI PMC
Lopez LJR, Garcia AR, Aponte GP. Internet of things in healthcare monitoring to enhance acquisition performance of respiratory disorder sensors. Int. J. Distrib. Sens. Netw. 2019;15:337–341.
Vaghasiya JV, Mayorga-Martinez CC, Vyskocil J, Pumera M. Flexible wearable MXene Ti3C2-Based power patch running on sweat. Biosens. Bioelectron. 2022;205:114092. doi: 10.1016/j.bios.2022.114092. PubMed DOI
Bandodkar AJ, et al. Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. Nat. Electron. 2020;3:554–562. doi: 10.1038/s41928-020-0443-7. DOI
Chen X, et al. Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics. Adv. Energy Mater. 2019;10:1902769. doi: 10.1002/aenm.201902769. DOI
Qiao Y, et al. Graphene-based wearable sensors. Nanoscale. 2019;11:18923–18945. doi: 10.1039/C9NR05532K. PubMed DOI
Rohaizad N, Mayorga-Martinez CC, Fojtu M, Latiff NM, Pumera M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem. Soc. Rev. 2021;50:619–657. doi: 10.1039/D0CS00150C. PubMed DOI
Garg M, Gupta A, Sharma AL, Singh S. Advancements in 2D materials-based biosensors for oxidative stress biomarkers. ACS Appl. Bio Mater. 2021;4:5944–5960. doi: 10.1021/acsabm.1c00625. PubMed DOI
Pang Y, Yang Z, Yang Y, Ren TL. Wearable electronics based on 2D materials for human physiological information detection. Small. 2020;16:1901124. doi: 10.1002/smll.201901124. PubMed DOI
Vaghasiya JV, Mayorga-Martinez CC, Pumera M. Telemedicine platform for health assessment remotely by an integrated nanoarchitectonics FePS3/rGO and Ti3C2-based wearable device. npj Flex. Electron. 2022;6:73. doi: 10.1038/s41528-022-00208-1. PubMed DOI PMC
Mathew M, Radhakrishnan S, Vaidyanathan A, Chakraborty B, Rout CS. Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments. Anal. Bioanal. Chem. 2021;413:727–762. doi: 10.1007/s00216-020-03002-y. PubMed DOI PMC
Cheng Y, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano. 2020;14:2145–2155. doi: 10.1021/acsnano.9b08952. PubMed DOI
Kang M, et al. Wireless graphene-based thermal patch for obtaining temperature distribution and performing thermography. Sci. Adv. 2022;8:eabm6693. doi: 10.1126/sciadv.abm6693. PubMed DOI PMC
Lee KH, et al. Muscle fatigue sensor based on Ti3C2Tx MXene hydrogel. Small Methods. 2021;5:2100819. doi: 10.1002/smtd.202100819. PubMed DOI
Chao M, et al. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano. 2021;15:9746–9758. doi: 10.1021/acsnano.1c00472. PubMed DOI
Zhang S, et al. A wearable battery-free wireless and skin-interfaced microfluidics integrated electrochemical sensing patch for on-site biomarkers monitoring in human perspiration. Biosens. Bioelectron. 2021;175:112844. doi: 10.1016/j.bios.2020.112844. PubMed DOI
Torrente-Rodrıguez RM, et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mhealth system. Matter. 2020;2:921–937. doi: 10.1016/j.matt.2020.01.021. PubMed DOI PMC
Nan X, et al. Review of flexible wearable sensor devices for biomedical application. Micromachines. 2022;13:1395. doi: 10.3390/mi13091395. PubMed DOI PMC
Ahmed A, et al. Two-dimensional MXenes: New frontier of wearable and flexible electronics. InfoMat. 2022;4:e12295. doi: 10.1002/inf2.12295. DOI
Kim J, et al. 2D Materials for skin-mountable electronic devices. Adv. Mater. 2021;33:2005858. doi: 10.1002/adma.202005858. PubMed DOI
Xie L, et al. Intelligent wearable devices based on nanomaterials and nanostructures for healthcare. Nanoscale. 2023;15:405–433. doi: 10.1039/D2NR04551F. PubMed DOI
Martin C, Kpstarelos K, Prato M, Bianco A. Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chem. Commun. 2019;55:5540–5546. doi: 10.1039/C9CC01205B. PubMed DOI
Shanmugam V. A review of the synthesis, properties, and applications of 2D materials. Part Part Syst. Charact. 2022;39:2200031. doi: 10.1002/ppsc.202200031. DOI
Khan K, et al. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C. 2020;8:387–440. doi: 10.1039/C9TC04187G. DOI
Chia HL, Mayorga-Martinez CC, Pumera M. Doping and decorating 2D materials for biosensing: benefits and drawbacks. Adv. Funct. Mater. 2021;31:2102555. doi: 10.1002/adfm.202102555. DOI
Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: the new two-dimensional nanomaterial, Angew. Chem. Int. Ed. 2009;48:7752–7777. doi: 10.1002/anie.200901678. PubMed DOI
Aziz A, et al. Environmental significance of wearable sensors based on MXene and graphene. Trends Environ. Anal. Chem. 2022;36:e00180. doi: 10.1016/j.teac.2022.e00180. DOI
Mia AK, Meyyappan M, Giri PK. Two-dimensional transition metal dichalcogenide based biosensors: from fundamentals to healthcare applications. Biosensors. 2023;13:169. doi: 10.3390/bios13020169. PubMed DOI PMC
Yang T, et al. Mechanical sensors based on two-dimensional materials: Sensing mechanisms, structural designs and wearable applications. iScience. 2022;25:103728. doi: 10.1016/j.isci.2021.103728. PubMed DOI PMC
Zho X, et al. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano. 2020;14:8793–8805. doi: 10.1021/acsnano.0c03391. PubMed DOI
Meng K, et al. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022;34:2109357. doi: 10.1002/adma.202109357. PubMed DOI
Zhang F, et al. A highly accurate flexible sensor system for human blood pressure and heart rate monitoring based on graphene/sponge. RSC Adv. 2022;12:2391–2398. doi: 10.1039/D1RA08608A. PubMed DOI PMC
Huo Z, Wei Y, Wang Y, Wang ZL, Sun Q. Integrated self-powered sensors based on 2D material devices. Adv. Funct. Mater. 2022;32:2206900. doi: 10.1002/adfm.202206900. DOI
Sharma S, Chhetry A, Sharifuzzaman M, Yoon H, Park JY. Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl. Mater. Interfaces. 2020;12:22212–22224. doi: 10.1021/acsami.0c05819. PubMed DOI
Souri H, et al. Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications. Adv. Int. syst. 2020;2:2000039. doi: 10.1002/aisy.202000039. DOI
He J, et al. A Universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor. Nano Energy. 2019;59:422–433. doi: 10.1016/j.nanoen.2019.02.036. DOI
Guo Y, Zhong M, Fang Z, Wan P, Yu G. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 2019;19:1143–1150. doi: 10.1021/acs.nanolett.8b04514. PubMed DOI
Yang L, et al. Wearable Pressure Sensors Based on MXene/tissue papers for wireless human health monitoring. ACS Appl. Mater. Interfaces. 2021;13:60531–60543. doi: 10.1021/acsami.1c22001. PubMed DOI
Xing H, et al. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sens. Actuators B Chem. 2022;361:131704. doi: 10.1016/j.snb.2022.131704. DOI
Vaghasiya JV, Mayorga-Martinez CC, Vyskocil J, Pumera M. Black phosphorous-based human-machine communication interface. Nat. Commun. 2022;14:2. doi: 10.1038/s41467-022-34482-4. PubMed DOI PMC
Vaghasiya JV, Mayorga-Martinez CC, Vyskocil J, Sofer Z, Pumera M. Integrated biomonitoring sensing with wearable asymmetric supercapacitors based on Ti3C2 MXene and 1T-Phase WS2 nanosheets. Adv. Funct. Mater. 2020;30:2003673. doi: 10.1002/adfm.202003673. DOI
Vaghasiya JV, Křípalová K, Hermanová S, Mayorga-Martinez CC, Pumera M. Real-time biomonitoring device based on 2D black phosphorus and polyaniline nanocomposite flexible supercapacitors. Small. 2021;17:2102337. doi: 10.1002/smll.202102337. PubMed DOI
Yi Q, et al. A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy. 2022;101:107511. doi: 10.1016/j.nanoen.2022.107511. DOI
He Y, et al. Wearable strain sensors based on a porous polydimethylsiloxane hybrid with carbon nanotubes and graphene. ACS Appl. Mater. Interfaces. 2021;13:15572–15583. doi: 10.1021/acsami.0c22823. PubMed DOI
Jiang Y, Chen Y, Wang W, Yu D. A wearable strain sensor based on polyurethane nanofiber membrane with silver nanowires/polyaniline electrically conductive dual-network. Colloids Surf. A Physicochem. Eng. Asp. 2021;626:127477. doi: 10.1016/j.colsurfa.2021.127477. DOI
Zhou K, Dai K, liu C, Shen C. Flexible conductive polymer composites for smart wearable strain sensors. SmartMat. 2020;1:e1010. doi: 10.1002/smm2.1010. DOI
Chao M, et al. Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy. 2020;78:105187. doi: 10.1016/j.nanoen.2020.105187. DOI
Zhang S, et al. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. npj Flex. Electron. 2022;6:11. doi: 10.1038/s41528-022-00140-4. DOI
Lee H, et al. Porous microneedles on a paper for screening test of prediabetes. Med Devices Sens. 2020;3:e10099. doi: 10.1002/mds3.10109. DOI
Sankar V, et al. Waterproof flexible polymer-functionalized graphene-based piezoresistive strain sensor for structural health monitoring and wearable devices. ACS Omega. 2020;5:12682–12691. doi: 10.1021/acsomega.9b04205. PubMed DOI PMC
Cao Y, et al. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection. Nano Energy. 2022;92:106689. doi: 10.1016/j.nanoen.2021.106689. DOI
Polat EO, et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 2019;5:eaaw7846. doi: 10.1126/sciadv.aaw7846. PubMed DOI PMC
Akinwande D, Kireev D. Wearable graphene sensors use ambient light to monitor health. Nature. 2019;576:220–221. doi: 10.1038/d41586-019-03483-7. PubMed DOI
Lei Y, et al. A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small. 2019;15:1901190. doi: 10.1002/smll.201901190. PubMed DOI
Torrente-Rodrıguez RM, et al. SARS-CoV-2 RapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter. 2020;3:1981–1998. doi: 10.1016/j.matt.2020.09.027. PubMed DOI PMC
Shao Y, et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 2022;13:3223. doi: 10.1038/s41467-022-30648-2. PubMed DOI PMC
Li D, et al. Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 2020;12:36. doi: 10.1007/s40820-020-0374-x. PubMed DOI PMC
Iqbal A, Hong J, Koo CM. Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 2021;8:9. doi: 10.1186/s40580-021-00259-6. PubMed DOI PMC
Li N, et al. MXenes: an emerging platform for wearable electronics and looking beyond. Matter. 2021;4:377–407. doi: 10.1016/j.matt.2020.10.024. DOI
Jin X, et al. Highly stable Ti3C2Tx MXene-based sandwich-like structure via interfacial self-assembly of nitrogen-rich polymer network for superior sodium-ion storage performance. Chem. Eng. J. 2023;451:138763. doi: 10.1016/j.cej.2022.138763. DOI
Bhat A, et al. Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. npj 2D mater. Appl. 2021;5:61. doi: 10.1038/s41699-021-00239-8. DOI
Shuck CE, et al. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 2020;22:1901241. doi: 10.1002/adem.201901241. DOI
Yu M, Feng X. Scalable manufacturing of MXene films: moving toward industrialization. Matter. 2020;3:335–336. doi: 10.1016/j.matt.2020.07.011. DOI
Shaik T, et al. Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 2023;13:e1485.
Li Y, et al. Integrated wearable smart sensor system for real-time multi-parameter respiration health monitoring. Cell Rep. Phy. Sci. 2023;4:101191. doi: 10.1016/j.xcrp.2022.101191. DOI
Gupta S, et al. Ultra-thin chips for high-performance flexible electronics. npj Flex. Electron. 2018;2:8. doi: 10.1038/s41528-018-0021-5. DOI
Zhang J, et al. Smart soft contact lenses for continuous 24-hour monitoring of intraocular pressure in glaucoma care. Nat. Commun. 2022;13:5518. doi: 10.1038/s41467-022-33254-4. PubMed DOI PMC
Cai, et al. Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 2020;6:eabb5367. doi: 10.1126/sciadv.abb5367. PubMed DOI PMC