Synthesis and Determination of Physicochemical Properties of New 3-(4-Arylpiperazin-1-yl)-2-hydroxypropyl 4-Alkoxyethoxybenzoates
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27941622
PubMed Central
PMC6273861
DOI
10.3390/molecules21121682
PII: molecules21121682
Knihovny.cz E-zdroje
- Klíčová slova
- Lipinski rules, arylcarbonyloxyaminopropanols, blood–brain barrier, lipophilicity index, pKa determination, phenylpiperazines,
- MeSH
- benzoáty chemická syntéza chemie MeSH
- chemické jevy MeSH
- chromatografie s reverzní fází metody MeSH
- hydrofobní a hydrofilní interakce MeSH
- koncentrace vodíkových iontů MeSH
- lipidy chemie MeSH
- software * MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzoáty MeSH
- lipidy MeSH
Nine new dihydrochloride salts of 3-(4-arylpiperazin-1-yl)-2-hydroxypropyl 4-alkoxyethoxybenzoates were designed and synthesized. The physicochemical properties such as lipophilicity index (log kw) and dissociation constant (pKa) were experimentally determined and compared to the software calculated data. The lipophilicity index was determined by means of reversed-phase high performance liquid chromatography (RP-HPLC). The pKa values were determined by means of capillary zone electrophoresis. The "drug-likeness" properties according to the Lipinski Rule of Five and prediction of possible blood-brain barrier penetration were computed and discussed.
Zobrazit více v PubMed
Pedersen M.E., Cockcroft J.R. The vasodilatory Beta-blockers. Curr. Hypertens. Rep. 2007;9:269–277. doi: 10.1007/s11906-007-0050-2. PubMed DOI
Reiter M.-J. Cardiovascular Drug Class Specifity: β-blockers. Prog. Cardiovasc. Dis. 2004;47:11–33. doi: 10.1016/j.pcad.2004.04.004. PubMed DOI
Chiu C.C., Wu J.R., Lee C.H., Liou S.F., Dai Z.K., Chen I.J., Yeh J.L. Anti-Hypertension Effect of Vanylidilol: A Phenylaldehyde α/β-Adrenoceptor Blocker with Endothelium-Dependent and K+ Channels Opening-Associated Vasorelaxant Activities. Pharmacology. 2004;70:140–151. doi: 10.1159/000074977. PubMed DOI
Deák K., Takács-Novák K., Kapás M., Vastag M., Tihanyi K., Noszál B. Physico-chemical characterization of a novel group of dopamine D3/D2 receptor ligands, potential atypical antipsychotic agents. J. Pharm. Biomed. Anal. 2008;48:678–684. doi: 10.1016/j.jpba.2008.06.021. PubMed DOI
Tengler J., Kapustikova I., Stropnicky O., Mokry P., Oravec M., Csollei J., Jampilek J. Synthesis of new (arylcarbonyloxy)aminopropanol derivatives and the determination of their physico-chemical properties. Cent. Eur. J. Chem. 2013;11:1757–1767. doi: 10.2478/s11532-013-0302-8. DOI
Mälkiä A., Murtomäki L., Urtti A., Kontturi K. Drug permeation in biomembranes in vitro and in silico prediction and influence of physicochemical properties. Eur. J. Pharm. Sci. 2004;23:13–47. doi: 10.1016/j.ejps.2004.05.009. PubMed DOI
Alavijeh M.S., Chishty M., Qaiser M.Z., Palmer A.M. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx. 2005;2:554–571. doi: 10.1602/neurorx.2.4.554. PubMed DOI PMC
Duchowicz P.R., Castro E.A. QSPR studies on aqueous solubilities of drug-like compounds. Int. J. Mol. Sci. 2009;10:2558–2577. doi: 10.3390/ijms10062558. PubMed DOI PMC
Mannhold A., Waterbeemd H. Substructure and whole molecule approaches for calculating log P. J. Comput. Aided Mol. Des. 2001;15:337–354. doi: 10.1023/A:1011107422318. PubMed DOI
Giaginis C., Tsantili-Kakoulidou A. Current state of the art in HPLC methodology for lipophilicity assessment of basic drugs. A review. J. Liq. Chromatogr. Relat. Technol. 2008;31:79–96. doi: 10.1080/10826070701665626. DOI
Lombardo F., Shalaeva M.Y., Tupper K.A., Gao F. ElogDoct: A tool for lipophilicity determination in drug discovery. 2. Basic and neutral compounds. J. Med. Chem. 2001;44:2490–2497. doi: 10.1021/jm0100990. PubMed DOI
Stella C., Galland A., Xiangli L., Testa B., Rudaz S., Veuthey J.L., Carrupt P.A. Novel RPLC stationary phases for lipophilicity measurement: Solvatochromic analysis of retention mechanisms for neutral and basic compounds. J. Sep. Sci. 2004;27:284–292. doi: 10.1002/jssc.200301671. PubMed DOI
Reijenga J., van Hoof A., van Loon A., Teunissen B. Development of methods for the determination of pKa Values. Anal. Chem. Insights. 2013;8:53–71. doi: 10.4137/ACI.S12304. PubMed DOI PMC
Kapustikova I., Tengler J. Determination of Acid-Base Dissociation Constant of Selected β-Blockers Using Capillary Zone Electrophoresis, RP-HPLC and 1H-NMR. Chem. Listy. 2014;108:1073–1079.
Poole S.K., Patel S., Dehring K., Workman H., Poole C.F. Determination of acid dissociation constants by capillary electrophoresis. J. Chromatogr. A. 2004;1037:445–454. doi: 10.1016/j.chroma.2004.02.087. PubMed DOI
Nowak P., Woźniakiewicz M., Kościelniak P. Application of capillary electrophoresis in determination of acid dissociation constant values. J. Chromatogr. A. 2015;1377:1–12. doi: 10.1016/j.chroma.2014.12.032. PubMed DOI
Andrasi M., Buglyo P., Zekany L., Gaspar A. A comparative study of capillary zone electrophoresis and pH-potentiometry for determination of dissociation constants. J. Pharm. Biomed. Anal. 2007;44:1040–1047. doi: 10.1016/j.jpba.2007.04.024. PubMed DOI
Bodor N., Buchwald P. Soft drug design: General principles and recent applications. Med. Res. Rev. 2000;20:58–101. doi: 10.1002/(SICI)1098-1128(200001)20:1<58::AID-MED3>3.0.CO;2-X. PubMed DOI
Handzlik J., Pertz H.H., Görnemann T., Jähnichen S., Kieć-Kononowicz K. Search for influence of spatial properties on affinity at α1-adrenoreceptor subtypes for phenylpiperazine derivatives of phenytoin. Bioorg. Med. Chem. Lett. 2010;20:6152–6156. doi: 10.1016/j.bmcl.2010.07.101. PubMed DOI
Wang Z., Pei Y., Zhao J., Li Z., Chen Y., Zhuo K. Formation of Ether-Functionalized Ionic-Liquid-Based Aqueous Two-Phase Systems and Their Application in Separation of Protein and Saccharides. J. Phys. Chem. B. 2015;119:4471–4478. doi: 10.1021/jp510984d. PubMed DOI
Colley H.E., Muthana M., Danson S.J., Jackson L.V., Brett M.L., Harrison J., Coole S.F., Mason D.P., Jennings L.R., Wong M., et al. An Orally Bioavailable, Indole-3-glyoxylamide Based Series of Tubulin Polymerization Inhibitors Showing Tumor Growth Inhibition in a Mouse Xenograft Model of Head and Neck Cancer. J. Med. Chem. 2015;58:9309–9333. doi: 10.1021/acs.jmedchem.5b01312. PubMed DOI
Ayme J.-F., Lux J., Sauvage J.-P., Sour A. Catenanes Built Around Octahedral Transition-Metal Complexes that Contain Two Intertwined Endocyclic but Non-sterically Hindering Tridentate Ligands. Chem. Eur. J. 2012;18:5565–5573. doi: 10.1002/chem.201104061. PubMed DOI
Ammazzalorso A., Amoroso R., Bettoni G., Fantacuzzi M., De Filippis B., Giampietro L., Maccallini C., Paludi D., Tricca M.L. Synthesis and antibacterial evaluation of oxazolidin-2-ones structurally related to linezolid. Farmaco. 2004;59:685–690. doi: 10.1016/j.farmac.2004.05.002. PubMed DOI
Marvanova P., Padrtova T., Pekarek T., Brus J., Czernek J., Mokry P., Humpa O., Oravec M., Jampilek J. Synthesis and Characterization of New 3-(4-Arylpiperazin-1-yl)-2-hydroxypropyl 4-Propoxybenzoates and Their Hydrochloride Salts. Molecules. 2016;21:707. doi: 10.3390/molecules21060707. PubMed DOI PMC
McAinsh J., Cruickshank J.M. Beta-blockers and central nervous system side effects. Pharmacol. Ther. 1990;46:163–197. doi: 10.1016/0163-7258(90)90092-G. PubMed DOI
Clark D.E. In silico prediction of blood-brain barrier permeation. Drug Discov. Today. 2003;8:927–933. doi: 10.1016/S1359-6446(03)02827-7. PubMed DOI
Vilar S., Chakrabarti M., Costanzi S. Prediciton of passive blood-brain partitioning: Straightforward and effective classification models based on in silico derived physicochemical descriptors. J. Mol. Graph. Model. 2010;28:899–903. doi: 10.1016/j.jmgm.2010.03.010. PubMed DOI PMC
Palmer A.M., Alavijeh M.S. Translation CNS medicines research. Drug Discov. Today. 2012;17:1068–1078. doi: 10.1016/j.drudis.2012.05.001. PubMed DOI
Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidate. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI
Clark D.E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J. Pharm. Sci. 1999;88:815–821. doi: 10.1021/js980402t. PubMed DOI
Hutter M.C. Prediction of blood–brain barrier permeation using quantum chemically derived information. J. Comput. Aided Mol. Des. 2003;17:415–433. doi: 10.1023/A:1027359714663. PubMed DOI
An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors