Synthesis and Characterization of New 3-(4-Arylpiperazin-1-yl)-2-hydroxypropyl 4-Propoxybenzoates and Their Hydrochloride Salts
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27258242
PubMed Central
PMC6273361
DOI
10.3390/molecules21060707
PII: molecules21060707
Knihovny.cz E-zdroje
- Klíčová slova
- CP/MAS NMR spectroscopy, IR spectroscopy, arylcarbonyloxyaminopropanols, phenylpiperazines, principle components analysis, synthesis,
- MeSH
- antihypertenziva chemická syntéza chemie MeSH
- benzoáty chemická syntéza chemie MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- piperazin MeSH
- piperaziny chemie MeSH
- soli chemie MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antihypertenziva MeSH
- benzoáty MeSH
- piperazin MeSH
- piperaziny MeSH
- soli MeSH
Five new 3-(4-arylpiperazin-1-yl)-2-hydroxypropyl 4-propoxybenzoates were designed and synthesized as potential dual antihypertensive agents. The compounds were prepared as free bases and subsequently transformed to hydrochloride salts. The position of protonation of nitrogen atoms in the piperazine ring of hydrochloride salts was determined by means of (13)C-CP/MAS and (15)N-CP/MAS NMR and IR spectroscopy. Using these solid-state analytical techniques, it was found that both nitrogen atoms were protonated when excess hydrogen chloride was used for preparation of salts. On the other hand, when the equimolar amount of hydrogen chloride was used, piperazine nitrogen substituted by aryl was protonated.
Zobrazit více v PubMed
Prichard B.N.C., Graham B., Cruickshank J.M. β-Blockers in the third millennium—When are they really indicated? J. Clin. Basic Cardiol. 2001;4:3–9.
Roth H.J., Fenner H. Arzneistoffe. 3rd ed. Deutscher Apotheker Verlag; Stuttgart, Germany: 2000. Adrenozeptoren-Blocker (Sympatholytika) pp. 389–402.
Feuerstein G.Z., Ruffolo R.R. Carvedilol, a novel multiple action antihypertensive agent with antioxidant activity and the potential for myocardial and vascular protection. Eur. Heart J. 1995;16:38–42. doi: 10.1093/eurheartj/16.suppl_F.38. PubMed DOI
Gupta S., Wright H.M. Nebivolol: A highly selective β1-adrenergic receptor blocker that causes vasodilatation by increasing nitric oxide. Cardiovasc. Ther. 2008;26:198–202. doi: 10.1111/j.1755-5922.2008.00054.x. PubMed DOI
Wiest D. Esmolol. A review of its therapeutic efficiacy and pharmacokinetic characteristics. Clin. Pharmacokinet. 1995;28:190–202. doi: 10.2165/00003088-199528030-00002. PubMed DOI
Atarashi H., Kuruma A., Yashima M., Saitoh H., Ino T., Endoh Y., Hayakawa H. Pharmacokinetics of landiolol hydrochloride, a new ultra-short-acting β-blocker, in patients with cardiac arrhythmias. Clin. Pharmacol. Ther. 2000;68:143–150. doi: 10.1067/mcp.2000.108733. PubMed DOI
Tengler J., Stropnicky O. Soft drugs and retrometabolic drug design. Chem. Listy. 2014;108:25–31.
Bodor N., Buchwald P. Soft drug design: General principles and recent applications. Med. Res. Rev. 2000;20:58–101. doi: 10.1002/(SICI)1098-1128(200001)20:1<58::AID-MED3>3.0.CO;2-X. PubMed DOI
Mokry P., Zemanova M., Csollei J., Racanska E., Tumova I. Synthesis and pharmacological evaluation of novel potential ultrashortacting β-blockers. Pharmazie. 2003;58:18–21. doi: 10.1002/chin.200321090. PubMed DOI
Bartosova L., Frydrych M., Hulakova G., Berankova K., Strnadova V., Mokry P., Brunclik V., Kolevska J., Bebarova M. Efficacy of newly synthesized 44Bu ultrashort-acting β-adrenergic antagonist to isoprenaline-induced tachycardia—Comparison with esmolol. Acta. Vet. Brno. 2004;73:171–179. doi: 10.2754/avb200473020171. DOI
Racanska E., Kurfurst P., Csollei J., Svec P. Cardiovascular effects of newly sythesized hybrid heteroarylaminoethanols. Acta Fac. Pharm. Univ. Comen. 2004;51:182–191.
Ammazzalorso A., Amoroso R., Bettoni G., Fantacuzzi M., De Filippis B., Giampietro L., Maccallini C., Paludi D., Tricca M.L. Synthesis and antibacterial evaluation of oxazolidin-2-ones structurally related to linezolid. Farmaco. 2004;59:685–690. doi: 10.1016/j.farmac.2004.05.002. PubMed DOI
Tengler J., Kapustikova I., Stropnicky O., Mokry P., Oravec M., Csollei J., Jampilek J. Synthesis of new (arylcarbonyloxy)aminopropanol derivatives and the determination of their physico-chemical properties. Cent. Eur. J. Chem. 2013;11:1757–1767. doi: 10.2478/s11532-013-0302-8. DOI
Pawlak T., Trzeciak-Karlikowska K., Czernek J., Ciesielski W., Potrzebowski M.J. Computed and experimental chemical shift parameters for rigid and flexible YAF peptides in the solid state. J. Phys. Chem. B. 2012;116:1974–1983. doi: 10.1021/jp2111567. PubMed DOI
Apperley D.C., Basford P.A., Dallman C.I., Harris R.K., Kinns M., Marshall P.V., Swanson A.G. Nuclear magnetic resonance investigation of the interaction of water vapor with sildenafil citrate in the solid state. J. Pharm. Sci. 2005;94:516–523. doi: 10.1002/jps.20271. PubMed DOI
Wang Y., Wilson D., Harbison G.S. Solid-State NMR and the crystallization of aspartic and glutamic acids. Cryst. Growth Des. 2016;16:625–631. doi: 10.1021/acs.cgd.5b01052. DOI
Policianova O., Brus J., Hruby M., Urbanova M., Zhigunov A., Kredatusova J., Kobera L. Structural diversity of solid dispersions of acetylsalicylic acid as seen by solid-state NMR. Mol. Pharm. 2014;11:516–530. doi: 10.1021/mp400495h. PubMed DOI
Wu X.L., Burns S.T., Zilm K.W. Spectral editing in CPMAS NMR. Generating subspectra based on proton multiplicities. J. Magn. Reson. A. 1994;111:29–36. doi: 10.1006/jmra.1994.1222. DOI
Brus J. Heating of samples induced by fast magic-angle spinning. Solid State Nucl. Magn. Reson. 2000;16:151–160. doi: 10.1016/S0926-2040(00)00061-8. PubMed DOI
Proks V., Brus J., Pop-Georgievski O., Vecernikova E., Wisniewski W., Kotek J., Urbanova M., Rypacek F. Thermal-induced transformation of polydopamine structures: An efficient route for the stabilization of the polydopamine surfaces. Macromol. Chem. Phys. 2013;214:499–507. doi: 10.1002/macp.201200505. DOI
Ditchfield R. Self-consistent perturbation theory of diamagnetism. I. A gauge-invariant LCAO method for N.M.R. chemical shifts. Mol. Phys. 1974;27:789–807. doi: 10.1080/00268977400100711. DOI
Wolinski K., Hinton J.F., Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005. DOI
Kobera L., Czernek J., Streckova M., Urbanova M., Abbrent S., Brus J. Structure and distribution of cross-links in boron-modified phenol–formaldehyde resins designed for soft magnetic composites: A multiple-quantum 11B–11B MAS NMR correlation spectroscopy study. Macromolecules. 2015;48:4874–4881. doi: 10.1021/acs.macromol.5b01037. DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09, Revision D.01. Gaussian, Inc.; Wallingford, CT, USA: 2009.
An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors