Characterization of virulence factors and antimicrobial resistance in Staphylococcus spp. isolated from clinical samples
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38367164
DOI
10.1007/s12223-024-01148-1
PII: 10.1007/s12223-024-01148-1
Knihovny.cz E-zdroje
- Klíčová slova
- Staphylococcus spp., Antibiotic resistance, CoNS, MRSA, Virulence factors,
- MeSH
- antibakteriální látky * farmakologie MeSH
- bakteriální léková rezistence * MeSH
- bakteriální proteiny genetika MeSH
- faktory virulence * genetika MeSH
- lidé MeSH
- mikrobiální testy citlivosti * MeSH
- stafylokokové infekce * mikrobiologie MeSH
- Staphylococcus * genetika účinky léků izolace a purifikace patogenita klasifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Itálie MeSH
- Názvy látek
- antibakteriální látky * MeSH
- bakteriální proteiny MeSH
- faktory virulence * MeSH
The virulence factors, antibiotic resistance patterns, and the associated genetic elements have been investigated in Staphylococcus species. A total of 100 strains has been isolated from clinical samples in the Microbiology Laboratory of Hesperia Hospital, Modena, Italy, and identified as Staphylococcus aureus (65), Staphylococcus epidermidis (24), Staphylococcus hominis (3), Staphylococcus saprophyticus (3), and Staphylococcus warneri (5). All the strains were analyzed to determine phenotypic and genotypic characters, notably the virulence factors, the antibiotics susceptibility, and the genetic determinants. The highest percentage of resistance in Staphylococcus spp. was found for erythromycin and benzylpenicillin (87% and 85%, respectively). All S. aureus, two S. epidermidis (8.3%), and one S. saprophyticus (33.3%) strains were resistant to oxacillin. The methicillin resistance gene (mecA) was detected by polymerase chain reaction (PCR) amplification in 65 S. aureus strains and in 3 coagulase-negative staphylococci (CoNS) (8.6%). With regard to the virulence characteristics, all the S. aureus were positive to all virulence tests, except for slime test. Among the CoNS isolates, 19 (79.1%) S. epidermidis and one (33.3%) S. saprophyticus strains resulted positive for the slime test only. The results obtained are useful for a more in-depth understanding of the function and contribution of S. aureus and CoNS antibiotic resistance and virulence factors to staphylococcal infections. In particular, the production of slime is very important for CoNS, a virulence factor frequently found in infections caused by these strains. Further investigations on the genetic relatedness among strains of different sources will be useful for epidemiological and monitoring purposes and will enable us to develop new strategies to counteract the diffusion of methicillin-resistant S. aureus (MRSA) and CoNS strains not only in clinical field, but also in other related environments.
Department of Life Sciences University of Modena and Reggio Emilia 41125 Modena Italy
School of Biosciences and Veterinary Medicine University of Camerino 62024 Matelica Italy
Zobrazit více v PubMed
Ahmad-Mansour N, Loubet P, Pouget C, Dunyach-Remy C, Sotto A, Lavigne JP, Molle V (2021) Staphylococcus aureus toxins: an update on their pathogenic properties and potential treatments. Toxins (Basel) 13:677. https://doi.org/10.3390/toxins13100677 PubMed DOI
Algammal AM, Hetta HF, Elkelish A, Alkhalifah DHH, Hozzein WN, Batiha GE, El Nahhas N, Mabrok MA (2020) Methicillin-resistant Staphylococcus aureus (MRSA): one health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect Drug Resist 13:3255–3265. https://doi.org/10.2147/IDR.S272733 PubMed DOI PMC
Argemi X, Matelska D, Ginalski K, Riegel P, Hansmann Y, Bloom J, Pestel-Caron M, Dahyot S, Lebeurre J, Prévost G (2018) Comparative genomic analysis of Staphylococcus lugdunensis shows a closed pan-genome and multiple barriers to horizontal gene transfer. BMC Genomics 19:621. https://doi.org/10.1186/s12864-018-4978-1 PubMed DOI PMC
Argemi X, Hansmann Y, Prola K, Prevost G (2019) Coagulase-negative staphylococci pathogenomics. Int J Mol Sci 20:1215. https://doi.org/10.3390/ijms20051215 PubMed DOI PMC
Baldassarri L, Simpson WA, Donelli G, Christensen GD (1993) Variable fixation of staphylococcal slime by different histochemical fixatives. Eur J Clin Microbiol Infect Dis 12:866–868. https://doi.org/10.1007/BF02000411 PubMed DOI
Becker K, Both A, Weißelberg S, Heilmann C, Rohde H (2020) Emergence of coagulase-negative staphylococci. Expert Rev Anti Infect Ther 18:349–366. https://doi.org/10.1080/14787210.2020.1730813 PubMed DOI
Booth MC, Pence LM, Mahasreshti P, Callegan MC, Gilmore MS (2001) Clonal associations among Staphylococcus aureus isolates from various sites of infection. Infect Immun 69:345–352. https://doi.org/10.1128/IAI.69.1.345-352.2001.Erratum.In:InfectImmun69:1976 PubMed DOI PMC
Burlak C, Hammer CH, Robinson MA, Whitney AR, McGavin MJ, Kreiswirth BN, Deleo FR (2007) Global analysis of community-associated methicillin-resistant Staphylococcus aureus exoproteins reveals molecules produced in vitro and during infection. Cell Microbiol 9:1172–1190. https://doi.org/10.1111/j.1462-5822.2006.00858.x PubMed DOI PMC
Cadieux B, Vijayakumaran V, Bernards MA, McGavin MJ, Heinrichs DE (2014) Role of lipase from community-associated methicillin-resistant Staphylococcus aureus strain USA300 in hydrolyzing triglycerides into growth-inhibitory free fatty acids. J Bacteriol 196:4044–4056. https://doi.org/10.1128/JB.02044-14 PubMed DOI PMC
Campbell SJ, Deshmukh HS, Nelson CL, Bae IG, Stryjewski ME, Federspiel JJ, Tonthat GT, Rude TH, Barriere SL, Corey R, Fowler VG Jr (2008) Genotypic characteristics of Staphylococcus aureus isolates from a multinational trial of complicated skin and skin structure infections. J Clin Microbiol 46:678–684. https://doi.org/10.1128/JCM.01822-07 PubMed DOI
Cherifi S, Byl B, Deplano A, Nagant C, Nonhoff C, Denis O, Hallin M (2014) Genetic characteristics and antimicrobial resistance of Staphylococcus epidermidis isolates from patients with catheter-related bloodstream infections and from colonized healthcare workers in a Belgian hospital. Ann Clin Microbiol Antimicrob 4:13–20. https://doi.org/10.1186/1476-0711-13-20 DOI
Choi SM, Kim SH, Kim HJ, Lee DG, Choi JH, Yoo JH, Kang JH, Shin WS, Kang MW (2003) Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among Staphylococcus species. J Korean Med Sci 18:631–636. https://doi.org/10.3346/jkms.2003.18.5.631 PubMed DOI PMC
Costa SS, Sobkowiak B, Parreira R, Edgeworth JD, Viveiros M, Clark TG, Couto I (2019) Genetic diversity of norA, coding for a main efflux pump of Staphylococcus aureus. Front Genet 9:710. https://doi.org/10.3389/fgene.2018.00710 PubMed DOI PMC
European Committee on Antimicrobial Susceptibility Testing EUCAST (2023) Breakpoint tables for interpretation of MICs and zone diameters version 13.1. http://www.eucast.org/clinical_breakpoints
Fey PD, Olson ME (2010) Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol 5:917–933. https://doi.org/10.2217/fmb.10.56 PubMed DOI
França A, Gaio V, Lopes N, Melo LDR (2021) Virulence Factors in Coagulase-Negative Staphylococci Pathogens 10:170. https://doi.org/10.3390/pathogens10020170 PubMed DOI
Fredheim EG, Klingenberg C, Rohde H, Frankenberger S, Gaustad P, Flaegstad T, Sollid JE (2009) Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol 47:1172–1180. https://doi.org/10.1128/JCM.01891-08 PubMed DOI PMC
García-Malinis AJ, Milagro A, Torres Sopena L, Gilaberte Y (2021) Staphylococcus lugdunensis skin infection: report of 16 cases. Actas Dermosifiliogr (Engl Ed) 112:261–265. English, Spanish. https://doi.org/10.1016/j.ad.2019.05.017 PubMed DOI
Heilmann C, Ziebuhr W, Becker K (2019) Are coagulase-negative staphylococci virulent? Clin Microbiol Infect 25:1071–1080. https://doi.org/10.1016/j.cmi.2018.11.012 PubMed DOI
Iseppi R, Sabia C, Bondi M, Mariani M, Messi P (2020) Virulence factors, drug resistance and biofilm formation in Pseudomonas species isolated from healthcare water systems. Curr Microbiol 77:1737–1745. https://doi.org/10.1007/s00284-020-01990-9 PubMed DOI
Jessen O, Faber V, Rosendal K, Eriksen KR (1959) Some properties of Staphylococcus aureus, possibly related to pathogenicity. Part 1. A study of 446 strains from different types of human infection. Acta Pathol Microbiol Scand 47:316–326 PubMed DOI
Jiang N, Li J, Feßler AT, Wang Y, Schwarz S, Wu C (2019) Novel pseudo-staphylococcal cassette chromosome mec element (φSCCmecT55) in MRSA ST9. J Antimicrob Chemother 74:819–820. https://doi.org/10.1093/jac/dky457 PubMed DOI
Khan S, Marasa BS, Sung K, Nawaz M (2021) Genotypic characterization of clinical isolates of Staphylococcus aureus from Pakistan. Pathogens 10:918. https://doi.org/10.3390/pathogens10080918 PubMed DOI PMC
Khodabux RMJ, Mariappan S, Sekar U (2023) Spectrum of virulence factors in clinical isolates of Staphylococcus aureus and prevalence of SCCmec types in methicillin-resistant Staphylococcus aureus in a tertiary care center. J Lab Physicians 15:450–461. https://doi.org/10.1055/s-0043-1764483 PubMed DOI PMC
Lachica RV, Genigeorgis C, Hoeprich PD (1971) Metachromatic agar-diffusion methods for detecting staphylococcal nuclease activity. Appl Microbiol 21:585–587. https://doi.org/10.1128/am.21.4.585-587.1971 PubMed DOI PMC
Lakhundi S, Zhang K (2018) Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev 31:e00020-e118. https://doi.org/10.1128/CMR.00020-18 PubMed DOI PMC
Larsson DGJ, Flach CF (2022) Antibiotic resistance in the environment. Nat Rev Microbiol 20:257–269. https://doi.org/10.1038/s41579-021-00649-x PubMed DOI
Makris G, Wright JD, Ingham E, Holland KT (2004) The hyaluronate lyase of Staphylococcus aureus - a virulence factor? Microbiology (reading) 150:2005–2013. https://doi.org/10.1099/mic.0.26942-0 PubMed DOI
Marincola G, Liong O, Schoen C, Abouelfetouh A, Hamdy A, Wencker FDR, Marciniak T, Becker K, Köck R, Ziebuhr W (2021) Antimicrobial resistance profiles of coagulase-negative staphylococci in community-based healthy individuals in Germany. Front Public Health 9:684456. https://doi.org/10.3389/fpubh.2021.684456 PubMed DOI PMC
Matos JE, Harmon RJ, Langlois BE (1995) Lecithinase reaction of Staphylococcus aureus strains of different origin on Baird-Parker medium. Lett Appl Microbiol 21:334–335. https://doi.org/10.1111/j.1472-765X.1995.tb01073 PubMed DOI
Metwally LA, Hashem AA, ElAzab SZ, El Islam HN, Mansour MK (2017) Biofilm production and antibiotic resistance of Staphylococcus epidermidis in catheter related bloodstream infections. Egypt J Med Microbiol 26:73–80. https://doi.org/10.12816/0046254 DOI
Michalik M, Samet A, Podbielska-Kubera A, Savini V, Międzobrodzki J, Kosecka-Strojek M (2020) Coagulase-negative staphylococci (CoNS) as a significant etiological factor of laryngological infections: a review. Ann Clin Microbiol Antimicrob 19:26. https://doi.org/10.1186/s12941-020-00367-x PubMed DOI PMC
Motallebi M, Jabalameli F, Asadollahi K, Taherikalani M, Emaneini M (2016) Spreading of genes encoding enterotoxins, haemolysins, adhesin and biofilm among methicillin resistant Staphylococcus aureus strains with staphylococcal cassette chromosome mec type III. A isolated from burn patients. Microb Pathog 97:34–37 PubMed DOI
Nashev D, Toshkova K, Salasia SIO, Hassan AA, Lämmler C, Zschöck M (2004) Distribution of virulence genes of Staphylococcus aureus isolated from stable nasal carriers. FEMS Microbiol Lett 233:45–52. https://doi.org/10.1016/j.femsle.2004.01.032 PubMed DOI
Nayak N, Satpathy G (2000) Slime production as a virulence factor in Staphylococcus epidermidis isolated from bacterial keratitis. Indian J Med Res 111:6–10 PubMed
Peck KR, Baek JY, Song JH, Ko KS (2009) Comparison of genotypes and enterotoxin genes between Staphylococcus aureus isolates from blood and nasal colonizers in a Korean hospital. J Korean Med Sci 24:585–591. https://doi.org/10.3346/jkms.2009.24.4.585 PubMed DOI PMC
Petrillo F, Pignataro D, Di Lella FM, Reibaldi M, Fallico M, Castellino N, Parisi G, Trotta MC, D’Amico M, Santella B, Folliero V, Della Rocca MT, Rinaldi M, Franci G, Avitabile T, Galdiero M, Boccia G (2021) Antimicrobial susceptibility patterns and resistance trends of Staphylococcus aureus and coagulase-negative staphylococci strains isolated from ocular infections. Antibiotics (Basel) 10:527. https://doi.org/10.3390/antibiotics10050527 PubMed DOI
Preda M, Mihai MM, Popa LI, Dițu LM, Holban AM, Manolescu LSC, Popa GL, Muntean AA, Gheorghe I, Chifiriuc CM, Popa MI (2021) Phenotypic and genotypic virulence features of staphylococcal strains isolated from difficult-to-treat skin and soft tissue infections. PLoS ONE 16:e0246478. https://doi.org/10.1371/journal.pone.0246478 PubMed DOI PMC
Rosenstein R, Götz F (2013) What distinguishes highly pathogenic staphylococci from medium- and non-pathogenic? Curr Top Microbiol Immunol 358:33–89. https://doi.org/10.1007/82_2012_286 PubMed DOI
Shallcross LJ, Fragaszy E, Johnson AM, Hayward AC (2013) The role of the panton-valentine leucocidin toxin in staphylococcal disease: a systematic review and meta-analysis. Lancet Infect Dis 13:43–54. https://doi.org/10.1016/S1473-3099(12)70238-4 PubMed DOI PMC
Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R (2023) Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms 11:1614. https://doi.org/10.3390/microorganisms11061614 PubMed DOI PMC
Taylor TA, Unakal CG (2023) Staphylococcus aureus infection. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK441868/ . PMID: 28722898
Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661. https://doi.org/10.1128/CMR.00134-14 PubMed DOI PMC
Zhan XY, Zhu QY (2018) Evolution of methicillin-resistant Staphylococcus aureus: evidence of positive selection in a penicillin-binding protein (PBP) 2a coding gene mecA. Infect GeNet Evol 59:16–22. https://doi.org/10.1016/j.meegid.2018.01.018 PubMed DOI
Zhao H, Xu S, Yang H, He C, Xu X, Hu F, Shu W, Gong F, Zhang C, Liu Q (2019) Molecular typing and variations in amount of tst gene expression of TSST-1-producing clinical Staphylococcus aureus isolates. Front Microbiol 10:1388. https://doi.org/10.3389/fmicb.2019.01388 PubMed DOI PMC