FTO in health and disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39744011
PubMed Central
PMC11688314
DOI
10.3389/fcell.2024.1500394
PII: 1500394
Knihovny.cz E-zdroje
- Klíčová slova
- FTO, cancer, cardiovascular disease, diabetes, m6A, m6Am, obesity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Fat mass and obesity-associated (FTO) protein, a key enzyme integral to the dynamic regulation of epitranscriptomic modifications in RNAs, significantly influences crucial RNA lifecycle processes, including splicing, export, decay, and translation. The role of FTO in altering the epitranscriptome manifests across a spectrum of physiological and pathological conditions. This review aims to consolidate current understanding regarding the implications of FTO in health and disease, with a special emphasis on its involvement in obesity and non-communicable diseases associated with obesity, such as diabetes, cardiovascular disease, and cancer. It also summarizes the established molecules with FTO-inhibiting activity. Given the extensive impact of FTO on both physiology and pathophysiology, this overview provides illustrative insights into its roles, rather than an exhaustive account. A proper understanding of FTO function in human diseases could lead to new treatment approaches, potentially unlocking novel avenues for addressing both metabolic disorders and malignancies. The evolving insights into FTO's regulatory mechanisms hold great promise for future advancements in disease treatment and prevention.
Zobrazit více v PubMed
Agoston D. V. (2017). How to translate time? The temporal aspect of human and rodent biology. Front. Neurol. 8, 92. 10.3389/fneur.2017.00092 PubMed DOI PMC
Ahmad T., Chasman D. I., Mora S., Paré G., Cook N. R., Buring J. E., et al. (2010). The fat-mass and obesity-associated (FTO) gene, physical activity, and risk of incident cardiovascular events in white women. Am. Heart J. 160 (6), 1163–1169. 10.1016/j.ahj.2010.08.002 PubMed DOI PMC
Aik W., Demetriades M., Hamdan M. K. K., Bagg E. A. L., Yeoh K. K., Lejeune C., et al. (2013). Structural basis for inhibition of the fat mass and obesity associated protein (FTO). J. Med. Chem. 56 (9), 3680–3688. 10.1021/jm400193d PubMed DOI
Amin U. S. M., Rahman T. A., Hasan M., Tofail T., Hasanat M. A., Seraj Z. I., et al. (2023). Type 2 diabetes linked FTO gene variant rs8050136 is significantly associated with gravidity in gestational diabetes in a sample of Bangladeshi women: meta-analysis and case-control study. PLoS One 18 (11), e0288318. 10.1371/journal.pone.0288318 PubMed DOI PMC
Amine Ikhanjal M., Ali Elouarid M., Zouine C., El Alami H., Errafii K., Ghazal H., et al. (2023). FTO gene variants (rs9939609, rs8050136 and rs17817449) and type 2 diabetes mellitus risk: a Meta-Analysis. Gene 887, 147791. 10.1016/j.gene.2023.147791 PubMed DOI
An Y., Duan H. (2022). The role of m6A RNA methylation in cancer metabolism. Mol. Cancer 21 (1), 14. 10.1186/s12943-022-01500-4 PubMed DOI PMC
Ashcroft F. M., Rorsman P. (2012). Diabetes mellitus and the β cell: the last ten years. Cell. 148 (6), 1160–1171. 10.1016/j.cell.2012.02.010 PubMed DOI PMC
Ashraf M. J., Baweja P. (2013). Obesity: the 'huge' problem in cardiovascular diseases. Mo Med. 110 (6), 499–504. PubMed PMC
Avgerinos K. I., Spyrou N., Mantzoros C. S., Dalamaga M. (2019). Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism 92, 121–135. 10.1016/j.metabol.2018.11.001 PubMed DOI
Azhati B., Reheman A., Dilixiati D., Rexiati M. (2023). FTO-stabilized miR-139-5p targets ZNF217 to suppress prostate cancer cell malignancies by inactivating the PI3K/Akt/mTOR signal pathway. Arch. Biochem. Biophys. 741, 109604. 10.1016/j.abb.2023.109604 PubMed DOI
Azzam S. K., Alsafar H., Sajini A. A. (2022). FTO m6A demethylase in obesity and cancer: implications and underlying molecular mechanisms. Int. J. Mol. Sci. 23 (7), 3800. 10.3390/ijms23073800 PubMed DOI PMC
Babakhanian M., Razavi A., Rahimi Pordanjani S., Hassanabadi S., Mohammadi G., Fattah A. (2022). High incidence of type 1 diabetes, type 2 diabetes and gestational diabetes in Central Iran: a six years results from Semnan health cohort. Ann. Med. Surg. (Lond) 82, 104749. 10.1016/j.amsu.2022.104749 PubMed DOI PMC
Bakhashab S., Filimban N., Altall R. M., Nassir R., Qusti S. Y., Alqahtani M. H., et al. (2020). The effect sizes of PPARγ rs1801282, FTO rs9939609, and MC4R rs2229616 variants on type 2 diabetes mellitus risk among the western Saudi population: a cross-sectional prospective study. Genes. (Basel) 11 (1), 98. 10.3390/genes11010098 PubMed DOI PMC
Barbosa D. M., Fahlbusch P., Herzfeld de Wiza D., Jacob S., Kettel U., Al-Hasani H., et al. (2020). Rhein, a novel Histone Deacetylase (HDAC) inhibitor with antifibrotic potency in human myocardial fibrosis. Sci. Rep. 10 (1), 4888. 10.1038/s41598-020-61886-3 PubMed DOI PMC
Bazzi M. D., Nasr F. A., Alanazi M. S., Alamri A., Turjoman A. A., Moustafa A. S., et al. (2014). Association between FTO, MC4R, SLC30A8, and KCNQ1 gene variants and type 2 diabetes in Saudi population. Genet. Mol. Res. 13 (4), 10194–10203. 10.4238/2014.December.4.14 PubMed DOI
Benak D., Benakova S., Plecita-Hlavata L., Hlavackova M. (2023b). The role of m6A and m6Am RNA modifications in the pathogenesis of diabetes mellitus. Front. Endocrinol. (Lausanne) 14, 1223583. 10.3389/fendo.2023.1223583 PubMed DOI PMC
Benak D., Holzerova K., Hrdlicka J., Kolar F., Olsen M., Karelson M., et al. (2024). Epitranscriptomic regulation in fasting hearts: implications for cardiac health. RNA Biol. 21 (1), 1–14. 10.1080/15476286.2024.2307732 PubMed DOI PMC
Benak D., Kolar F., Zhang L., Devaux Y., Hlavackova M. (2023a). RNA modification m(6)Am: the role in cardiac biology. Epigenetics 18 (1), 2218771. 10.1080/15592294.2023.2218771 PubMed DOI PMC
Berulava T., Buchholz E., Elerdashvili V., Pena T., Islam M. R., Lbik D., et al. (2020). Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur. J. Heart Fail 22 (1), 54–66. 10.1002/ejhf.1672 PubMed DOI
Berulava T., Horsthemke B. (2010). The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur. J. Hum. Genet. 18 (9), 1054–1056. 10.1038/ejhg.2010.71 PubMed DOI PMC
Boissel S., Reish O., Proulx K., Kawagoe-Takaki H., Sedgwick B., Yeo G. S. H., et al. (2009). Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am. J. Hum. Genet. 85 (1), 106–111. 10.1016/j.ajhg.2009.06.002 PubMed DOI PMC
Bornaque F., Delannoy C. P., Courty E., Rabhi N., Carney C., Rolland L., et al. (2022). Glucose regulates m(6)A methylation of RNA in pancreatic islets. Cells 11 (2), 291. 10.3390/cells11020291 PubMed DOI PMC
Brennan P., McKay J., Moore L., Zaridze D., Mukeria A., Szeszenia-Dabrowska N., et al. (2009). Obesity and cancer: mendelian randomization approach utilizing the FTO genotype. Int. J. Epidemiol. 38 (4), 971–975. 10.1093/ije/dyp162 PubMed DOI PMC
Bressler J., Kao W. H. L., Pankow J. S., Boerwinkle E. (2010). Risk of type 2 diabetes and obesity is differentially associated with variation in FTO in whites and African-Americans in the ARIC study. PLoS One 5 (5), e10521. 10.1371/journal.pone.0010521 PubMed DOI PMC
Carnevali L., Graiani G., Rossi S., Al Banchaabouchi M., Macchi E., Quaini F., et al. (2014). Signs of cardiac autonomic imbalance and proarrhythmic remodeling in FTO deficient mice. PLoS One 9 (4), e95499. 10.1371/journal.pone.0095499 PubMed DOI PMC
Cecil J. E., Tavendale R., Watt P., Hetherington M. M., Palmer C. N. A. (2008). An obesity-associated FTO gene variant and increased energy intake in children. N. Engl. J. Med. 359 (24), 2558–2566. 10.1056/NEJMoa0803839 PubMed DOI
Chaudhary N., Alawadhi F., Al-Serri A., Al-Temaimi R. (2024). TCF7L2 and FTO polymorphisms are associated with type 2 diabetes mellitus risk in Kuwait. Med. Princ. Pract. 33, 157–163. 10.1159/000536229 PubMed DOI PMC
Chauhan G., Tabassum R., Mahajan A., Dwivedi O. P., Mahendran Y., Kaur I., et al. (2011). Common variants of FTO and the risk of obesity and type 2 diabetes in Indians. J. Hum. Genet. 56 (10), 720–726. 10.1038/jhg.2011.87 PubMed DOI
Chen B., Ye F., Yu L., Jia G., Huang X., Zhang X., et al. (2012). Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J. Am. Chem. Soc. 134 (43), 17963–17971. 10.1021/ja3064149 PubMed DOI
Chen X., Wang Y., Wang J. N., Zhang Y. C., Zhang Y. R., Sun R. X., et al. (2024). Lactylation-driven FTO targets CDK2 to aggravate microvascular anomalies in diabetic retinopathy. EMBO Mol. Med. 16 (2), 294–318. 10.1038/s44321-024-00025-1 PubMed DOI PMC
Church C., Lee S., Bagg E. A. L., McTaggart J. S., Deacon R., Gerken T., et al. (2009). A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet. 5 (8), e1000599. 10.1371/journal.pgen.1000599 PubMed DOI PMC
Church C., Moir L., McMurray F., Girard C., Banks G. T., Teboul L., et al. (2010). Overexpression of Fto leads to increased food intake and results in obesity. Nat. Genet. 42 (12), 1086–1092. 10.1038/ng.713 PubMed DOI PMC
Claussnitzer M., Dankel S. N., Kim K. H., Quon G., Meuleman W., Haugen C., et al. (2015). FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373 (10), 895–907. 10.1056/NEJMoa1502214 PubMed DOI PMC
Cui Y., Wang P., Li M., Wang Y., Tang X., Cui J., et al. (2023). Cinnamic acid mitigates left ventricular hypertrophy and heart failure in part through modulating FTO-dependent N(6)-methyladenosine RNA modification in cardiomyocytes. Biomed. Pharmacother. 165, 115168. 10.1016/j.biopha.2023.115168 PubMed DOI
De Jesus D. F., Zhang Z., Kahraman S., Brown N. K., Chen M., Hu J., et al. (2019). m6A mRNA methylation regulates human β-cell biology in physiological states and in type 2 diabetes. Nat. Metab. 1 (8), 765–774. 10.1038/s42255-019-0089-9 PubMed DOI PMC
Delahanty R. J., Beeghly-Fadiel A., Xiang Y. B., Long J., Cai Q., Wen W., et al. (2011). Association of obesity-related genetic variants with endometrial cancer risk: a report from the Shanghai Endometrial Cancer Genetics Study. Am. J. Epidemiol. 174 (10), 1115–1126. 10.1093/aje/kwr233 PubMed DOI PMC
Deng W., Jin Q., Li L. (2021). Protective mechanism of demethylase fat mass and obesity-associated protein in energy metabolism disorder of hypoxia-reoxygenation-induced cardiomyocytes. Exp. Physiol. 106 (12), 2423–2433. 10.1113/EP089901 PubMed DOI
Desrosiers R., Friderici K., Rottman F. (1974). Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. U. S. A. 71 (10), 3971–3975. 10.1073/pnas.71.10.3971 PubMed DOI PMC
Dhillo W. S. (2007). Appetite regulation: an overview. Thyroid 17 (5), 433–445. 10.1089/thy.2007.0018 PubMed DOI
Dieterich C., Völkers M. (2021). “Chapter 6 - RNA modifications in cardiovascular disease—an experimental and computational perspective,” in Epigenetics in cardiovascular disease. Editors Devaux Y., Robinson E. L. (Academic Press; ), 113–125.
Doney A. S., Dannfald J., Kimber C. H., Donnelly L. A., Pearson E., Morris A. D., et al. (2009). The FTO gene is associated with an atherogenic lipid profile and myocardial infarction in patients with type 2 diabetes: a Genetics of Diabetes Audit and Research Study in Tayside Scotland (Go-DARTS) study. Circ. Cardiovasc Genet. 2 (3), 255–259. 10.1161/CIRCGENETICS.108.822320 PubMed DOI PMC
Dubey P. K., Patil M., Singh S., Dubey S., Ahuja P., Verma S. K., et al. (2022). Increased m6A-RNA methylation and FTO suppression is associated with myocardial inflammation and dysfunction during endotoxemia in mice. Mol. Cell. Biochem. 477 (1), 129–141. 10.1007/s11010-021-04267-2 PubMed DOI PMC
Fan H. Q., He W., Xu K. F., Wang Z. X., Xu X. Y., Chen H. (2015). FTO inhibits insulin secretion and promotes NF-κB activation through positively regulating ROS production in pancreatic β cells. PLoS One 10 (5), e0127705. 10.1371/journal.pone.0127705 PubMed DOI PMC
Fischer J., Koch L., Emmerling C., Vierkotten J., Peters T., Brüning J. C., et al. (2009). Inactivation of the Fto gene protects from obesity. Nature 458 (7240), 894–898. 10.1038/nature07848 PubMed DOI
Frayling T. M., Timpson N. J., Weedon M. N., Zeggini E., Freathy R. M., Lindgren C. M., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316 (5826), 889–894. 10.1126/science.1141634 PubMed DOI PMC
Galicia-Garcia U., Benito-Vicente A., Jebari S., Larrea-Sebal A., Siddiqi H., Uribe K. B., et al. (2020). Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 21 (17), 6275. 10.3390/ijms21176275 PubMed DOI PMC
Gan X. T., Zhao G., Huang C. X., Rowe A. C., Purdham D. M., Karmazyn M. (2013). Identification of fat mass and obesity associated (FTO) protein expression in cardiomyocytes: regulation by leptin and its contribution to leptin-induced hypertrophy. PLoS One 8 (9), e74235. 10.1371/journal.pone.0074235 PubMed DOI PMC
Genis-Mendoza A. D., Martínez-Magaña J. J., Ruiz-Ramos D., Gonzalez-Covarrubias V., Tovilla-Zarate C. A., Narvaez M. L. L., et al. (2020). Interaction of FTO rs9939609 and the native American-origin ABCA1 p.Arg230Cys with circulating leptin levels in Mexican adolescents diagnosed with eating disorders: preliminary results. Psychiatry Res. 291, 113270. 10.1016/j.psychres.2020.113270 PubMed DOI
Gerken T., Girard C. A., Tung Y. C. L., Webby C. J., Saudek V., Hewitson K. S., et al. (2007). The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318 (5855), 1469–1472. 10.1126/science.1151710 PubMed DOI PMC
Ghafarian-Alipour F., Ziaee S., Ashoori M. R., Zakeri M. S., Boroumand M. A., Aghamohammadzadeh N., et al. (2018). Association between FTO gene polymorphisms and type 2 diabetes mellitus, serum levels of apelin and androgen hormones among Iranian obese women. Gene 641, 361–366. 10.1016/j.gene.2017.10.082 PubMed DOI
Gholamalizadeh M., Jonoush M., Mobarakeh K. A., Amjadi A., Alami F., Valisoltani N., et al. (2023). The effects of FTO gene rs9939609 polymorphism on the association between colorectal cancer and dietary intake. Front. Nutr. 10, 1215559. 10.3389/fnut.2023.1215559 PubMed DOI PMC
Gholami M. (2024). FTO is a major genetic link between breast cancer, obesity, and diabetes. Breast Cancer Res. Treat. 204 (1), 159–169. 10.1007/s10549-023-07188-4 PubMed DOI
Goyal R., Jialal I. (2023). “ Diabetes mellitus type 2, in StatPearls ,” in StatPearls publishing copyright © 2023. Treasure Island (FL): StatPearls Publishing LLC.
Han X., Wang N., Li J., Wang Y., Wang R., Chang J. (2019). Identification of nafamostat mesilate as an inhibitor of the fat mass and obesity-associated protein (FTO) demethylase activity. Chem. Biol. Interact. 297, 80–84. 10.1016/j.cbi.2018.10.023 PubMed DOI
Han Z., Niu T., Chang J., Lei X., Zhao M., Wang Q., et al. (2010). Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464 (7292), 1205–1209. 10.1038/nature08921 PubMed DOI
Han Z., Wang X., Xu Z., Cao Y., Gong R., Yu Y., et al. (2021). ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics 11 (6), 3000–3016. 10.7150/thno.47354 PubMed DOI PMC
Haupt A., Thamer C., Staiger H., Tschritter O., Kirchhoff K., Machicao F., et al. (2009). Variation in the FTO gene influences food intake but not energy expenditure. Exp. Clin. Endocrinol. Diabetes 117 (4), 194–197. 10.1055/s-0028-1087176 PubMed DOI
He D., Fu M., Miao S., Hotta K., Chandak G. R., Xi B. (2014). FTO gene variant and risk of hypertension: a meta-analysis of 57,464 hypertensive cases and 41,256 controls. Metabolism 63 (5), 633–639. 10.1016/j.metabol.2014.02.008 PubMed DOI
He W., Zhou B., Liu W., Zhang M., Shen Z., Han Z., et al. (2015). Identification of A Novel small-molecule binding site of the fat mass and obesity associated protein (FTO). J. Med. Chem. 58 (18), 7341–7348. 10.1021/acs.jmedchem.5b00702 PubMed DOI
Henamayee S., Banik K., Sailo B. L., Shabnam B., Harsha C., Srilakshmi S., et al. (2020). Therapeutic emergence of rhein as a potential anticancer drug: a review of its molecular targets and anticancer properties. Molecules 25 (10), 2278. 10.3390/molecules25102278 PubMed DOI PMC
Hernández-Caballero M. E., Sierra-Ramírez J. A. (2015). Single nucleotide polymorphisms of the FTO gene and cancer risk: an overview. Mol. Biol. Rep. 42 (3), 699–704. 10.1007/s11033-014-3817-y PubMed DOI
Hinger S. A., Wei J., Dorn L. E., Whitson B. A., Janssen P. M. L., He C., et al. (2021). Remodeling of the m(6)A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol. 151, 46–55. 10.1016/j.yjmcc.2020.11.002 PubMed DOI PMC
Hinney A., Nguyen T. T., Scherag A., Friedel S., Brönner G., Müller T. D., et al. (2007). Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One 2 (12), e1361. 10.1371/journal.pone.0001361 PubMed DOI PMC
Hlavackova M. (2018). Fat mass and obesity-associated protein in chronically hypoxic myocardium. High Alt. Med. and Biol. 19 (4), A–443. 10.1089/ham.2018.29015.abstracts DOI
Hsiao Y. T., Shen F. C., Weng S. W., Wang P. W., Chen Y. J., Lee J. J. (2021). Multiple single nucleotide polymorphism testing improves the prediction of diabetic retinopathy risk with type 2 diabetes mellitus. J. Pers. Med. 11 (8), 689. 10.3390/jpm11080689 PubMed DOI PMC
Hu F., Yan H. J., Gao C. X., Sun W. W., Long Y. S. (2023). Inhibition of hypothalamic FTO activates STAT3 signal through ERK1/2 associated with reductions in food intake and body weight. Neuroendocrinology 113 (1), 80–91. 10.1159/000526752 PubMed DOI
Huang Y., Su R., Sheng Y., Dong L., Dong Z., Xu H., et al. (2019). Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 35 (4), 677–691. 10.1016/j.ccell.2019.03.006 PubMed DOI PMC
Huang Y., Yan J., Li Q., Li J., Gong S., Zhou H., et al. (2015). Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 43 (1), 373–384. 10.1093/nar/gku1276 PubMed DOI PMC
Hubacek J. A., Dlouha D., Klementova M., Lanska V., Neskudla T., Pelikanova T. (2018a). The FTO variant is associated with chronic complications of diabetes mellitus in Czech population. Gene 642, 220–224. 10.1016/j.gene.2017.11.040 PubMed DOI
Hubacek J. A., Dlouha L., Adamkova V., Dlouha D., Pacal L., Kankova K., et al. (2023). Genetic risk score is associated with T2DM and diabetes complications risks. Gene 849, 146921. 10.1016/j.gene.2022.146921 PubMed DOI
Hubacek J. A., Stanek V., Gebauerová M., Pilipcincová A., Dlouhá D., Poledne R., et al. (2010). A FTO variant and risk of acute coronary syndrome. Clin. Chim. Acta 411 (15-16), 1069–1072. 10.1016/j.cca.2010.03.037 PubMed DOI
Hubacek J. A., Vrablik M., Dlouha D., Stanek V., Gebauerova M., Adamkova V., et al. (2016). Gene variants at FTO, 9p21, and 2q36.3 are age-independently associated with myocardial infarction in Czech men. Clin. Chim. Acta 454, 119–123. 10.1016/j.cca.2016.01.005 PubMed DOI
Hubacek J. A., Vymetalova J., Lanska V., Dlouha D. (2018b). The fat mass and obesity related gene polymorphism influences the risk of rejection in heart transplant patients. Clin. Transpl. 32 (12), e13443. 10.1111/ctr.13443 PubMed DOI
Huff S., Tiwari S. K., Gonzalez G. M., Wang Y., Rana T. M. (2021). m(6)A-RNA demethylase FTO inhibitors impair self-renewal in glioblastoma stem cells. ACS Chem. Biol. 16 (2), 324–333. 10.1021/acschembio.0c00841 PubMed DOI PMC
Iles M. M., Law M. H., Stacey S. N., Han J., Fang S., Pfeiffer R., et al. (2013). A variant in FTO shows association with melanoma risk not due to BMI. Nat. Genet. 45 (4), 428–432e1. 432e1. 10.1038/ng.2571 PubMed DOI PMC
Jia G., Fu Y., Zhao X., Dai Q., Zheng G., Yang Y., et al. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7 (12), 885–887. 10.1038/nchembio.687 PubMed DOI PMC
Jia G., Yang C. G., Yang S., Jian X., Yi C., Zhou Z., et al. (2008). Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 582 (23-24), 3313–3319. 10.1016/j.febslet.2008.08.019 PubMed DOI PMC
Ju W., Liu K., Ouyang S., Liu Z., He F., Wu J. (2021). Changes in N6-methyladenosine modification modulate diabetic cardiomyopathy by reducing myocardial fibrosis and myocyte hypertrophy. Front. Cell. Dev. Biol. 9, 702579. 10.3389/fcell.2021.702579 PubMed DOI PMC
Kaklamani V., Yi N., Sadim M., Siziopikou K., Zhang K., Xu Y., et al. (2011). The role of the fat mass and obesity associated gene (FTO) in breast cancer risk. BMC Med. Genet. 12, 52. 10.1186/1471-2350-12-52 PubMed DOI PMC
Karra E., O'Daly O. G., Choudhury A. I., Yousseif A., Millership S., Neary M. T., et al. (2013). A link between FTO, ghrelin, and impaired brain food-cue responsivity. J. Clin. Investig. 123 (8), 3539–3551. 10.1172/JCI44403 PubMed DOI PMC
Ke W. L., Huang Z. W., Peng C. L., Ke Y. P. (2022). m(6)A demethylase FTO regulates the apoptosis and inflammation of cardiomyocytes via YAP1 in ischemia-reperfusion injury. Bioengineered 13 (3), 5443–5452. 10.1080/21655979.2022.2030572 PubMed DOI PMC
Khatiwada B., Nguyen T. T., Purslow J. A., Venditti V. (2022). Solution structure ensemble of human obesity-associated protein FTO reveals druggable surface pockets at the interface between the N- and C-terminal domain. J. Biol. Chem. 298 (5), 101907. 10.1016/j.jbc.2022.101907 PubMed DOI PMC
Kirkpatrick C. L., Marchetti P., Purrello F., Piro S., Bugliani M., Bosco D., et al. (2010). Type 2 diabetes susceptibility gene expression in normal or diabetic sorted human alpha and beta cells: correlations with age or BMI of islet donors. PLoS One 5 (6), e11053. 10.1371/journal.pone.0011053 PubMed DOI PMC
Klein S., Gastaldelli A., Yki-Järvinen H., Scherer P. E. (2022). Why does obesity cause diabetes? Cell. Metab. 34 (1), 11–20. 10.1016/j.cmet.2021.12.012 PubMed DOI PMC
Krejčí J., Arcidiacono O. A., Čegan R., Radaszkiewicz K., Pacherník J., Pirk J., et al. (2023). Cell differentiation and aging lead to up-regulation of FTO, while the ALKBH5 protein level was stable during aging but up-regulated during in vitro-Induced cardiomyogenesis. Physiol. Res. 72 (4), 425–444. 10.33549/physiolres.935078 PubMed DOI PMC
Lauby-Secretan B., Scoccianti C., Loomis D., Grosse Y., Bianchini F., Straif K., et al. (2016). Body fatness and cancer--viewpoint of the IARC working group. N. Engl. J. Med. 375 (8), 794–798. 10.1056/NEJMsr1606602 PubMed DOI PMC
Li H., Ren Y., Mao K., Hua F., Yang Y., Wei N., et al. (2018). FTO is involved in Alzheimer's disease by targeting TSC1-mTOR-Tau signaling. Biochem. Biophys. Res. Commun. 498 (1), 234–239. 10.1016/j.bbrc.2018.02.201 PubMed DOI
Li W., Xing C., Bao L., Han S., Luo T., Wang Z., et al. (2022a). Comprehensive analysis of RNA m6A methylation in pressure overload-induced cardiac hypertrophy. BMC Genomics 23 (1), 576. 10.1186/s12864-022-08833-w PubMed DOI PMC
Li Y., Su R., Deng X., Chen Y., Chen J. (2022b). FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer 8 (7), 598–614. 10.1016/j.trecan.2022.02.010 PubMed DOI
Li Z., Weng H., Su R., Weng X., Zuo Z., Li C., et al. (2017). FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell. 31 (1), 127–141. 10.1016/j.ccell.2016.11.017 PubMed DOI PMC
Lin M., Hua Z., Li Z. (2024). FTO diversely influences sensitivity of neuroblastoma cells to various chemotherapeutic drugs. Front. Pharmacol. 15, 1384141. 10.3389/fphar.2024.1384141 PubMed DOI PMC
Liu C., Mou S., Pan C. (2013). The FTO gene rs9939609 polymorphism predicts risk of cardiovascular disease: a systematic review and meta-analysis. PLoS One 8 (8), e71901. 10.1371/journal.pone.0071901 PubMed DOI PMC
Liu K., Ju W., Ouyang S., Liu Z., He F., Hao J., et al. (2022). Exercise training ameliorates myocardial phenotypes in heart failure with preserved ejection fraction by changing N6-methyladenosine modification in mice model. Front. Cell. Dev. Biol. 10, 954769. 10.3389/fcell.2022.954769 PubMed DOI PMC
Liu S., Song S., Wang S., Cai T., Qin L., Wang X., et al. (2024). Hypothalamic FTO promotes high-fat diet-induced leptin resistance in mice through increasing CX3CL1 expression. J. Nutr. Biochem. 123, 109512. 10.1016/j.jnutbio.2023.109512 PubMed DOI
Liu X. H., Liu Z., Ren Z. H., Chen H. X., Zhang Y., Zhang Z., et al. (2023). Co-effects of m6A and chromatin accessibility dynamics in the regulation of cardiomyocyte differentiation. Epigenetics Chromatin 16 (1), 32. 10.1186/s13072-023-00506-6 PubMed DOI PMC
Liu Y., Liang G., Xu H., Dong W., Dong Z., Qiu Z., et al. (2021). Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell. Metab. 33 (6), 1221–1233.e11. 10.1016/j.cmet.2021.04.001 PubMed DOI
Lurie G., Gaudet M. M., Spurdle A. B., Carney M. E., Wilkens L. R., Yang H. P., et al. (2011). The obesity-associated polymorphisms FTO rs9939609 and MC4R rs17782313 and endometrial cancer risk in non-Hispanic white women. PLoS One 6 (2), e16756. 10.1371/journal.pone.0016756 PubMed DOI PMC
Ma Y., Liu X., Bi Y., Wang T., Chen C., Wang Y., et al. (2022). Alteration of N(6)-methyladenosine mRNA methylation in a human stem cell-derived cardiomyocyte model of tyrosine kinase inhibitor-induced cardiotoxicity. Front. Cardiovasc Med. 9, 849175. 10.3389/fcvm.2022.849175 PubMed DOI PMC
Magno F., Guaraná H. C., Fonseca A. C. P., Cabello G. M. K., Carneiro J. R. I., Pedrosa A. P., et al. (2018). Influence of FTO rs9939609 polymorphism on appetite, ghrelin, leptin, IL6, TNFα levels, and food intake of women with morbid obesity. Diabetes Metab. Syndr. Obes. 11, 199–207. 10.2147/DMSO.S154978 PubMed DOI PMC
Malone J. I., Hansen B. C. (2019). Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite? Pediatr. Diabetes 20 (1), 5–9. 10.1111/pedi.12787 PubMed DOI
Masoud Abd El Gayed E., Kamal El Din Zewain S., Ragheb A., ElNaidany S. S. (2021). Fat mass and obesity-associated gene expression and disease severity in type 2 diabetes mellitus. Steroids 174, 108897. 10.1016/j.steroids.2021.108897 PubMed DOI
Mathiyalagan P., Adamiak M., Mayourian J., Sassi Y., Liang Y., Agarwal N., et al. (2019). FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139 (4), 518–532. 10.1161/CIRCULATIONAHA.118.033794 PubMed DOI PMC
Mauer J., Jaffrey S. R. (2018). FTO, m(6) A(m), and the hypothesis of reversible epitranscriptomic mRNA modifications. FEBS Lett. 592 (12), 2012–2022. 10.1002/1873-3468.13092 PubMed DOI
Mauer J., Luo X., Blanjoie A., Jiao X., Grozhik A. V., Patil D. P., et al. (2017). Reversible methylation of m(6)A(m) in the 5' cap controls mRNA stability. Nature 541 (7637), 371–375. 10.1038/nature21022 PubMed DOI PMC
McMurray F., Church C. D., Larder R., Nicholson G., Wells S., Teboul L., et al. (2013). Adult onset global loss of the fto gene alters body composition and metabolism in the mouse. PLoS Genet. 9 (1), e1003166. 10.1371/journal.pgen.1003166 PubMed DOI PMC
Medicine N. L. o. (2024). Oral Administration of STC-15 in subjects with advanced malignancies (NCT05584111). 2022-2025 18. 11. Available at: https://clinicaltrials.gov/study/NCT05584111?term=NCT05584111&rank=1.
Mehrdad M., Doaei S., Gholamalizadeh M., Fardaei M., Fararouei M., Eftekhari M. H. (2020). Association of FTO rs9939609 polymorphism with serum leptin, insulin, adiponectin, and lipid profile in overweight adults. Adipocyte 9 (1), 51–56. 10.1080/21623945.2020.1722550 PubMed DOI PMC
Meng Y., Xi T., Fan J., Yang Q., Ouyang J., Yang J. (2024). The inhibition of FTO attenuates the antifibrotic effect of leonurine in rat cardiac fibroblasts. Biochem. Biophys. Res. Commun. 693, 149375. 10.1016/j.bbrc.2023.149375 PubMed DOI
Merkestein M., Laber S., McMurray F., Andrew D., Sachse G., Sanderson J., et al. (2015). FTO influences adipogenesis by regulating mitotic clonal expansion. Nat. Commun. 6, 6792. 10.1038/ncomms7792 PubMed DOI PMC
Mirabilii S., Ricciardi M. R., Tafuri A. (2020). mTOR regulation of metabolism in hematologic malignancies. Cells 9 (2), 404. 10.3390/cells9020404 PubMed DOI PMC
Montesanto A., Bonfigli A. R., Crocco P., Garagnani P., De Luca M., Boemi M., et al. (2018). Genes associated with Type 2 Diabetes and vascular complications. Aging (Albany NY) 10 (2), 178–196. 10.18632/aging.101375 PubMed DOI PMC
Mosaad Y. M., Morzak M., Abd El Aziz El Chennawi F., Elsharkawy A. A., Abdelsalam M. (2024). Evaluation of the role of FTO (rs9939609) and MC4R (rs17782313) gene polymorphisms in type 1 diabetes and their relation to obesity. J. Pediatr. Endocrinol. Metab. 37 (2), 110–122. 10.1515/jpem-2023-0372 PubMed DOI
Nabeel-Shah S., Pu S., Burke G. L., Ahmed N., Braunschweig U., Farhangmehr S., et al. (2024). Recruitment of the m(6)A/m6Am demethylase FTO to target RNAs by the telomeric zinc finger protein ZBTB48. Genome Biol. 25 (1), 246. 10.1186/s13059-024-03392-7 PubMed DOI PMC
Nasser F. A., Algenabi A. A., Hadi N. R., Hussein M. K., Fatima G., Al-Aubaidy H. A. (2019). The association of the common fat mass and obesity associated gene polymorphisms with type 2 diabetes in obese Iraqi population. Diabetes Metab. Syndr. 13 (4), 2451–2455. 10.1016/j.dsx.2019.06.024 PubMed DOI
Onalan E., Yakar B., Karakulak K., Kaymaz T., Donder E. (2022). m(6)A RNA, FTO, ALKBH5 expression in type 2 diabetic and obesity patients. J. Coll. Physicians Surg. Pak 32 (9), 1143–1148. 10.29271/jcpsp.2022.09.1143 PubMed DOI
Padariya M., Kalathiya U. (2016). Structure-based design and evaluation of novel N-phenyl-1H-indol-2-amine derivatives for fat mass and obesity-associated (FTO) protein inhibition. Comput. Biol. Chem. 64, 414–425. 10.1016/j.compbiolchem.2016.09.008 PubMed DOI
Pati S., Irfan W., Jameel A., Ahmed S., Shahid R. K. (2023). Obesity and cancer: a current overview of epidemiology, pathogenesis, outcomes, and management. Cancers (Basel) 15 (2), 485. 10.3390/cancers15020485 PubMed DOI PMC
Peng S., Xiao W., Ju D., Sun B., Hou N., Liu Q., et al. (2019). Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci. Transl. Med. 11 (488), eaau7116. 10.1126/scitranslmed.aau7116 PubMed DOI
Peters T., Ausmeier K., Rüther U. (1999). Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation. Mamm. Genome 10 (10), 983–986. 10.1007/s003359901144 PubMed DOI
Pierce B. L., Austin M. A., Ahsan H. (2011). Association study of type 2 diabetes genetic susceptibility variants and risk of pancreatic cancer: an analysis of PanScan-I data. Cancer Causes Control 22 (6), 877–883. 10.1007/s10552-011-9760-5 PubMed DOI PMC
Piwonska A. M., Cicha-Mikolajczyk A., Sobczyk-Kopciol A., Piwonski J., Drygas W., Kwasniewska M., et al. (2022). Independent association of FTO rs9939609 polymorphism with overweight and obesity in Polish adults. Results from the representative population-based WOBASZ study. J. Physiol. Pharmacol. 73 (3). 10.26402/jpp.2022.3.07 PubMed DOI
Qiao Y., Zhou B., Zhang M., Liu W., Han Z., Song C., et al. (2016). A novel inhibitor of the obesity-related protein FTO. Biochemistry 55 (10), 1516–1522. 10.1021/acs.biochem.6b00023 PubMed DOI
Qin B., Bai Q., Yan D., Yin F., Zhu Z., Xia C., et al. (2022). Discovery of novel mRNA demethylase FTO inhibitors against esophageal cancer. J. Enzyme Inhib. Med. Chem. 37 (1), 1995–2003. 10.1080/14756366.2022.2098954 PubMed DOI PMC
Qiu L., Jing Q., Li Y., Han J. (2023). RNA modification: mechanisms and therapeutic targets. Mol. Biomed. 4 (1), 25. 10.1186/s43556-023-00139-x PubMed DOI PMC
Rafaqat S., Sharif S., Naz S., Patoulias D., Klisic A. (2024). Contributing role of metabolic genes APOE, FTO, and LPL in the development of atrial fibrillation: insights from a case-control study. Rev. Assoc. Med. Bras. 70 (8), e20240263. 10.1590/1806-9282.20240263 PubMed DOI PMC
Relier S., Ripoll J., Guillorit H., Amalric A., Achour C., Boissière F., et al. (2021). FTO-mediated cytoplasmic m(6)A(m) demethylation adjusts stem-like properties in colorectal cancer cell. Nat. Commun. 12 (1), 1716. 10.1038/s41467-021-21758-4 PubMed DOI PMC
Sabarneh A., Ereqat S., Cauchi S., AbuShamma O., Abdelhafez M., Ibrahim M., et al. (2018). Common FTO rs9939609 variant and risk of type 2 diabetes in Palestine. BMC Med. Genet. 19 (1), 156. 10.1186/s12881-018-0668-8 PubMed DOI PMC
Sanghera D. K., Ortega L., Han S., Singh J., Ralhan S. K., Wander G. S., et al. (2008). Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Med. Genet. 9, 59. 10.1186/1471-2350-9-59 PubMed DOI PMC
Sarkar P., Chatterjee D., Bandyopadhyay A. R. (2021). Effect of MTHFR (rs1801133) and FTO (rs9939609) genetic polymorphisms and obesity in T2DM: a study among Bengalee Hindu caste population of West Bengal, India. Ann. Hum. Biol. 48 (1), 62–65. 10.1080/03014460.2021.1876920 PubMed DOI
Scuteri A., Sanna S., Chen W. M., Uda M., Albai G., Strait J., et al. (2007). Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3 (7), e115. 10.1371/journal.pgen.0030115 PubMed DOI PMC
Semenovykh D., Benak D., Holzerova K., Cerna B., Telensky P., Vavrikova T., et al. (2022). Myocardial m6A regulators in postnatal development: effect of sex. Physiol. Res. 71 (6), 877–882. 10.33549/physiolres.934970 PubMed DOI PMC
Shen F., Huang W., Huang J. T., Xiong J., Yang Y., Wu K., et al. (2015). Decreased N(6)-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALKBH5. J. Clin. Endocrinol. Metab. 100 (1), E148–E154. 10.1210/jc.2014-1893 PubMed DOI PMC
Shen W., Li H., Su H., Chen K., Yan J. (2021). FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt. Mol. Cell. Biochem. 476 (5), 2171–2179. 10.1007/s11010-021-04069-6 PubMed DOI
Shi X., Cao Y., Zhang X., Gu C., Liang F., Xue J., et al. (2021). Comprehensive analysis of N6-methyladenosine RNA methylation regulators expression identify distinct molecular subtypes of myocardial infarction. Front. Cell. Dev. Biol. 9, 756483. 10.3389/fcell.2021.756483 PubMed DOI PMC
Smemo S., Tena J. J., Kim K. H., Gamazon E. R., Sakabe N. J., Gómez-Marín C., et al. (2014). Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507 (7492), 371–375. 10.1038/nature13138 PubMed DOI PMC
Speakman J. R., Rance K. A., Johnstone A. M. (2008). Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obes. (Silver Spring) 16 (8), 1961–1965. 10.1038/oby.2008.318 PubMed DOI
Stratigopoulos G., Martin Carli J. F., O'Day D. R., Wang L., Leduc C. A., Lanzano P., et al. (2014). Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell. Metab. 19 (5), 767–779. 10.1016/j.cmet.2014.04.009 PubMed DOI PMC
Su R., Dong L., Li Y., Gao M., Han L., Wunderlich M., et al. (2020). Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 38 (1), 79–96. 10.1016/j.ccell.2020.04.017 PubMed DOI PMC
Su X., Shen Y., Jin Y., Kim I. M., Weintraub N. L., Tang Y. (2021). Aging-associated differences in epitranscriptomic m6A regulation in response to acute cardiac ischemia/reperfusion injury in female mice. Front. Pharmacol. 12, 654316. 10.3389/fphar.2021.654316 PubMed DOI PMC
Sun K., Du Y., Hou Y., Zhao M., Li J., Du Y., et al. (2021). Saikosaponin D exhibits anti-leukemic activity by targeting FTO/m(6)A signaling. Theranostics 11 (12), 5831–5846. 10.7150/thno.55574 PubMed DOI PMC
Sun Q., Geng H., Zhao M., Li Y., Chen X., Sha Q., et al. (2022). FTO-mediated m(6) A modification of SOCS1 mRNA promotes the progression of diabetic kidney disease. Clin. Transl. Med. 12 (6), e942. 10.1002/ctm2.942 PubMed DOI PMC
Svensen N., Jaffrey S. R. (2016). Fluorescent RNA aptamers as a tool to study RNA-modifying enzymes. Cell. Chem. Biol. 23 (3), 415–425. 10.1016/j.chembiol.2015.11.018 PubMed DOI PMC
Taneera J., Khalique A., Abdrabh S., Mohammed A. K., Bouzid A., El-Huneidi W., et al. (2024). Fat mass and obesity-associated (FTO) gene is essential for insulin secretion and β-cell function: in vitro studies using INS-1 cells and human pancreatic islets. Life Sci. 339, 122421. 10.1016/j.lfs.2024.122421 PubMed DOI
Taneera J., Prasad R. B., Dhaiban S., Mohammed A. K., Haataja L., Arvan P., et al. (2018). Silencing of the FTO gene inhibits insulin secretion: an in vitro study using GRINCH cells. Mol. Cell. Endocrinol. 472, 10–17. 10.1016/j.mce.2018.06.003 PubMed DOI PMC
Tang H., Dong X., Hassan M., Abbruzzese J. L., Li D. (2011). Body mass index and obesity- and diabetes-associated genotypes and risk for pancreatic cancer. Cancer Epidemiol. Biomarkers Prev. 20 (5), 779–792. 10.1158/1055-9965.EPI-10-0845 PubMed DOI PMC
Tews D., Fischer-Posovszky P., Fromme T., Klingenspor M., Fischer J., Rüther U., et al. (2013). FTO deficiency induces UCP-1 expression and mitochondrial uncoupling in adipocytes. Endocrinology 154 (9), 3141–3151. 10.1210/en.2012-1873 PubMed DOI
Toh J. D. W., Sun L., Lau L. Z. M., Tan J., Low J. J. A., Tang C. W. Q., et al. (2015). A strategy based on nucleotide specificity leads to a subfamily-selective and cell-active inhibitor of N(6)-methyladenosine demethylase FTO. Chem. Sci. 6 (1), 112–122. 10.1039/c4sc02554g PubMed DOI PMC
Tung Y. C., Ayuso E., Shan X., Bosch F., O'Rahilly S., Coll A. P., et al. (2010). Hypothalamic-specific manipulation of Fto, the ortholog of the human obesity gene FTO, affects food intake in rats. PLoS One 5 (1), e8771. 10.1371/journal.pone.0008771 PubMed DOI PMC
Tung Y. C., Gulati P., Liu C. H., Rimmington D., Dennis R., Ma M., et al. (2015). FTO is necessary for the induction of leptin resistance by high-fat feeding. Mol. Metab. 4 (4), 287–298. 10.1016/j.molmet.2015.01.011 PubMed DOI PMC
UniProt Consortium (2023). UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51 (D1), D523–d531. 10.1093/nar/gkac1052 PubMed DOI PMC
Vasan S. K., Karpe F., Gu H. F., Brismar K., Fall C. H., Ingelsson E., et al. (2014). FTO genetic variants and risk of obesity and type 2 diabetes: a meta-analysis of 28,394 Indians. Obes. (Silver Spring) 22 (3), 964–970. 10.1002/oby.20606 PubMed DOI
Vausort M., Niedolistek M., Lumley A. I., Oknińska M., Paterek A., Mączewski M., et al. (2022). Regulation of N6-methyladenosine after myocardial infarction. Cells 11 (15), 2271. 10.3390/cells11152271 PubMed DOI PMC
Wang L., Song C., Wang N., Li S., Liu Q., Sun Z., et al. (2020b). NADP modulates RNA m(6)A methylation and adipogenesis via enhancing FTO activity. Nat. Chem. Biol. 16 (12), 1394–1402. 10.1038/s41589-020-0601-2 PubMed DOI
Wang P., Yang F. J., Du H., Guan Y. F., Xu T. Y., Xu X. W., et al. (2011). Involvement of leptin receptor long isoform (LepRb)-STAT3 signaling pathway in brain fat mass- and obesity-associated (FTO) downregulation during energy restriction. Mol. Med. 17 (5-6), 523–532. 10.2119/molmed.2010.00134 PubMed DOI PMC
Wang R., Han Z., Liu B., Zhou B., Wang N., Jiang Q., et al. (2018). Identification of natural compound radicicol as a potent FTO inhibitor. Mol. Pharm. 15 (9), 4092–4098. 10.1021/acs.molpharmaceut.8b00522 PubMed DOI
Wang T., Hong T., Huang Y., Su H., Wu F., Chen Y., et al. (2015). Fluorescein derivatives as bifunctional molecules for the simultaneous inhibiting and labeling of FTO protein. J. Am. Chem. Soc. 137 (43), 13736–13739. 10.1021/jacs.5b06690 PubMed DOI
Wang W., Yang K., Wang S., Zhang J., Shi Y., Zhang H., et al. (2022a). The sex-specific influence of FTO genotype on exercise intervention for weight loss in adult with obesity. Eur. J. Sport Sci. 22 (12), 1926–1931. 10.1080/17461391.2021.1976843 PubMed DOI
Wang X., Huang N., Yang M., Wei D., Tai H., Han X., et al. (2017). FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis. Cell. Death Dis. 8 (3), e2702. 10.1038/cddis.2017.122 PubMed DOI PMC
Wang X., Wu R., Liu Y., Zhao Y., Bi Z., Yao Y., et al. (2020a). m(6)A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7. Autophagy 16 (7), 1221–1235. 10.1080/15548627.2019.1659617 PubMed DOI PMC
Wang X., Wu Y., Guo R., Zhao L., Yan J., Gao C. (2022b). Comprehensive analysis of N6-methyladenosine RNA methylation regulators in the diagnosis and subtype classification of acute myocardial infarction. J. Immunol. Res. 2022, 5173761. 10.1155/2022/5173761 PubMed DOI PMC
Wardle J., Carnell S., Haworth C. M. A., Farooqi I. S., O'Rahilly S., Plomin R. (2008). Obesity associated genetic variation in FTO is associated with diminished satiety. J. Clin. Endocrinol. Metab. 93 (9), 3640–3643. 10.1210/jc.2008-0472 PubMed DOI
Wardle J., Llewellyn C., Sanderson S., Plomin R. (2009). The FTO gene and measured food intake in children. Int. J. Obes. (Lond) 33 (1), 42–45. 10.1038/ijo.2008.174 PubMed DOI
Wei J., Liu F., Lu Z., Fei Q., Ai Y., He P. C., et al. (2018). Differential m(6)A, m(6)A(m), and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell. 71 (6), 973–985. 10.1016/j.molcel.2018.08.011 PubMed DOI PMC
Wen C., Lan M., Tan X., Wang X., Zheng Z., Lv M., et al. (2022). GSK3β exacerbates myocardial ischemia/reperfusion injury by inhibiting myc. Oxid. Med. Cell. Longev. 2022, 2588891. 10.1155/2022/2588891 PubMed DOI PMC
WHO (2022). Diabetes. Available at: https://www.who.int/news-room/fact-sheets/detail/diabetes.
WHO (2021). Cardiovasc. Dis. (CVDs). (cvds). Available at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-.
WHO. Obes. overweight. 2021. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
Wu R., Chen Y., Liu Y., Zhuang L., Chen W., Zeng B., et al. (2021). m6A methylation promotes white-to-beige fat transition by facilitating Hif1a translation. EMBO Rep. 22 (11), e52348. 10.15252/embr.202052348 PubMed DOI PMC
Wu R., Liu Y., Yao Y., Zhao Y., Bi Z., Jiang Q., et al. (2018). FTO regulates adipogenesis by controlling cell cycle progression via m(6)A-YTHDF2 dependent mechanism. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1863 (10), 1323–1330. 10.1016/j.bbalip.2018.08.008 PubMed DOI
Wu W., Feng J., Jiang D., Zhou X., Jiang Q., Cai M., et al. (2017). AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N(6)-methyladenosine. Sci. Rep. 7, 41606. 10.1038/srep41606 PubMed DOI PMC
Xu Y. Y., Li T., Shen A., Bao X. Q., Lin J. F., Guo L. Z., et al. (2023). FTO up-regulation induced by MYC suppresses tumour progression in Epstein-Barr virus-associated gastric cancer. Clin. Transl. Med. 13 (12), e1505. 10.1002/ctm2.1505 PubMed DOI PMC
Xu Z., Qin Y., Lv B., Tian Z., Zhang B. (2022). Intermittent fasting improves high-fat diet-induced obesity cardiomyopathy via alleviating lipid deposition and apoptosis and decreasing m6A methylation in the heart. Nutrients 14 (2), 251. 10.3390/nu14020251 PubMed DOI PMC
Yajnik C. S., Janipalli C. S., Bhaskar S., Kulkarni S. R., Freathy R. M., Prakash S., et al. (2009). FTO gene variants are strongly associated with type 2 diabetes in South Asian Indians. Diabetologia 52 (2), 247–252. 10.1007/s00125-008-1186-6 PubMed DOI PMC
Yang C., Zhao K., Zhang J., Wu X., Sun W., Kong X., et al. (2021a). Comprehensive analysis of the transcriptome-wide m6A methylome of heart via MeRIP after birth: day 0 vs. Day 7. Front. Cardiovasc Med. 8, 633631. 10.3389/fcvm.2021.633631 PubMed DOI PMC
Yang H., Xuan L., Wang S., Luo H., Duan X., Guo J., et al. (2024a). LncRNA CCRR maintains Ca(2+) homeostasis against myocardial infarction through the FTO-SERCA2a pathway. Sci. China Life Sci. 67, 1601–1619. 10.1007/s11427-023-2527-5 PubMed DOI
Yang Y., Ren J., Zhang J., Shi H., Wang J., Yan Y. (2024b). FTO ameliorates doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via P53-P21/Nrf2 activation in a HuR-dependent m6A manner. Redox Biol. 70, 103067. 10.1016/j.redox.2024.103067 PubMed DOI PMC
Yang Y., Shen F., Huang W., Qin S., Huang J. T., Sergi C., et al. (2019). Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 104 (3), 665–673. 10.1210/jc.2018-00619 PubMed DOI
Yang Z., Jiang X., Zhang Z., Zhao Z., Xing W., Liu Y., et al. (2021b). HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer. Cancer Gene Ther. 28 (1-2), 141–155. 10.1038/s41417-020-0193-8 PubMed DOI
Younus L. A., Algenabi A. H. A., Abdul-Zhara M. S., Hussein M. K. (2017). FTO gene polymorphisms (rs9939609 and rs17817449) as predictors of Type 2 Diabetes Mellitus in obese Iraqi population. Gene 627, 79–84. 10.1016/j.gene.2017.06.005 PubMed DOI
Yu H., Armstrong N., Pavela G., Kaiser K. (2023a). Sex and race differences in obesity-related genetic susceptibility and risk of cardiometabolic disease in older US adults. JAMA Netw. Open 6 (12), e2347171. 10.1001/jamanetworkopen.2023.47171 PubMed DOI PMC
Yu P., Wang J., Xu G. E., Zhao X., Cui X., Feng J., et al. (2023b). RNA m(6)a-regulated circ-znf609 suppression ameliorates doxorubicin-induced cardiotoxicity by upregulating FTO. JACC Basic Transl. Sci. 8 (6), 677–698. 10.1016/j.jacbts.2022.12.005 PubMed DOI PMC
Yu Y., Pan Y., Fan Z., Xu S., Gao Z., Ren Z., et al. (2021). LuHui derivative, A novel compound that inhibits the fat mass and obesity-associated (FTO), alleviates the inflammatory response and injury in hyperlipidemia-induced cardiomyopathy. Front. Cell. Dev. Biol. 9, 731365. 10.3389/fcell.2021.731365 PubMed DOI PMC
Zano S., Baig S. (2022). Association of FTO variant with parental history of type 2 diabetes mellitus in adults. J. Pak Med. Assoc. 72 (10), 2009–2013. 10.47391/JPMA.4299 PubMed DOI
Zeng H., Xu J., Wu R., Wang X., Jiang Y., Wang Q., et al. (2024). FTO alleviated ferroptosis in septic cardiomyopathy via mediating the m6A modification of BACH1. Biochim. Biophys. Acta Mol. Basis Dis. 1870, 167307. 10.1016/j.bbadis.2024.167307 PubMed DOI
Zhang B., Jiang H., Wu J., Cai Y., Dong Z., Zhao Y., et al. (2021a). m6A demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct. Target Ther. 6 (1), 377. 10.1038/s41392-021-00699-w PubMed DOI PMC
Zhang B., Xu Y., Cui X., Jiang H., Luo W., Weng X., et al. (2021b). Alteration of m6A RNA methylation in heart failure with preserved ejection fraction. Front. Cardiovasc Med. 8, 647806. 10.3389/fcvm.2021.647806 PubMed DOI PMC
Zhang M., Zhang Y., Ma J., Guo F., Cao Q., Zhang Y., et al. (2015). The demethylase activity of FTO (fat mass and obesity associated protein) is required for preadipocyte differentiation. PLoS One 10 (7), e0133788. 10.1371/journal.pone.0133788 PubMed DOI PMC
Zhang Y., Chen L., Zhu J., Liu H., Xu L., Wu Y., et al. (2023). Minor alleles of FTO rs9939609 and rs17817449 polymorphisms confer a higher risk of type 2 diabetes mellitus and dyslipidemia, but not coronary artery disease in a Chinese Han population. Front. Endocrinol. (Lausanne) 14, 1249070. 10.3389/fendo.2023.1249070 PubMed DOI PMC
Zhang Y., Chen Y., Guo Q., Liu A. (2024). Fat mass and obesity-associated protein (FTO)-induced upregulation of flotillin-2 (FLOT2) contributes to cancer aggressiveness in diffuse large B-cell lymphoma (DLBCL) via activating the PI3K/Akt/mTOR signal pathway. Arch. Biochem. Biophys. 758, 110072. 10.1016/j.abb.2024.110072 PubMed DOI
Zhao X., Yang Y., Sun B. F., Shi Y., Yang X., Xiao W., et al. (2014). FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell. Res. 24 (12), 1403–1419. 10.1038/cr.2014.151 PubMed DOI PMC
Zheng G., Cox T., Tribbey L., Wang G. Z., Iacoban P., Booher M. E., et al. (2014). Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem. Neurosci. 5 (8), 658–665. 10.1021/cn500042t PubMed DOI PMC
Zhou S., Bai Z. L., Xia D., Zhao Z. J., Zhao R., Wang Y. Y., et al. (2018). FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation. Mol. Carcinog. 57 (5), 590–597. 10.1002/mc.22782 PubMed DOI
Epitranscriptomic regulation of HIF-1: bidirectional regulatory pathways