FTO in health and disease

. 2024 ; 12 () : 1500394. [epub] 20241218

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39744011

Fat mass and obesity-associated (FTO) protein, a key enzyme integral to the dynamic regulation of epitranscriptomic modifications in RNAs, significantly influences crucial RNA lifecycle processes, including splicing, export, decay, and translation. The role of FTO in altering the epitranscriptome manifests across a spectrum of physiological and pathological conditions. This review aims to consolidate current understanding regarding the implications of FTO in health and disease, with a special emphasis on its involvement in obesity and non-communicable diseases associated with obesity, such as diabetes, cardiovascular disease, and cancer. It also summarizes the established molecules with FTO-inhibiting activity. Given the extensive impact of FTO on both physiology and pathophysiology, this overview provides illustrative insights into its roles, rather than an exhaustive account. A proper understanding of FTO function in human diseases could lead to new treatment approaches, potentially unlocking novel avenues for addressing both metabolic disorders and malignancies. The evolving insights into FTO's regulatory mechanisms hold great promise for future advancements in disease treatment and prevention.

Zobrazit více v PubMed

Agoston D. V. (2017). How to translate time? The temporal aspect of human and rodent biology. Front. Neurol. 8, 92. 10.3389/fneur.2017.00092 PubMed DOI PMC

Ahmad T., Chasman D. I., Mora S., Paré G., Cook N. R., Buring J. E., et al. (2010). The fat-mass and obesity-associated (FTO) gene, physical activity, and risk of incident cardiovascular events in white women. Am. Heart J. 160 (6), 1163–1169. 10.1016/j.ahj.2010.08.002 PubMed DOI PMC

Aik W., Demetriades M., Hamdan M. K. K., Bagg E. A. L., Yeoh K. K., Lejeune C., et al. (2013). Structural basis for inhibition of the fat mass and obesity associated protein (FTO). J. Med. Chem. 56 (9), 3680–3688. 10.1021/jm400193d PubMed DOI

Amin U. S. M., Rahman T. A., Hasan M., Tofail T., Hasanat M. A., Seraj Z. I., et al. (2023). Type 2 diabetes linked FTO gene variant rs8050136 is significantly associated with gravidity in gestational diabetes in a sample of Bangladeshi women: meta-analysis and case-control study. PLoS One 18 (11), e0288318. 10.1371/journal.pone.0288318 PubMed DOI PMC

Amine Ikhanjal M., Ali Elouarid M., Zouine C., El Alami H., Errafii K., Ghazal H., et al. (2023). FTO gene variants (rs9939609, rs8050136 and rs17817449) and type 2 diabetes mellitus risk: a Meta-Analysis. Gene 887, 147791. 10.1016/j.gene.2023.147791 PubMed DOI

An Y., Duan H. (2022). The role of m6A RNA methylation in cancer metabolism. Mol. Cancer 21 (1), 14. 10.1186/s12943-022-01500-4 PubMed DOI PMC

Ashcroft F. M., Rorsman P. (2012). Diabetes mellitus and the β cell: the last ten years. Cell. 148 (6), 1160–1171. 10.1016/j.cell.2012.02.010 PubMed DOI PMC

Ashraf M. J., Baweja P. (2013). Obesity: the 'huge' problem in cardiovascular diseases. Mo Med. 110 (6), 499–504. PubMed PMC

Avgerinos K. I., Spyrou N., Mantzoros C. S., Dalamaga M. (2019). Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism 92, 121–135. 10.1016/j.metabol.2018.11.001 PubMed DOI

Azhati B., Reheman A., Dilixiati D., Rexiati M. (2023). FTO-stabilized miR-139-5p targets ZNF217 to suppress prostate cancer cell malignancies by inactivating the PI3K/Akt/mTOR signal pathway. Arch. Biochem. Biophys. 741, 109604. 10.1016/j.abb.2023.109604 PubMed DOI

Azzam S. K., Alsafar H., Sajini A. A. (2022). FTO m6A demethylase in obesity and cancer: implications and underlying molecular mechanisms. Int. J. Mol. Sci. 23 (7), 3800. 10.3390/ijms23073800 PubMed DOI PMC

Babakhanian M., Razavi A., Rahimi Pordanjani S., Hassanabadi S., Mohammadi G., Fattah A. (2022). High incidence of type 1 diabetes, type 2 diabetes and gestational diabetes in Central Iran: a six years results from Semnan health cohort. Ann. Med. Surg. (Lond) 82, 104749. 10.1016/j.amsu.2022.104749 PubMed DOI PMC

Bakhashab S., Filimban N., Altall R. M., Nassir R., Qusti S. Y., Alqahtani M. H., et al. (2020). The effect sizes of PPARγ rs1801282, FTO rs9939609, and MC4R rs2229616 variants on type 2 diabetes mellitus risk among the western Saudi population: a cross-sectional prospective study. Genes. (Basel) 11 (1), 98. 10.3390/genes11010098 PubMed DOI PMC

Barbosa D. M., Fahlbusch P., Herzfeld de Wiza D., Jacob S., Kettel U., Al-Hasani H., et al. (2020). Rhein, a novel Histone Deacetylase (HDAC) inhibitor with antifibrotic potency in human myocardial fibrosis. Sci. Rep. 10 (1), 4888. 10.1038/s41598-020-61886-3 PubMed DOI PMC

Bazzi M. D., Nasr F. A., Alanazi M. S., Alamri A., Turjoman A. A., Moustafa A. S., et al. (2014). Association between FTO, MC4R, SLC30A8, and KCNQ1 gene variants and type 2 diabetes in Saudi population. Genet. Mol. Res. 13 (4), 10194–10203. 10.4238/2014.December.4.14 PubMed DOI

Benak D., Benakova S., Plecita-Hlavata L., Hlavackova M. (2023b). The role of m6A and m6Am RNA modifications in the pathogenesis of diabetes mellitus. Front. Endocrinol. (Lausanne) 14, 1223583. 10.3389/fendo.2023.1223583 PubMed DOI PMC

Benak D., Holzerova K., Hrdlicka J., Kolar F., Olsen M., Karelson M., et al. (2024). Epitranscriptomic regulation in fasting hearts: implications for cardiac health. RNA Biol. 21 (1), 1–14. 10.1080/15476286.2024.2307732 PubMed DOI PMC

Benak D., Kolar F., Zhang L., Devaux Y., Hlavackova M. (2023a). RNA modification m(6)Am: the role in cardiac biology. Epigenetics 18 (1), 2218771. 10.1080/15592294.2023.2218771 PubMed DOI PMC

Berulava T., Buchholz E., Elerdashvili V., Pena T., Islam M. R., Lbik D., et al. (2020). Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur. J. Heart Fail 22 (1), 54–66. 10.1002/ejhf.1672 PubMed DOI

Berulava T., Horsthemke B. (2010). The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur. J. Hum. Genet. 18 (9), 1054–1056. 10.1038/ejhg.2010.71 PubMed DOI PMC

Boissel S., Reish O., Proulx K., Kawagoe-Takaki H., Sedgwick B., Yeo G. S. H., et al. (2009). Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am. J. Hum. Genet. 85 (1), 106–111. 10.1016/j.ajhg.2009.06.002 PubMed DOI PMC

Bornaque F., Delannoy C. P., Courty E., Rabhi N., Carney C., Rolland L., et al. (2022). Glucose regulates m(6)A methylation of RNA in pancreatic islets. Cells 11 (2), 291. 10.3390/cells11020291 PubMed DOI PMC

Brennan P., McKay J., Moore L., Zaridze D., Mukeria A., Szeszenia-Dabrowska N., et al. (2009). Obesity and cancer: mendelian randomization approach utilizing the FTO genotype. Int. J. Epidemiol. 38 (4), 971–975. 10.1093/ije/dyp162 PubMed DOI PMC

Bressler J., Kao W. H. L., Pankow J. S., Boerwinkle E. (2010). Risk of type 2 diabetes and obesity is differentially associated with variation in FTO in whites and African-Americans in the ARIC study. PLoS One 5 (5), e10521. 10.1371/journal.pone.0010521 PubMed DOI PMC

Carnevali L., Graiani G., Rossi S., Al Banchaabouchi M., Macchi E., Quaini F., et al. (2014). Signs of cardiac autonomic imbalance and proarrhythmic remodeling in FTO deficient mice. PLoS One 9 (4), e95499. 10.1371/journal.pone.0095499 PubMed DOI PMC

Cecil J. E., Tavendale R., Watt P., Hetherington M. M., Palmer C. N. A. (2008). An obesity-associated FTO gene variant and increased energy intake in children. N. Engl. J. Med. 359 (24), 2558–2566. 10.1056/NEJMoa0803839 PubMed DOI

Chaudhary N., Alawadhi F., Al-Serri A., Al-Temaimi R. (2024). TCF7L2 and FTO polymorphisms are associated with type 2 diabetes mellitus risk in Kuwait. Med. Princ. Pract. 33, 157–163. 10.1159/000536229 PubMed DOI PMC

Chauhan G., Tabassum R., Mahajan A., Dwivedi O. P., Mahendran Y., Kaur I., et al. (2011). Common variants of FTO and the risk of obesity and type 2 diabetes in Indians. J. Hum. Genet. 56 (10), 720–726. 10.1038/jhg.2011.87 PubMed DOI

Chen B., Ye F., Yu L., Jia G., Huang X., Zhang X., et al. (2012). Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J. Am. Chem. Soc. 134 (43), 17963–17971. 10.1021/ja3064149 PubMed DOI

Chen X., Wang Y., Wang J. N., Zhang Y. C., Zhang Y. R., Sun R. X., et al. (2024). Lactylation-driven FTO targets CDK2 to aggravate microvascular anomalies in diabetic retinopathy. EMBO Mol. Med. 16 (2), 294–318. 10.1038/s44321-024-00025-1 PubMed DOI PMC

Church C., Lee S., Bagg E. A. L., McTaggart J. S., Deacon R., Gerken T., et al. (2009). A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet. 5 (8), e1000599. 10.1371/journal.pgen.1000599 PubMed DOI PMC

Church C., Moir L., McMurray F., Girard C., Banks G. T., Teboul L., et al. (2010). Overexpression of Fto leads to increased food intake and results in obesity. Nat. Genet. 42 (12), 1086–1092. 10.1038/ng.713 PubMed DOI PMC

Claussnitzer M., Dankel S. N., Kim K. H., Quon G., Meuleman W., Haugen C., et al. (2015). FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373 (10), 895–907. 10.1056/NEJMoa1502214 PubMed DOI PMC

Cui Y., Wang P., Li M., Wang Y., Tang X., Cui J., et al. (2023). Cinnamic acid mitigates left ventricular hypertrophy and heart failure in part through modulating FTO-dependent N(6)-methyladenosine RNA modification in cardiomyocytes. Biomed. Pharmacother. 165, 115168. 10.1016/j.biopha.2023.115168 PubMed DOI

De Jesus D. F., Zhang Z., Kahraman S., Brown N. K., Chen M., Hu J., et al. (2019). m6A mRNA methylation regulates human β-cell biology in physiological states and in type 2 diabetes. Nat. Metab. 1 (8), 765–774. 10.1038/s42255-019-0089-9 PubMed DOI PMC

Delahanty R. J., Beeghly-Fadiel A., Xiang Y. B., Long J., Cai Q., Wen W., et al. (2011). Association of obesity-related genetic variants with endometrial cancer risk: a report from the Shanghai Endometrial Cancer Genetics Study. Am. J. Epidemiol. 174 (10), 1115–1126. 10.1093/aje/kwr233 PubMed DOI PMC

Deng W., Jin Q., Li L. (2021). Protective mechanism of demethylase fat mass and obesity-associated protein in energy metabolism disorder of hypoxia-reoxygenation-induced cardiomyocytes. Exp. Physiol. 106 (12), 2423–2433. 10.1113/EP089901 PubMed DOI

Desrosiers R., Friderici K., Rottman F. (1974). Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. U. S. A. 71 (10), 3971–3975. 10.1073/pnas.71.10.3971 PubMed DOI PMC

Dhillo W. S. (2007). Appetite regulation: an overview. Thyroid 17 (5), 433–445. 10.1089/thy.2007.0018 PubMed DOI

Dieterich C., Völkers M. (2021). “Chapter 6 - RNA modifications in cardiovascular disease—an experimental and computational perspective,” in Epigenetics in cardiovascular disease. Editors Devaux Y., Robinson E. L. (Academic Press; ), 113–125.

Doney A. S., Dannfald J., Kimber C. H., Donnelly L. A., Pearson E., Morris A. D., et al. (2009). The FTO gene is associated with an atherogenic lipid profile and myocardial infarction in patients with type 2 diabetes: a Genetics of Diabetes Audit and Research Study in Tayside Scotland (Go-DARTS) study. Circ. Cardiovasc Genet. 2 (3), 255–259. 10.1161/CIRCGENETICS.108.822320 PubMed DOI PMC

Dubey P. K., Patil M., Singh S., Dubey S., Ahuja P., Verma S. K., et al. (2022). Increased m6A-RNA methylation and FTO suppression is associated with myocardial inflammation and dysfunction during endotoxemia in mice. Mol. Cell. Biochem. 477 (1), 129–141. 10.1007/s11010-021-04267-2 PubMed DOI PMC

Fan H. Q., He W., Xu K. F., Wang Z. X., Xu X. Y., Chen H. (2015). FTO inhibits insulin secretion and promotes NF-κB activation through positively regulating ROS production in pancreatic β cells. PLoS One 10 (5), e0127705. 10.1371/journal.pone.0127705 PubMed DOI PMC

Fischer J., Koch L., Emmerling C., Vierkotten J., Peters T., Brüning J. C., et al. (2009). Inactivation of the Fto gene protects from obesity. Nature 458 (7240), 894–898. 10.1038/nature07848 PubMed DOI

Frayling T. M., Timpson N. J., Weedon M. N., Zeggini E., Freathy R. M., Lindgren C. M., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316 (5826), 889–894. 10.1126/science.1141634 PubMed DOI PMC

Galicia-Garcia U., Benito-Vicente A., Jebari S., Larrea-Sebal A., Siddiqi H., Uribe K. B., et al. (2020). Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 21 (17), 6275. 10.3390/ijms21176275 PubMed DOI PMC

Gan X. T., Zhao G., Huang C. X., Rowe A. C., Purdham D. M., Karmazyn M. (2013). Identification of fat mass and obesity associated (FTO) protein expression in cardiomyocytes: regulation by leptin and its contribution to leptin-induced hypertrophy. PLoS One 8 (9), e74235. 10.1371/journal.pone.0074235 PubMed DOI PMC

Genis-Mendoza A. D., Martínez-Magaña J. J., Ruiz-Ramos D., Gonzalez-Covarrubias V., Tovilla-Zarate C. A., Narvaez M. L. L., et al. (2020). Interaction of FTO rs9939609 and the native American-origin ABCA1 p.Arg230Cys with circulating leptin levels in Mexican adolescents diagnosed with eating disorders: preliminary results. Psychiatry Res. 291, 113270. 10.1016/j.psychres.2020.113270 PubMed DOI

Gerken T., Girard C. A., Tung Y. C. L., Webby C. J., Saudek V., Hewitson K. S., et al. (2007). The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318 (5855), 1469–1472. 10.1126/science.1151710 PubMed DOI PMC

Ghafarian-Alipour F., Ziaee S., Ashoori M. R., Zakeri M. S., Boroumand M. A., Aghamohammadzadeh N., et al. (2018). Association between FTO gene polymorphisms and type 2 diabetes mellitus, serum levels of apelin and androgen hormones among Iranian obese women. Gene 641, 361–366. 10.1016/j.gene.2017.10.082 PubMed DOI

Gholamalizadeh M., Jonoush M., Mobarakeh K. A., Amjadi A., Alami F., Valisoltani N., et al. (2023). The effects of FTO gene rs9939609 polymorphism on the association between colorectal cancer and dietary intake. Front. Nutr. 10, 1215559. 10.3389/fnut.2023.1215559 PubMed DOI PMC

Gholami M. (2024). FTO is a major genetic link between breast cancer, obesity, and diabetes. Breast Cancer Res. Treat. 204 (1), 159–169. 10.1007/s10549-023-07188-4 PubMed DOI

Goyal R., Jialal I. (2023). “ Diabetes mellitus type 2, in StatPearls ,” in StatPearls publishing copyright © 2023. Treasure Island (FL): StatPearls Publishing LLC.

Han X., Wang N., Li J., Wang Y., Wang R., Chang J. (2019). Identification of nafamostat mesilate as an inhibitor of the fat mass and obesity-associated protein (FTO) demethylase activity. Chem. Biol. Interact. 297, 80–84. 10.1016/j.cbi.2018.10.023 PubMed DOI

Han Z., Niu T., Chang J., Lei X., Zhao M., Wang Q., et al. (2010). Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464 (7292), 1205–1209. 10.1038/nature08921 PubMed DOI

Han Z., Wang X., Xu Z., Cao Y., Gong R., Yu Y., et al. (2021). ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics 11 (6), 3000–3016. 10.7150/thno.47354 PubMed DOI PMC

Haupt A., Thamer C., Staiger H., Tschritter O., Kirchhoff K., Machicao F., et al. (2009). Variation in the FTO gene influences food intake but not energy expenditure. Exp. Clin. Endocrinol. Diabetes 117 (4), 194–197. 10.1055/s-0028-1087176 PubMed DOI

He D., Fu M., Miao S., Hotta K., Chandak G. R., Xi B. (2014). FTO gene variant and risk of hypertension: a meta-analysis of 57,464 hypertensive cases and 41,256 controls. Metabolism 63 (5), 633–639. 10.1016/j.metabol.2014.02.008 PubMed DOI

He W., Zhou B., Liu W., Zhang M., Shen Z., Han Z., et al. (2015). Identification of A Novel small-molecule binding site of the fat mass and obesity associated protein (FTO). J. Med. Chem. 58 (18), 7341–7348. 10.1021/acs.jmedchem.5b00702 PubMed DOI

Henamayee S., Banik K., Sailo B. L., Shabnam B., Harsha C., Srilakshmi S., et al. (2020). Therapeutic emergence of rhein as a potential anticancer drug: a review of its molecular targets and anticancer properties. Molecules 25 (10), 2278. 10.3390/molecules25102278 PubMed DOI PMC

Hernández-Caballero M. E., Sierra-Ramírez J. A. (2015). Single nucleotide polymorphisms of the FTO gene and cancer risk: an overview. Mol. Biol. Rep. 42 (3), 699–704. 10.1007/s11033-014-3817-y PubMed DOI

Hinger S. A., Wei J., Dorn L. E., Whitson B. A., Janssen P. M. L., He C., et al. (2021). Remodeling of the m(6)A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol. 151, 46–55. 10.1016/j.yjmcc.2020.11.002 PubMed DOI PMC

Hinney A., Nguyen T. T., Scherag A., Friedel S., Brönner G., Müller T. D., et al. (2007). Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One 2 (12), e1361. 10.1371/journal.pone.0001361 PubMed DOI PMC

Hlavackova M. (2018). Fat mass and obesity-associated protein in chronically hypoxic myocardium. High Alt. Med. and Biol. 19 (4), A–443. 10.1089/ham.2018.29015.abstracts DOI

Hsiao Y. T., Shen F. C., Weng S. W., Wang P. W., Chen Y. J., Lee J. J. (2021). Multiple single nucleotide polymorphism testing improves the prediction of diabetic retinopathy risk with type 2 diabetes mellitus. J. Pers. Med. 11 (8), 689. 10.3390/jpm11080689 PubMed DOI PMC

Hu F., Yan H. J., Gao C. X., Sun W. W., Long Y. S. (2023). Inhibition of hypothalamic FTO activates STAT3 signal through ERK1/2 associated with reductions in food intake and body weight. Neuroendocrinology 113 (1), 80–91. 10.1159/000526752 PubMed DOI

Huang Y., Su R., Sheng Y., Dong L., Dong Z., Xu H., et al. (2019). Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 35 (4), 677–691. 10.1016/j.ccell.2019.03.006 PubMed DOI PMC

Huang Y., Yan J., Li Q., Li J., Gong S., Zhou H., et al. (2015). Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 43 (1), 373–384. 10.1093/nar/gku1276 PubMed DOI PMC

Hubacek J. A., Dlouha D., Klementova M., Lanska V., Neskudla T., Pelikanova T. (2018a). The FTO variant is associated with chronic complications of diabetes mellitus in Czech population. Gene 642, 220–224. 10.1016/j.gene.2017.11.040 PubMed DOI

Hubacek J. A., Dlouha L., Adamkova V., Dlouha D., Pacal L., Kankova K., et al. (2023). Genetic risk score is associated with T2DM and diabetes complications risks. Gene 849, 146921. 10.1016/j.gene.2022.146921 PubMed DOI

Hubacek J. A., Stanek V., Gebauerová M., Pilipcincová A., Dlouhá D., Poledne R., et al. (2010). A FTO variant and risk of acute coronary syndrome. Clin. Chim. Acta 411 (15-16), 1069–1072. 10.1016/j.cca.2010.03.037 PubMed DOI

Hubacek J. A., Vrablik M., Dlouha D., Stanek V., Gebauerova M., Adamkova V., et al. (2016). Gene variants at FTO, 9p21, and 2q36.3 are age-independently associated with myocardial infarction in Czech men. Clin. Chim. Acta 454, 119–123. 10.1016/j.cca.2016.01.005 PubMed DOI

Hubacek J. A., Vymetalova J., Lanska V., Dlouha D. (2018b). The fat mass and obesity related gene polymorphism influences the risk of rejection in heart transplant patients. Clin. Transpl. 32 (12), e13443. 10.1111/ctr.13443 PubMed DOI

Huff S., Tiwari S. K., Gonzalez G. M., Wang Y., Rana T. M. (2021). m(6)A-RNA demethylase FTO inhibitors impair self-renewal in glioblastoma stem cells. ACS Chem. Biol. 16 (2), 324–333. 10.1021/acschembio.0c00841 PubMed DOI PMC

Iles M. M., Law M. H., Stacey S. N., Han J., Fang S., Pfeiffer R., et al. (2013). A variant in FTO shows association with melanoma risk not due to BMI. Nat. Genet. 45 (4), 428–432e1. 432e1. 10.1038/ng.2571 PubMed DOI PMC

Jia G., Fu Y., Zhao X., Dai Q., Zheng G., Yang Y., et al. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7 (12), 885–887. 10.1038/nchembio.687 PubMed DOI PMC

Jia G., Yang C. G., Yang S., Jian X., Yi C., Zhou Z., et al. (2008). Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 582 (23-24), 3313–3319. 10.1016/j.febslet.2008.08.019 PubMed DOI PMC

Ju W., Liu K., Ouyang S., Liu Z., He F., Wu J. (2021). Changes in N6-methyladenosine modification modulate diabetic cardiomyopathy by reducing myocardial fibrosis and myocyte hypertrophy. Front. Cell. Dev. Biol. 9, 702579. 10.3389/fcell.2021.702579 PubMed DOI PMC

Kaklamani V., Yi N., Sadim M., Siziopikou K., Zhang K., Xu Y., et al. (2011). The role of the fat mass and obesity associated gene (FTO) in breast cancer risk. BMC Med. Genet. 12, 52. 10.1186/1471-2350-12-52 PubMed DOI PMC

Karra E., O'Daly O. G., Choudhury A. I., Yousseif A., Millership S., Neary M. T., et al. (2013). A link between FTO, ghrelin, and impaired brain food-cue responsivity. J. Clin. Investig. 123 (8), 3539–3551. 10.1172/JCI44403 PubMed DOI PMC

Ke W. L., Huang Z. W., Peng C. L., Ke Y. P. (2022). m(6)A demethylase FTO regulates the apoptosis and inflammation of cardiomyocytes via YAP1 in ischemia-reperfusion injury. Bioengineered 13 (3), 5443–5452. 10.1080/21655979.2022.2030572 PubMed DOI PMC

Khatiwada B., Nguyen T. T., Purslow J. A., Venditti V. (2022). Solution structure ensemble of human obesity-associated protein FTO reveals druggable surface pockets at the interface between the N- and C-terminal domain. J. Biol. Chem. 298 (5), 101907. 10.1016/j.jbc.2022.101907 PubMed DOI PMC

Kirkpatrick C. L., Marchetti P., Purrello F., Piro S., Bugliani M., Bosco D., et al. (2010). Type 2 diabetes susceptibility gene expression in normal or diabetic sorted human alpha and beta cells: correlations with age or BMI of islet donors. PLoS One 5 (6), e11053. 10.1371/journal.pone.0011053 PubMed DOI PMC

Klein S., Gastaldelli A., Yki-Järvinen H., Scherer P. E. (2022). Why does obesity cause diabetes? Cell. Metab. 34 (1), 11–20. 10.1016/j.cmet.2021.12.012 PubMed DOI PMC

Krejčí J., Arcidiacono O. A., Čegan R., Radaszkiewicz K., Pacherník J., Pirk J., et al. (2023). Cell differentiation and aging lead to up-regulation of FTO, while the ALKBH5 protein level was stable during aging but up-regulated during in vitro-Induced cardiomyogenesis. Physiol. Res. 72 (4), 425–444. 10.33549/physiolres.935078 PubMed DOI PMC

Lauby-Secretan B., Scoccianti C., Loomis D., Grosse Y., Bianchini F., Straif K., et al. (2016). Body fatness and cancer--viewpoint of the IARC working group. N. Engl. J. Med. 375 (8), 794–798. 10.1056/NEJMsr1606602 PubMed DOI PMC

Li H., Ren Y., Mao K., Hua F., Yang Y., Wei N., et al. (2018). FTO is involved in Alzheimer's disease by targeting TSC1-mTOR-Tau signaling. Biochem. Biophys. Res. Commun. 498 (1), 234–239. 10.1016/j.bbrc.2018.02.201 PubMed DOI

Li W., Xing C., Bao L., Han S., Luo T., Wang Z., et al. (2022a). Comprehensive analysis of RNA m6A methylation in pressure overload-induced cardiac hypertrophy. BMC Genomics 23 (1), 576. 10.1186/s12864-022-08833-w PubMed DOI PMC

Li Y., Su R., Deng X., Chen Y., Chen J. (2022b). FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer 8 (7), 598–614. 10.1016/j.trecan.2022.02.010 PubMed DOI

Li Z., Weng H., Su R., Weng X., Zuo Z., Li C., et al. (2017). FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell. 31 (1), 127–141. 10.1016/j.ccell.2016.11.017 PubMed DOI PMC

Lin M., Hua Z., Li Z. (2024). FTO diversely influences sensitivity of neuroblastoma cells to various chemotherapeutic drugs. Front. Pharmacol. 15, 1384141. 10.3389/fphar.2024.1384141 PubMed DOI PMC

Liu C., Mou S., Pan C. (2013). The FTO gene rs9939609 polymorphism predicts risk of cardiovascular disease: a systematic review and meta-analysis. PLoS One 8 (8), e71901. 10.1371/journal.pone.0071901 PubMed DOI PMC

Liu K., Ju W., Ouyang S., Liu Z., He F., Hao J., et al. (2022). Exercise training ameliorates myocardial phenotypes in heart failure with preserved ejection fraction by changing N6-methyladenosine modification in mice model. Front. Cell. Dev. Biol. 10, 954769. 10.3389/fcell.2022.954769 PubMed DOI PMC

Liu S., Song S., Wang S., Cai T., Qin L., Wang X., et al. (2024). Hypothalamic FTO promotes high-fat diet-induced leptin resistance in mice through increasing CX3CL1 expression. J. Nutr. Biochem. 123, 109512. 10.1016/j.jnutbio.2023.109512 PubMed DOI

Liu X. H., Liu Z., Ren Z. H., Chen H. X., Zhang Y., Zhang Z., et al. (2023). Co-effects of m6A and chromatin accessibility dynamics in the regulation of cardiomyocyte differentiation. Epigenetics Chromatin 16 (1), 32. 10.1186/s13072-023-00506-6 PubMed DOI PMC

Liu Y., Liang G., Xu H., Dong W., Dong Z., Qiu Z., et al. (2021). Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell. Metab. 33 (6), 1221–1233.e11. 10.1016/j.cmet.2021.04.001 PubMed DOI

Lurie G., Gaudet M. M., Spurdle A. B., Carney M. E., Wilkens L. R., Yang H. P., et al. (2011). The obesity-associated polymorphisms FTO rs9939609 and MC4R rs17782313 and endometrial cancer risk in non-Hispanic white women. PLoS One 6 (2), e16756. 10.1371/journal.pone.0016756 PubMed DOI PMC

Ma Y., Liu X., Bi Y., Wang T., Chen C., Wang Y., et al. (2022). Alteration of N(6)-methyladenosine mRNA methylation in a human stem cell-derived cardiomyocyte model of tyrosine kinase inhibitor-induced cardiotoxicity. Front. Cardiovasc Med. 9, 849175. 10.3389/fcvm.2022.849175 PubMed DOI PMC

Magno F., Guaraná H. C., Fonseca A. C. P., Cabello G. M. K., Carneiro J. R. I., Pedrosa A. P., et al. (2018). Influence of FTO rs9939609 polymorphism on appetite, ghrelin, leptin, IL6, TNFα levels, and food intake of women with morbid obesity. Diabetes Metab. Syndr. Obes. 11, 199–207. 10.2147/DMSO.S154978 PubMed DOI PMC

Malone J. I., Hansen B. C. (2019). Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite? Pediatr. Diabetes 20 (1), 5–9. 10.1111/pedi.12787 PubMed DOI

Masoud Abd El Gayed E., Kamal El Din Zewain S., Ragheb A., ElNaidany S. S. (2021). Fat mass and obesity-associated gene expression and disease severity in type 2 diabetes mellitus. Steroids 174, 108897. 10.1016/j.steroids.2021.108897 PubMed DOI

Mathiyalagan P., Adamiak M., Mayourian J., Sassi Y., Liang Y., Agarwal N., et al. (2019). FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139 (4), 518–532. 10.1161/CIRCULATIONAHA.118.033794 PubMed DOI PMC

Mauer J., Jaffrey S. R. (2018). FTO, m(6) A(m), and the hypothesis of reversible epitranscriptomic mRNA modifications. FEBS Lett. 592 (12), 2012–2022. 10.1002/1873-3468.13092 PubMed DOI

Mauer J., Luo X., Blanjoie A., Jiao X., Grozhik A. V., Patil D. P., et al. (2017). Reversible methylation of m(6)A(m) in the 5' cap controls mRNA stability. Nature 541 (7637), 371–375. 10.1038/nature21022 PubMed DOI PMC

McMurray F., Church C. D., Larder R., Nicholson G., Wells S., Teboul L., et al. (2013). Adult onset global loss of the fto gene alters body composition and metabolism in the mouse. PLoS Genet. 9 (1), e1003166. 10.1371/journal.pgen.1003166 PubMed DOI PMC

Medicine N. L. o. (2024). Oral Administration of STC-15 in subjects with advanced malignancies (NCT05584111). 2022-2025 18. 11. Available at: https://clinicaltrials.gov/study/NCT05584111?term=NCT05584111&rank=1.

Mehrdad M., Doaei S., Gholamalizadeh M., Fardaei M., Fararouei M., Eftekhari M. H. (2020). Association of FTO rs9939609 polymorphism with serum leptin, insulin, adiponectin, and lipid profile in overweight adults. Adipocyte 9 (1), 51–56. 10.1080/21623945.2020.1722550 PubMed DOI PMC

Meng Y., Xi T., Fan J., Yang Q., Ouyang J., Yang J. (2024). The inhibition of FTO attenuates the antifibrotic effect of leonurine in rat cardiac fibroblasts. Biochem. Biophys. Res. Commun. 693, 149375. 10.1016/j.bbrc.2023.149375 PubMed DOI

Merkestein M., Laber S., McMurray F., Andrew D., Sachse G., Sanderson J., et al. (2015). FTO influences adipogenesis by regulating mitotic clonal expansion. Nat. Commun. 6, 6792. 10.1038/ncomms7792 PubMed DOI PMC

Mirabilii S., Ricciardi M. R., Tafuri A. (2020). mTOR regulation of metabolism in hematologic malignancies. Cells 9 (2), 404. 10.3390/cells9020404 PubMed DOI PMC

Montesanto A., Bonfigli A. R., Crocco P., Garagnani P., De Luca M., Boemi M., et al. (2018). Genes associated with Type 2 Diabetes and vascular complications. Aging (Albany NY) 10 (2), 178–196. 10.18632/aging.101375 PubMed DOI PMC

Mosaad Y. M., Morzak M., Abd El Aziz El Chennawi F., Elsharkawy A. A., Abdelsalam M. (2024). Evaluation of the role of FTO (rs9939609) and MC4R (rs17782313) gene polymorphisms in type 1 diabetes and their relation to obesity. J. Pediatr. Endocrinol. Metab. 37 (2), 110–122. 10.1515/jpem-2023-0372 PubMed DOI

Nabeel-Shah S., Pu S., Burke G. L., Ahmed N., Braunschweig U., Farhangmehr S., et al. (2024). Recruitment of the m(6)A/m6Am demethylase FTO to target RNAs by the telomeric zinc finger protein ZBTB48. Genome Biol. 25 (1), 246. 10.1186/s13059-024-03392-7 PubMed DOI PMC

Nasser F. A., Algenabi A. A., Hadi N. R., Hussein M. K., Fatima G., Al-Aubaidy H. A. (2019). The association of the common fat mass and obesity associated gene polymorphisms with type 2 diabetes in obese Iraqi population. Diabetes Metab. Syndr. 13 (4), 2451–2455. 10.1016/j.dsx.2019.06.024 PubMed DOI

Onalan E., Yakar B., Karakulak K., Kaymaz T., Donder E. (2022). m(6)A RNA, FTO, ALKBH5 expression in type 2 diabetic and obesity patients. J. Coll. Physicians Surg. Pak 32 (9), 1143–1148. 10.29271/jcpsp.2022.09.1143 PubMed DOI

Padariya M., Kalathiya U. (2016). Structure-based design and evaluation of novel N-phenyl-1H-indol-2-amine derivatives for fat mass and obesity-associated (FTO) protein inhibition. Comput. Biol. Chem. 64, 414–425. 10.1016/j.compbiolchem.2016.09.008 PubMed DOI

Pati S., Irfan W., Jameel A., Ahmed S., Shahid R. K. (2023). Obesity and cancer: a current overview of epidemiology, pathogenesis, outcomes, and management. Cancers (Basel) 15 (2), 485. 10.3390/cancers15020485 PubMed DOI PMC

Peng S., Xiao W., Ju D., Sun B., Hou N., Liu Q., et al. (2019). Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci. Transl. Med. 11 (488), eaau7116. 10.1126/scitranslmed.aau7116 PubMed DOI

Peters T., Ausmeier K., Rüther U. (1999). Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation. Mamm. Genome 10 (10), 983–986. 10.1007/s003359901144 PubMed DOI

Pierce B. L., Austin M. A., Ahsan H. (2011). Association study of type 2 diabetes genetic susceptibility variants and risk of pancreatic cancer: an analysis of PanScan-I data. Cancer Causes Control 22 (6), 877–883. 10.1007/s10552-011-9760-5 PubMed DOI PMC

Piwonska A. M., Cicha-Mikolajczyk A., Sobczyk-Kopciol A., Piwonski J., Drygas W., Kwasniewska M., et al. (2022). Independent association of FTO rs9939609 polymorphism with overweight and obesity in Polish adults. Results from the representative population-based WOBASZ study. J. Physiol. Pharmacol. 73 (3). 10.26402/jpp.2022.3.07 PubMed DOI

Qiao Y., Zhou B., Zhang M., Liu W., Han Z., Song C., et al. (2016). A novel inhibitor of the obesity-related protein FTO. Biochemistry 55 (10), 1516–1522. 10.1021/acs.biochem.6b00023 PubMed DOI

Qin B., Bai Q., Yan D., Yin F., Zhu Z., Xia C., et al. (2022). Discovery of novel mRNA demethylase FTO inhibitors against esophageal cancer. J. Enzyme Inhib. Med. Chem. 37 (1), 1995–2003. 10.1080/14756366.2022.2098954 PubMed DOI PMC

Qiu L., Jing Q., Li Y., Han J. (2023). RNA modification: mechanisms and therapeutic targets. Mol. Biomed. 4 (1), 25. 10.1186/s43556-023-00139-x PubMed DOI PMC

Rafaqat S., Sharif S., Naz S., Patoulias D., Klisic A. (2024). Contributing role of metabolic genes APOE, FTO, and LPL in the development of atrial fibrillation: insights from a case-control study. Rev. Assoc. Med. Bras. 70 (8), e20240263. 10.1590/1806-9282.20240263 PubMed DOI PMC

Relier S., Ripoll J., Guillorit H., Amalric A., Achour C., Boissière F., et al. (2021). FTO-mediated cytoplasmic m(6)A(m) demethylation adjusts stem-like properties in colorectal cancer cell. Nat. Commun. 12 (1), 1716. 10.1038/s41467-021-21758-4 PubMed DOI PMC

Sabarneh A., Ereqat S., Cauchi S., AbuShamma O., Abdelhafez M., Ibrahim M., et al. (2018). Common FTO rs9939609 variant and risk of type 2 diabetes in Palestine. BMC Med. Genet. 19 (1), 156. 10.1186/s12881-018-0668-8 PubMed DOI PMC

Sanghera D. K., Ortega L., Han S., Singh J., Ralhan S. K., Wander G. S., et al. (2008). Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Med. Genet. 9, 59. 10.1186/1471-2350-9-59 PubMed DOI PMC

Sarkar P., Chatterjee D., Bandyopadhyay A. R. (2021). Effect of MTHFR (rs1801133) and FTO (rs9939609) genetic polymorphisms and obesity in T2DM: a study among Bengalee Hindu caste population of West Bengal, India. Ann. Hum. Biol. 48 (1), 62–65. 10.1080/03014460.2021.1876920 PubMed DOI

Scuteri A., Sanna S., Chen W. M., Uda M., Albai G., Strait J., et al. (2007). Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3 (7), e115. 10.1371/journal.pgen.0030115 PubMed DOI PMC

Semenovykh D., Benak D., Holzerova K., Cerna B., Telensky P., Vavrikova T., et al. (2022). Myocardial m6A regulators in postnatal development: effect of sex. Physiol. Res. 71 (6), 877–882. 10.33549/physiolres.934970 PubMed DOI PMC

Shen F., Huang W., Huang J. T., Xiong J., Yang Y., Wu K., et al. (2015). Decreased N(6)-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALKBH5. J. Clin. Endocrinol. Metab. 100 (1), E148–E154. 10.1210/jc.2014-1893 PubMed DOI PMC

Shen W., Li H., Su H., Chen K., Yan J. (2021). FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt. Mol. Cell. Biochem. 476 (5), 2171–2179. 10.1007/s11010-021-04069-6 PubMed DOI

Shi X., Cao Y., Zhang X., Gu C., Liang F., Xue J., et al. (2021). Comprehensive analysis of N6-methyladenosine RNA methylation regulators expression identify distinct molecular subtypes of myocardial infarction. Front. Cell. Dev. Biol. 9, 756483. 10.3389/fcell.2021.756483 PubMed DOI PMC

Smemo S., Tena J. J., Kim K. H., Gamazon E. R., Sakabe N. J., Gómez-Marín C., et al. (2014). Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507 (7492), 371–375. 10.1038/nature13138 PubMed DOI PMC

Speakman J. R., Rance K. A., Johnstone A. M. (2008). Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obes. (Silver Spring) 16 (8), 1961–1965. 10.1038/oby.2008.318 PubMed DOI

Stratigopoulos G., Martin Carli J. F., O'Day D. R., Wang L., Leduc C. A., Lanzano P., et al. (2014). Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell. Metab. 19 (5), 767–779. 10.1016/j.cmet.2014.04.009 PubMed DOI PMC

Su R., Dong L., Li Y., Gao M., Han L., Wunderlich M., et al. (2020). Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 38 (1), 79–96. 10.1016/j.ccell.2020.04.017 PubMed DOI PMC

Su X., Shen Y., Jin Y., Kim I. M., Weintraub N. L., Tang Y. (2021). Aging-associated differences in epitranscriptomic m6A regulation in response to acute cardiac ischemia/reperfusion injury in female mice. Front. Pharmacol. 12, 654316. 10.3389/fphar.2021.654316 PubMed DOI PMC

Sun K., Du Y., Hou Y., Zhao M., Li J., Du Y., et al. (2021). Saikosaponin D exhibits anti-leukemic activity by targeting FTO/m(6)A signaling. Theranostics 11 (12), 5831–5846. 10.7150/thno.55574 PubMed DOI PMC

Sun Q., Geng H., Zhao M., Li Y., Chen X., Sha Q., et al. (2022). FTO-mediated m(6) A modification of SOCS1 mRNA promotes the progression of diabetic kidney disease. Clin. Transl. Med. 12 (6), e942. 10.1002/ctm2.942 PubMed DOI PMC

Svensen N., Jaffrey S. R. (2016). Fluorescent RNA aptamers as a tool to study RNA-modifying enzymes. Cell. Chem. Biol. 23 (3), 415–425. 10.1016/j.chembiol.2015.11.018 PubMed DOI PMC

Taneera J., Khalique A., Abdrabh S., Mohammed A. K., Bouzid A., El-Huneidi W., et al. (2024). Fat mass and obesity-associated (FTO) gene is essential for insulin secretion and β-cell function: in vitro studies using INS-1 cells and human pancreatic islets. Life Sci. 339, 122421. 10.1016/j.lfs.2024.122421 PubMed DOI

Taneera J., Prasad R. B., Dhaiban S., Mohammed A. K., Haataja L., Arvan P., et al. (2018). Silencing of the FTO gene inhibits insulin secretion: an in vitro study using GRINCH cells. Mol. Cell. Endocrinol. 472, 10–17. 10.1016/j.mce.2018.06.003 PubMed DOI PMC

Tang H., Dong X., Hassan M., Abbruzzese J. L., Li D. (2011). Body mass index and obesity- and diabetes-associated genotypes and risk for pancreatic cancer. Cancer Epidemiol. Biomarkers Prev. 20 (5), 779–792. 10.1158/1055-9965.EPI-10-0845 PubMed DOI PMC

Tews D., Fischer-Posovszky P., Fromme T., Klingenspor M., Fischer J., Rüther U., et al. (2013). FTO deficiency induces UCP-1 expression and mitochondrial uncoupling in adipocytes. Endocrinology 154 (9), 3141–3151. 10.1210/en.2012-1873 PubMed DOI

Toh J. D. W., Sun L., Lau L. Z. M., Tan J., Low J. J. A., Tang C. W. Q., et al. (2015). A strategy based on nucleotide specificity leads to a subfamily-selective and cell-active inhibitor of N(6)-methyladenosine demethylase FTO. Chem. Sci. 6 (1), 112–122. 10.1039/c4sc02554g PubMed DOI PMC

Tung Y. C., Ayuso E., Shan X., Bosch F., O'Rahilly S., Coll A. P., et al. (2010). Hypothalamic-specific manipulation of Fto, the ortholog of the human obesity gene FTO, affects food intake in rats. PLoS One 5 (1), e8771. 10.1371/journal.pone.0008771 PubMed DOI PMC

Tung Y. C., Gulati P., Liu C. H., Rimmington D., Dennis R., Ma M., et al. (2015). FTO is necessary for the induction of leptin resistance by high-fat feeding. Mol. Metab. 4 (4), 287–298. 10.1016/j.molmet.2015.01.011 PubMed DOI PMC

UniProt Consortium (2023). UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51 (D1), D523–d531. 10.1093/nar/gkac1052 PubMed DOI PMC

Vasan S. K., Karpe F., Gu H. F., Brismar K., Fall C. H., Ingelsson E., et al. (2014). FTO genetic variants and risk of obesity and type 2 diabetes: a meta-analysis of 28,394 Indians. Obes. (Silver Spring) 22 (3), 964–970. 10.1002/oby.20606 PubMed DOI

Vausort M., Niedolistek M., Lumley A. I., Oknińska M., Paterek A., Mączewski M., et al. (2022). Regulation of N6-methyladenosine after myocardial infarction. Cells 11 (15), 2271. 10.3390/cells11152271 PubMed DOI PMC

Wang L., Song C., Wang N., Li S., Liu Q., Sun Z., et al. (2020b). NADP modulates RNA m(6)A methylation and adipogenesis via enhancing FTO activity. Nat. Chem. Biol. 16 (12), 1394–1402. 10.1038/s41589-020-0601-2 PubMed DOI

Wang P., Yang F. J., Du H., Guan Y. F., Xu T. Y., Xu X. W., et al. (2011). Involvement of leptin receptor long isoform (LepRb)-STAT3 signaling pathway in brain fat mass- and obesity-associated (FTO) downregulation during energy restriction. Mol. Med. 17 (5-6), 523–532. 10.2119/molmed.2010.00134 PubMed DOI PMC

Wang R., Han Z., Liu B., Zhou B., Wang N., Jiang Q., et al. (2018). Identification of natural compound radicicol as a potent FTO inhibitor. Mol. Pharm. 15 (9), 4092–4098. 10.1021/acs.molpharmaceut.8b00522 PubMed DOI

Wang T., Hong T., Huang Y., Su H., Wu F., Chen Y., et al. (2015). Fluorescein derivatives as bifunctional molecules for the simultaneous inhibiting and labeling of FTO protein. J. Am. Chem. Soc. 137 (43), 13736–13739. 10.1021/jacs.5b06690 PubMed DOI

Wang W., Yang K., Wang S., Zhang J., Shi Y., Zhang H., et al. (2022a). The sex-specific influence of FTO genotype on exercise intervention for weight loss in adult with obesity. Eur. J. Sport Sci. 22 (12), 1926–1931. 10.1080/17461391.2021.1976843 PubMed DOI

Wang X., Huang N., Yang M., Wei D., Tai H., Han X., et al. (2017). FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis. Cell. Death Dis. 8 (3), e2702. 10.1038/cddis.2017.122 PubMed DOI PMC

Wang X., Wu R., Liu Y., Zhao Y., Bi Z., Yao Y., et al. (2020a). m(6)A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7. Autophagy 16 (7), 1221–1235. 10.1080/15548627.2019.1659617 PubMed DOI PMC

Wang X., Wu Y., Guo R., Zhao L., Yan J., Gao C. (2022b). Comprehensive analysis of N6-methyladenosine RNA methylation regulators in the diagnosis and subtype classification of acute myocardial infarction. J. Immunol. Res. 2022, 5173761. 10.1155/2022/5173761 PubMed DOI PMC

Wardle J., Carnell S., Haworth C. M. A., Farooqi I. S., O'Rahilly S., Plomin R. (2008). Obesity associated genetic variation in FTO is associated with diminished satiety. J. Clin. Endocrinol. Metab. 93 (9), 3640–3643. 10.1210/jc.2008-0472 PubMed DOI

Wardle J., Llewellyn C., Sanderson S., Plomin R. (2009). The FTO gene and measured food intake in children. Int. J. Obes. (Lond) 33 (1), 42–45. 10.1038/ijo.2008.174 PubMed DOI

Wei J., Liu F., Lu Z., Fei Q., Ai Y., He P. C., et al. (2018). Differential m(6)A, m(6)A(m), and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell. 71 (6), 973–985. 10.1016/j.molcel.2018.08.011 PubMed DOI PMC

Wen C., Lan M., Tan X., Wang X., Zheng Z., Lv M., et al. (2022). GSK3β exacerbates myocardial ischemia/reperfusion injury by inhibiting myc. Oxid. Med. Cell. Longev. 2022, 2588891. 10.1155/2022/2588891 PubMed DOI PMC

WHO (2022). Diabetes. Available at: https://www.who.int/news-room/fact-sheets/detail/diabetes.

WHO (2021). Cardiovasc. Dis. (CVDs). (cvds). Available at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-.

WHO. Obes. overweight. 2021. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

Wu R., Chen Y., Liu Y., Zhuang L., Chen W., Zeng B., et al. (2021). m6A methylation promotes white-to-beige fat transition by facilitating Hif1a translation. EMBO Rep. 22 (11), e52348. 10.15252/embr.202052348 PubMed DOI PMC

Wu R., Liu Y., Yao Y., Zhao Y., Bi Z., Jiang Q., et al. (2018). FTO regulates adipogenesis by controlling cell cycle progression via m(6)A-YTHDF2 dependent mechanism. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1863 (10), 1323–1330. 10.1016/j.bbalip.2018.08.008 PubMed DOI

Wu W., Feng J., Jiang D., Zhou X., Jiang Q., Cai M., et al. (2017). AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N(6)-methyladenosine. Sci. Rep. 7, 41606. 10.1038/srep41606 PubMed DOI PMC

Xu Y. Y., Li T., Shen A., Bao X. Q., Lin J. F., Guo L. Z., et al. (2023). FTO up-regulation induced by MYC suppresses tumour progression in Epstein-Barr virus-associated gastric cancer. Clin. Transl. Med. 13 (12), e1505. 10.1002/ctm2.1505 PubMed DOI PMC

Xu Z., Qin Y., Lv B., Tian Z., Zhang B. (2022). Intermittent fasting improves high-fat diet-induced obesity cardiomyopathy via alleviating lipid deposition and apoptosis and decreasing m6A methylation in the heart. Nutrients 14 (2), 251. 10.3390/nu14020251 PubMed DOI PMC

Yajnik C. S., Janipalli C. S., Bhaskar S., Kulkarni S. R., Freathy R. M., Prakash S., et al. (2009). FTO gene variants are strongly associated with type 2 diabetes in South Asian Indians. Diabetologia 52 (2), 247–252. 10.1007/s00125-008-1186-6 PubMed DOI PMC

Yang C., Zhao K., Zhang J., Wu X., Sun W., Kong X., et al. (2021a). Comprehensive analysis of the transcriptome-wide m6A methylome of heart via MeRIP after birth: day 0 vs. Day 7. Front. Cardiovasc Med. 8, 633631. 10.3389/fcvm.2021.633631 PubMed DOI PMC

Yang H., Xuan L., Wang S., Luo H., Duan X., Guo J., et al. (2024a). LncRNA CCRR maintains Ca(2+) homeostasis against myocardial infarction through the FTO-SERCA2a pathway. Sci. China Life Sci. 67, 1601–1619. 10.1007/s11427-023-2527-5 PubMed DOI

Yang Y., Ren J., Zhang J., Shi H., Wang J., Yan Y. (2024b). FTO ameliorates doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via P53-P21/Nrf2 activation in a HuR-dependent m6A manner. Redox Biol. 70, 103067. 10.1016/j.redox.2024.103067 PubMed DOI PMC

Yang Y., Shen F., Huang W., Qin S., Huang J. T., Sergi C., et al. (2019). Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 104 (3), 665–673. 10.1210/jc.2018-00619 PubMed DOI

Yang Z., Jiang X., Zhang Z., Zhao Z., Xing W., Liu Y., et al. (2021b). HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer. Cancer Gene Ther. 28 (1-2), 141–155. 10.1038/s41417-020-0193-8 PubMed DOI

Younus L. A., Algenabi A. H. A., Abdul-Zhara M. S., Hussein M. K. (2017). FTO gene polymorphisms (rs9939609 and rs17817449) as predictors of Type 2 Diabetes Mellitus in obese Iraqi population. Gene 627, 79–84. 10.1016/j.gene.2017.06.005 PubMed DOI

Yu H., Armstrong N., Pavela G., Kaiser K. (2023a). Sex and race differences in obesity-related genetic susceptibility and risk of cardiometabolic disease in older US adults. JAMA Netw. Open 6 (12), e2347171. 10.1001/jamanetworkopen.2023.47171 PubMed DOI PMC

Yu P., Wang J., Xu G. E., Zhao X., Cui X., Feng J., et al. (2023b). RNA m(6)a-regulated circ-znf609 suppression ameliorates doxorubicin-induced cardiotoxicity by upregulating FTO. JACC Basic Transl. Sci. 8 (6), 677–698. 10.1016/j.jacbts.2022.12.005 PubMed DOI PMC

Yu Y., Pan Y., Fan Z., Xu S., Gao Z., Ren Z., et al. (2021). LuHui derivative, A novel compound that inhibits the fat mass and obesity-associated (FTO), alleviates the inflammatory response and injury in hyperlipidemia-induced cardiomyopathy. Front. Cell. Dev. Biol. 9, 731365. 10.3389/fcell.2021.731365 PubMed DOI PMC

Zano S., Baig S. (2022). Association of FTO variant with parental history of type 2 diabetes mellitus in adults. J. Pak Med. Assoc. 72 (10), 2009–2013. 10.47391/JPMA.4299 PubMed DOI

Zeng H., Xu J., Wu R., Wang X., Jiang Y., Wang Q., et al. (2024). FTO alleviated ferroptosis in septic cardiomyopathy via mediating the m6A modification of BACH1. Biochim. Biophys. Acta Mol. Basis Dis. 1870, 167307. 10.1016/j.bbadis.2024.167307 PubMed DOI

Zhang B., Jiang H., Wu J., Cai Y., Dong Z., Zhao Y., et al. (2021a). m6A demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct. Target Ther. 6 (1), 377. 10.1038/s41392-021-00699-w PubMed DOI PMC

Zhang B., Xu Y., Cui X., Jiang H., Luo W., Weng X., et al. (2021b). Alteration of m6A RNA methylation in heart failure with preserved ejection fraction. Front. Cardiovasc Med. 8, 647806. 10.3389/fcvm.2021.647806 PubMed DOI PMC

Zhang M., Zhang Y., Ma J., Guo F., Cao Q., Zhang Y., et al. (2015). The demethylase activity of FTO (fat mass and obesity associated protein) is required for preadipocyte differentiation. PLoS One 10 (7), e0133788. 10.1371/journal.pone.0133788 PubMed DOI PMC

Zhang Y., Chen L., Zhu J., Liu H., Xu L., Wu Y., et al. (2023). Minor alleles of FTO rs9939609 and rs17817449 polymorphisms confer a higher risk of type 2 diabetes mellitus and dyslipidemia, but not coronary artery disease in a Chinese Han population. Front. Endocrinol. (Lausanne) 14, 1249070. 10.3389/fendo.2023.1249070 PubMed DOI PMC

Zhang Y., Chen Y., Guo Q., Liu A. (2024). Fat mass and obesity-associated protein (FTO)-induced upregulation of flotillin-2 (FLOT2) contributes to cancer aggressiveness in diffuse large B-cell lymphoma (DLBCL) via activating the PI3K/Akt/mTOR signal pathway. Arch. Biochem. Biophys. 758, 110072. 10.1016/j.abb.2024.110072 PubMed DOI

Zhao X., Yang Y., Sun B. F., Shi Y., Yang X., Xiao W., et al. (2014). FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell. Res. 24 (12), 1403–1419. 10.1038/cr.2014.151 PubMed DOI PMC

Zheng G., Cox T., Tribbey L., Wang G. Z., Iacoban P., Booher M. E., et al. (2014). Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem. Neurosci. 5 (8), 658–665. 10.1021/cn500042t PubMed DOI PMC

Zhou S., Bai Z. L., Xia D., Zhao Z. J., Zhao R., Wang Y. Y., et al. (2018). FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation. Mol. Carcinog. 57 (5), 590–597. 10.1002/mc.22782 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Epitranscriptomic regulation of HIF-1: bidirectional regulatory pathways

. 2025 Mar 18 ; 31 (1) : 105. [epub] 20250318

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...