Automated interpretation of time-lapse quantitative phase image by machine learning to study cellular dynamics during epithelial-mesenchymal transition
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32812412
PubMed Central
PMC7431880
DOI
10.1117/1.jbo.25.8.086502
PII: JBO-200024R
Knihovny.cz E-zdroje
- Klíčová slova
- digital holographic microscopy, epithelial–mesenchymal transition, quantitative phase imaging, supervised machine learning,
- MeSH
- algoritmy MeSH
- časosběrné zobrazování MeSH
- epitelo-mezenchymální tranzice * MeSH
- holografie * MeSH
- strojové učení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
SIGNIFICANCE: Machine learning is increasingly being applied to the classification of microscopic data. In order to detect some complex and dynamic cellular processes, time-resolved live-cell imaging might be necessary. Incorporating the temporal information into the classification process may allow for a better and more specific classification. AIM: We propose a methodology for cell classification based on the time-lapse quantitative phase images (QPIs) gained by digital holographic microscopy (DHM) with the goal of increasing performance of classification of dynamic cellular processes. APPROACH: The methodology was demonstrated by studying epithelial-mesenchymal transition (EMT) which entails major and distinct time-dependent morphological changes. The time-lapse QPIs of EMT were obtained over a 48-h period and specific novel features representing the dynamic cell behavior were extracted. The two distinct end-state phenotypes were classified by several supervised machine learning algorithms and the results were compared with the classification performed on single-time-point images. RESULTS: In comparison to the single-time-point approach, our data suggest the incorporation of temporal information into the classification of cell phenotypes during EMT improves performance by nearly 9% in terms of accuracy, and further indicate the potential of DHM to monitor cellular morphological changes. CONCLUSIONS: Proposed approach based on the time-lapse images gained by DHM could improve the monitoring of live cell behavior in an automated fashion and could be further developed into a tool for high-throughput automated analysis of unique cell behavior.
Brno Univ of Technology Czech Republic
CEITEC Central European Institute of Technology Czech Republic
Zobrazit více v PubMed
Bishop C. M., Pattern Recognition and Machine Learning, Information Science and Statistics, 1st ed., Springer, New York: (2006).
Halimi A., et al. , “Wavelet-based statistical classification of skin images acquired with reflectance confocal microscopy,” Biomed. Opt. Express 8(12), 5450–5467 (2017).BOEICL10.1364/BOE.8.005450 PubMed DOI PMC
Kistenev Y. V., et al. , “Application of multiphoton imaging and machine learning to lymphedema tissue analysis,” Biomed. Opt. Express 10(7), 3353–3368 (2019).BOEICL10.1364/BOE.10.003353 PubMed DOI PMC
Sommer C., Gerlich D. W., “Machine learning in cell biology—teaching computers to recognize phenotypes,” J. Cell Sci. 126, 5529–5539 (2013).JNCSAI10.1242/jcs.123604 PubMed DOI
Gavgiotaki E., et al. , “Detection of the T cell activation state using nonlinear optical microscopy,” J. Biophotonics 12(3), e201800277 (2019).10.1002/jbio.201800277 PubMed DOI
Zhang Z., et al. , “Quantitative third harmonic generation microscopy for assessment of glioma in human brain tissue,” Adv. Sci. 6(11), 1900163 (2019).10.1002/advs.201900163 PubMed DOI PMC
Zhang Z., et al. , “Extracting morphologies from third harmonic generation images of structurally normal human brain tissue,” Bioinformatics 33(11), 1712–1720 (2017).BOINFP10.1093/bioinformatics/btx035 PubMed DOI
Shi L., et al. , “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).NCAOBW10.1038/s41467-018-05401-3 PubMed DOI PMC
Majeed H., et al. , “Breast cancer diagnosis using spatial light interference microscopy,” J. Biomed. Opt. 20(11), 111210 (2015).JBOPFO10.1117/1.JBO.20.11.111210 PubMed DOI
Yi F., Moon I., Javidi B., “Cell morphology-based classification of red blood cells using holographic imaging informatics,” Biomed. Opt. Express 7(6), 2385–2399 (2016).BOEICL10.1364/BOE.7.002385 PubMed DOI PMC
El Mallahi A., Minetti C., Dubois F., “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources,” Appl. Opt. 52(1), A68–A80 (2013).APOPAI10.1364/AO.52.000A68 PubMed DOI
Nguyen T. H., et al. , “Prostate cancer diagnosis using quantitative phase imaging and machine learning algorithms,” Proc. SPIE 9336, 933619 (2015).10.1117/12.2080321 DOI
Strbkova L., et al. , “Automated classification of cell morphology by coherence-controlled holographic microscopy,” J. Biomed. Opt. 22(8), 086008 (2017).JBOPFO10.1117/1.JBO.22.8.086008 PubMed DOI
Slabý T., et al. , “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt. Express 21(12), 14747–14762 (2013).OPEXFF10.1364/OE.21.014747 PubMed DOI
Hejna M., et al. , “High accuracy label-free classification of single-cell kinetic states from holographic cytometry of human melanoma cells,” Sci. Rep. 7, 11943 (2017).SRCEC310.1038/s41598-017-12165-1 PubMed DOI PMC
Lam V. K., et al. , “Quantitative scoring of epithelial and mesenchymal qualities of cancer cells using machine learning and quantitative phase imaging,” J. Biomed. Opt. 25(2), 026002 (2020).JBOPFO10.1117/1.JBO.25.2.026002 PubMed DOI PMC
Lam V. K., et al. , “Quantitative assessment of cancer cell morphology and motility using telecentric digital holographic microscopy and machine learning,” Cytometry Part A 93(3), 334–345 (2018).10.1002/cyto.a.23316 PubMed DOI PMC
Lam V. K., et al. , “Machine learning with optical phase signatures for phenotypic profiling of cell lines,” Cytometry Part A 95(7), 757–768 (2019).10.1002/cyto.a.23774 PubMed DOI PMC
Vincent T., et al. , “A SNAIL1–SMAD3/4 transcriptional repressor complex promotes PubMed DOI PMC
Prakash V., et al. , “Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease,” Nat. Commun. 10, 2110 (2019).NCAOBW10.1038/s41467-019-10100-8 PubMed DOI PMC
Nieto M. A., et al. , “EMT: 2016,” Cell 166(1), 21–45 (2016).CELLB510.1016/j.cell.2016.06.028 PubMed DOI
Fuxe J., Vincent T., de Herreros A. G., “Transcriptional crosstalk between PubMed DOI
Rezaei M., et al. , “The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor–endothelial cell interactions,” Histochem. Cell Biol. 149, 15–30 (2018).10.1007/s00418-017-1619-8 PubMed DOI
Kolman P., Chmelík R., “Coherence-controlled holographic microscope,” Opt. Express 18(21), 21990–22003 (2010).OPEXFF10.1364/OE.18.021990 PubMed DOI
Chmelík R., et al. , “Chapter 5—the role of coherence in image formation in holographic microscopy,” Prog. Opt. 59, 267–335 (2014).POPTAN10.1016/B978-0-444-63379-8.00005-2 DOI
Kreis T., “Digital holographic interference-phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A 3(6), 847–855 (1986).JOAOD610.1364/JOSAA.3.000847 DOI
Ghiglia D., Pritt M., Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software, John Wiley & Sons, New York: (1998).
Zikmund T., et al. , “Sequential processing of quantitative phase images for the study of cell behaviour in real-time digital holographic microscopy,” J. Microsc. 256(2), 117–125 (2014).JMICAR10.1111/jmi.12165 PubMed DOI
Popescu G., Quantitative Phase Imaging of Cells and Tissues, McGraw Hill, New York: (2011).
Wayne R., Light and Video Microscopy, Elsevier Academic Press, Cambridge, Massachusetts: (2013).
Davies H., Wilkins M., “Interference microscopy and mass determination,” Nature 169, 541 (1952).10.1038/169541a0 PubMed DOI
Barer R., “Refractometry and interferometry of living cells,” J. Opt. Soc. Am. 47(6), 545–556 (1957).JOSAAH10.1364/JOSA.47.000545 PubMed DOI
Parvati K., Rao P., Das M. M., “Image segmentation using gray-scale morphology and marker-controlled watershed transformation,” Discret. Dyn. Nat. Soc. 2008, 384346 (2009).DDNSFA10.1155/2008/384346 DOI
Lin J., et al. , “A symbolic representation of time series, with implications for streaming algorithms,” in Proc. 8th ACM SIGMOD Workshop Res. Issues Data Mining and Knowl. Discovery (2003).
Keogh E. J., Pazzani M. J., “Scaling up dynamic time warping for datamining applications,” in Proc. Sixth ACM SIGKDD Int. Conf. Knowl. Discovery and Data Mining, ACM Press, New York, pp. 285–289 (2000).
Abdi H., Williams L. J., “Principal component analysis,” WIREs Comput. Stat. 2(4), 433–459 (2010).10.1002/wics.101 DOI
Chandrashekar G., Sahin F., “A survey on feature selection methods,” Comput. Electr. Eng. 40(1), 16–28 (2014).CPEEBQ10.1016/j.compeleceng.2013.11.024 DOI