Consensus paper: Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications

. 2019 Apr ; 18 (2) : 266-286.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu konsensus - konference, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30259343

Grantová podpora
G1100626 Medical Research Council - United Kingdom

Odkazy

PubMed 30259343
DOI 10.1007/s12311-018-0979-5
PII: 10.1007/s12311-018-0979-5
Knihovny.cz E-zdroje

Time perception is an essential element of conscious and subconscious experience, coordinating our perception and interaction with the surrounding environment. In recent years, major technological advances in the field of neuroscience have helped foster new insights into the processing of temporal information, including extending our knowledge of the role of the cerebellum as one of the key nodes in the brain for this function. This consensus paper provides a state-of-the-art picture from the experts in the field of the cerebellar research on a variety of crucial issues related to temporal processing, drawing on recent anatomical, neurophysiological, behavioral, and clinical research.The cerebellar granular layer appears especially well-suited for timing operations required to confer millisecond precision for cerebellar computations. This may be most evident in the manner the cerebellum controls the duration of the timing of agonist-antagonist EMG bursts associated with fast goal-directed voluntary movements. In concert with adaptive processes, interactions within the cerebellar cortex are sufficient to support sub-second timing. However, supra-second timing seems to require cortical and basal ganglia networks, perhaps operating in concert with cerebellum. Additionally, sensory information such as an unexpected stimulus can be forwarded to the cerebellum via the climbing fiber system, providing a temporally constrained mechanism to adjust ongoing behavior and modify future processing. Patients with cerebellar disorders exhibit impairments on a range of tasks that require precise timing, and recent evidence suggest that timing problems observed in other neurological conditions such as Parkinson's disease, essential tremor, and dystonia may reflect disrupted interactions between the basal ganglia and cerebellum.The complex concepts emerging from this consensus paper should provide a foundation for further discussion, helping identify basic research questions required to understand how the brain represents and utilizes time, as well as delineating ways in which this knowledge can help improve the lives of those with neurological conditions that disrupt this most elemental sense. The panel of experts agrees that timing control in the brain is a complex concept in whom cerebellar circuitry is deeply involved. The concept of a timing machine has now expanded to clinical disorders.

Zobrazit více v PubMed

Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, et al. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum. 2015;14(2):197–220. PubMed DOI

Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77. PubMed DOI PMC

Mariën P, Ackermann H, Adamaszek M, Barwood CHS, Beaton A, Desmond J, et al. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13(3):386–410. PubMed PMC

Adamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, et al. Consensus paper: cerebellum and emotion. Cerebellum. 2017;16(2):552–76. DOI

Watson PJ. Nonmotor functions of cerebellum. Psychol Bull. 1978;85(5):944–67. PubMed DOI

Ivry RB, Keele SW. Timing functions of cerebellum. J Cogn Neurosci. 1989;1(2):136–52. PubMed DOI

Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12(7):273–80. PubMed DOI PMC

Bengtsson SL, Ehrsson HH, Forssberg H, Ullén F. Effector-independent voluntary timing: behavioural and neuroimaging evidence. Eur J Neurosci. 2005;22(12):3255–65. PubMed DOI

Coull JT, Nobre AC. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci. 1998;18(18):7426–35. PubMed DOI

Toda K, Lusk NA, Watson GDR, et al. Nigrotectal stimulation stops interval timing in mice. Curr Biol. 2017;27(24):3763–70. PubMed DOI

Merchant H, Pérez O, Zarco W, Gámez J. Interval tuning in the primate medial premotor cortex as a general timing mechanism. J Neurosci. 2013;33(21):9082–96. PubMed DOI PMC

Finnerty GT, Shadlen MN, Jazayeri M, Nobre AC, Buonomano DV. Time in cortical circuits. J Neurosci. 2015;35(41):13912–6. PubMed DOI PMC

Perrett SP, Ruiz BP, Mauk MD. Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci. 1993;13(4):1708–18. PubMed DOI

Spencer R, Zelaznik HN, Diedrichsen J, Ivry RB. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Sci Signal. 2003;300(5624):1437.

Breska A, Ivry RB. Taxonomies of timing: where does the cerebellum fit in? Curr Opin Behav Sci. 2016;8:282–8. PubMed DOI PMC

Coull JT, Nobre AC. Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol. 2008;18(2):137–44. PubMed DOI

Diedrichsen J, Ivry RB, Pressing J. Cerebellar and basal ganglia contributions to interval timing. In: Meck WH, editor. Functional and neural mechanisms of interval timing. Boca Raton: CRC Press; 2003.

Franz EA, Ivry RB, Helmuth LL. Reduced timing variability in patients with unilateral cerebellar lesions during bimanual movements. J Cogn Neurosci. 1996;8(2):107–18. PubMed DOI

Bueti D, Walsh V, Frith C, Rees G. Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci. 2008;20(2):204–14. PubMed DOI

Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR. Distributed neural systems underlying the timing of movements. J Neurosci. 1997;17(14):5528–35. PubMed DOI

Hove MJ, Fairhurst MT, Kotz SA, Keller PE. Synchronizing with auditory and visual rhythms: an fMRI assessment of modality differences and modality appropriateness. NeuroImage. 2013;67:313–21. PubMed DOI

Johansson F, Jirenhed D-A, Rasmussen A, Zucca R, Hesslow G. Memory trace and timing mechanism localized to cerebellar Purkinje cells. Proc Natl Acad Sci. 2014;111(41):14930–4. PubMed DOI

Gerwig M, Kolb FP, Timmann D. The involvement of the human cerebellum in eyeblink conditioning. Cerebellum. 2007;6(1):38–57. PubMed DOI

Bares M, Lungu OV, Liu T, Waechter T, Gomez CM, Ashe J. The neural substrate of predictive motor timing in spinocerebellar ataxia. Cerebellum. 2011;10(2):233–44. PubMed DOI

Spencer RMC, Verstynen T, Brett M, Ivry R. Cerebellar activation during discrete and not continuous timed movements: an fMRI study. NeuroImage. 2007;36(2):378–87. PubMed DOI PMC

Tregellas JR, Davalos DB, Rojas DC. Effect of task difficulty on the functional anatomy of temporal processing. NeuroImage. 2006;32(1):307–15. PubMed DOI

Mathiak K, Hertrich I, Grodd W, Ackermann H. Discrimination of temporal information at the cerebellum: functional magnetic resonance imaging of nonverbal auditory memory. NeuroImage. 2004;21(1):154–62. PubMed DOI

Ackermann H, Gräber S, Hertrich I, Daum I. Cerebellar contributions to the perception of temporal cues within the speech and nonspeech domain. Brain Lang. 1999;67(3):228–41. PubMed DOI

Grube M, Cooper FE, Chinnery PF, Griffiths TD. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci. 2010;107(25):11597–601. PubMed DOI

Teki S, Grube M, Kumar S, Griffiths TD. Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci. 2011;31(10):3805–12. PubMed DOI PMC

Bueti D, Bahrami B, Walsh V, Rees G. Encoding of temporal probabilities in the human brain. J Neurosci. 2010;30(12):4343–52. PubMed DOI PMC

Niemi P, Näätänen R. Foreperiod and simple reaction time. Psychol Bull. 1981;89(1):133. DOI

Trillenberg P, Verleger R, Teetzmann A, Wascher E, Wessel K. On the role of the cerebellum in exploiting temporal contingencies: evidence from response times and preparatory EEG potentials in patients with cerebellar atrophy. Neuropsychologia. 2004;42(6):754–63. PubMed DOI

Henry MJ, Herrmann B, Obleser J. Entrained neural oscillations in multiple frequency bands comodulate behavior. Proc Natl Acad Sci. 2014;111(41):14935–40. PubMed DOI

Breska A, Deouell LY. Automatic bias of temporal expectations following temporally regular input independently of high-level temporal expectation. J Cogn Neurosci. 2014;26(7):1555–71. PubMed DOI

Geiser E, Zaehle T, Jancke L, Meyer M. The neural correlate of speech rhythm as evidenced by metrical speech processing. J Cogn Neurosci. 2008;20(3):541–52. PubMed DOI

Grahn JA, Rowe JB. Finding and feeling the musical beat: striatal dissociations between detection and prediction of regularity. Cereb Cortex. 2012;23(4):913–21. PubMed DOI PMC

Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978(1):302–17. PubMed DOI

Teki S, Grube M, Griffiths TD. A unified model of time perception accounts for duration-based and beat-based timing mechanisms. Front Integr Neurosci. 2012;5:90. PubMed DOI PMC

Lakatos P, Musacchia G, O’Connel MN, Falchier AY, Javitt DC, Schroeder CE. The spectrotemporal filter mechanism of auditory selective attention. Neuron. 2013;77(4):750–61. PubMed DOI PMC

Jones MR. Attending to sound patterns and the role of entrainment. In: Nobre AC, Coull JT, editors. Attention and time. Oxford: Oxford University Press; 2010. p. 317–30.

Schroeder CE, Lakatos P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 2009;32(1):9–18. DOI

Grahn JA, Brett M. Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex. 2009;45(1):54–61. PubMed DOI

Breska A, Deouell LY. Neural mechanisms of rhythm-based temporal prediction: delta phase-locking reflects temporal predictability but not rhythmic entrainment. PLoS Biol. 2017;15(2):e2001665. PubMed DOI PMC

Breska A, Deouell LY. When synchronizing to rhythms is not a good thing: modulations of preparatory and post-target neural activity when shifting attention away from on-beat times of a distracting rhythm. J Neurosci. 2016;36(27):7154–66. PubMed DOI PMC

Ekerot CF. Climbing fibres—a key to cerebellar function. J Physiol. 1999;516(Pt 3):629. PubMed DOI PMC

Llinas R, Walton K, Hillman DE, Sotelo C. Inferior olive: its role in motor learing. Science. 1975;190(4220):1230–1. PubMed DOI

Rondi-Reig L, Delhaye-Bouchaud N, Mariani J, Caston J. Role of the inferior olivary complex in motor skills and motor learning in the adult rat. Neuroscience. 1997;77(4):955–63. PubMed DOI

Horn KM, Deep A, Gibson AR. Progressive limb ataxia following inferior olive lesions. J Physiol. 2013;591(Pt 22):5475–89. PubMed DOI

Wilson WC, Magoun HW. The functional significance of the inferior olive in the cat. J Comp Neurol. 1945;83(1):69–77. DOI

King RB. The olivo-cerebella system; the effect of interolivary lesions on muscle tone in the trunk and limb girdles. J Comp Neurol. 1948;89(3):207–23. PubMed DOI

Eccles JC, Llinas R, Sasaki K. The excitatory synaptic action of climbing fibres on the Purkinje cells of cerebellum. J Physiol. 1966;182(2):268–96. PubMed DOI PMC

Crepel F, Mariani J, Delhaye-Bouchaud N. Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J Neurobiol. 1976;7(6):567–78. PubMed DOI

Crepel F, Delhaye-Bouchaud N, Dupont JL. Fate of the multiple innervation of cerebellar Purkinje cells by climbing fibers in immature control, x-irradiated and hypothyroid rats. Brain Res. 1981;227(1):59–71. PubMed DOI

Apps R, Atkins MJ, Garwicz M. Gating of cutaneous input to cerebellar climbing fibres during a reaching task in the cat. J Physiol. 1997;502(Pt 1):203–14. PubMed DOI PMC

Apps R. Movement-related gating of climbing fibre input to cerebellar cortical zones. Prog Neurobiol. 1999;57(5):537–62. PubMed DOI

Apps R, Hartell NA, Armstrong DM. Step phase-related excitability changes in spino-olivocerebellar paths to the c1 and c3 zones in cat cerebellum. J Physiol. 1995;483(Pt 3):687–702. PubMed DOI PMC

Lawrenson CL, Watson TC, Apps R. Transmission of predictable sensory signals to the cerebellum via climbing fiber pathways is gated during exploratory behavior. J Neurosci. 2016;36(30):7841–51. PubMed DOI PMC

Lidierth M, Apps R. Gating in the spino-olivocerebellar pathways to the c1 zone of the cerebellar cortex during locomotion in the cat. J Physiol. 1990;430:453–69. PubMed DOI PMC

Apps R, Lidierth M, Armstrong DM. Locomotion-related variations in excitability of spino-olivocerebellar paths to cat cerebellar cortical c2 zone. J Physiol. 1990;424:487–512. PubMed DOI PMC

Ekerot CF, Larson B. The dorsal spino-olivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe. Exp Brain Res. 1979;36(2):201–17. PubMed DOI

Tsukahara N, Toyama K, Kosaka K. Electrical activity of red nucleus neurones investigated with intracellular microelectrodes. Exp Brain Res. 1967;4(1):18–33. PubMed DOI

Shapovalov AI. Neuronal organization and synaptic mechanisms of supraspinal motor control in vertebrates. Rev Physiol Biochem Pharmacol. 1975;72:1–54. PubMed

Marr D. A theory of cerebellar cortex. J Physiol. 1969;202(2):437–70. PubMed DOI PMC

Eccles JC. Circuits in the cerebellar control of movement. Proc Natl Acad Sci U S A. 1967;58(1):336–43. PubMed DOI PMC

D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits. 2013;6:116. PubMed PMC

D’Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32(1):30–40. PubMed DOI

D’Angelo E. Rebuilding cerebellar network computations from cellular neurophysiology. Front Cell Neurosci. 2010;4:131. https://doi.org/10.3389/fncel.2010.00131 .

Castellazzi G, Palesi F, Bruno SD, Toosy AT, D’Angelo E, Wheeler-Kingshott CAM. Resting state fMRI during continuous cognitive processing reveals dynamical changes of brain networks involving cerebral cortex and cerebellum. Conference paper. Presented at: The Cerebellum inside out: cells, circuits and functions, Erice, Italy; 2016.

D’Angelo E, De Filippi G, Rossi P, Taglietti V. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J Physiol. 1995;484(2):397–413. PubMed DOI PMC

Chadderton P, Margrie TW, Hausser M. Integration of quanta in cerebellar granule cells during sensory processing. Nature. 2004;428(6985):856–60. PubMed DOI

Arleo A, Nieus T, Bezzi M, D’Errico A, D’Angelo E, Coenen OJMD. How synaptic release probability shapes neuronal transmission: information-theoretic analysis in a cerebellar granule cell. Neural Comput. 2010;22(8):2031–58. PubMed DOI

Mapelli L, Pagani M, Garrido JA, D’Angelo E. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit. Front Cell Neurosci. 2015;9:169. https://doi.org/10.3389/fncel.2015.00169 .

D’Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, et al. Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow K+-dependent mechanism. J Neurosci. 2001;21(3):759–70. PubMed DOI

Nieus T, Sola E, Mapelli J, Saftenku E, Rossi P, D’Angelo E. LTP regulates burst initiation and frequency at mossy fiber–granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. J Neurophysiol. 2006;95(2):686–99. PubMed DOI

Solinas S, Nieus T, D’Angelo E. A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 2010;4.

Jörntell H. Cerebellar physiology: links between microcircuitry properties and sensorimotor functions. J Physiol. 2017;595(1):11–27. PubMed DOI

Goldfarb M, Schoorlemmer J, Williams A, Diwakar S, Wang Q, Huang X, et al. Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron. 2007;55(3):449–63. PubMed DOI PMC

Dover K, Marra C, Solinas S, Popovic M, Subramaniyam S, Zecevic D, et al. FHF-independent conduction of action potentials along the leak-resistant cerebellar granule cell axon. Nat Commun 2016;7.

Diwakar S, Magistretti J, Goldfarb M, Naldi G, D’Angelo E. Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. J Neurophysiol. 2009;101(2):519–32. PubMed DOI

Ramakrishnan KB, Voges K, De Propris L, De Zeeuw CI, D’Angelo E. Tactile stimulation evokes longlasting potentiation of Purkinje cell discharge in vivo. Front cell Neurosci. 2016;10:36. https://doi.org/10.3389/fncel.2016.00036 .

Belluzzi O, Sacchi O, Wanke E. A fast transient outward current in the rat sympathetic neuron studied under voltage-clamp conditions. J Physiol. 1985;358(1):91–108. PubMed DOI PMC

Dieudonné S. Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J Physiol. 1998;510(3):845–66. PubMed DOI PMC

D’Angelo E, Rossi P, Armano S, Taglietti V. Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber–granule cell transmission in rat cerebellum. J Neurophysiol. 1999;81(1):277–87. PubMed DOI

Mapelli L, Rossi P, Nieus T, D’Angelo E. Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. J Neurophysiol. 2009;101(6):3089–99. PubMed DOI

Nieus TR, Mapelli L, D’Angelo E. Regulation of output spike patterns by phasic inhibition in cerebellar granule cells. Front Cell Neurosci 2014;8.

Cesana E, Pietrajtis K, Bidoret C, Isope P, D’Angelo E, Dieudonné S, et al. Granule cell ascending axon excitatory synapses onto Golgi cells implement a potent feedback circuit in the cerebellar granular layer. J Neurosci. 2013;33(30):12430–46. PubMed DOI PMC

Subramaniyam S, Perin P, Locatelli F, Masetto S, Solinas S, D’Angelo E. The mechanisms of late-onset synaptic responses in a realistic model of unipolar brush cells. BMC Neurosci. 2013;14(1):79. DOI

Mugnaini E, Di MR, Jaarsma D. The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry. Prog Brain Res. 1997;114:131–50. PubMed DOI

Sgritta M, Locatelli F, Soda T, Prestori F, D’Angelo EU. Hebbian spike-timing dependent plasticity at the cerebellar input stage. J Neurosci. 2017;37(11):2809–23. PubMed DOI PMC

Garrido MI, Barnes GR, Kumaran D, Maguire EA, Dolan RJ. Ventromedial prefrontal cortex drives hippocampal theta oscillations induced by mismatch computations. NeuroImage. 2015;120:362–70. PubMed DOI PMC

D’Angelo E, Mapelli L, Casellato C, Garrido JA, Luque N, Monaco J, et al. Distributed circuit plasticity: new clues for the cerebellar mechanisms of learning. Cerebellum. 2016;15(2):139–51. PubMed DOI

Masoli S, D’Angelo E. Synaptic activation of a detailed Purkinje cell model predicts voltage-dependent control of burst-pause responses in active dendrites. Front Cell Neurosci. 2017;11:278. PubMed DOI PMC

Gandolfi D, Lombardo P, Mapelli J, Solinas S, D’Angelo E. Theta-frequency resonance at thecerebellum input stage improves spike timing on the millisecond time-scale. Front Neural Circuits. 2013;7:64. https://doi.org/10.3389/fncir.2013.00064 .

Pisotta I, Molinari M. Cerebellar contribution to feedforward control of locomotion. Front Hum Neurosci. 2014;8.

Medina JF, Nores WL, Ohyama T, Mauk MD. Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol. 2000;10(6):717–24. PubMed DOI

De Zeeuw CI, Yeo CH. Time and tide in cerebellar memory formation. Curr Opin Neurobiol. 2005;15(6):667–74. PubMed DOI

Jenkinson N, Miall RC. Disruption of saccadic adaptation with repetitive transcranial magnetic stimulation of the posterior cerebellum in humans. Cerebellum. 2010;9(4):548–55. PubMed DOI PMC

Colnaghi S, Ramat S, D’Angelo E, Cortese A, Beltrami G, Moglia A, et al. Theta-burst stimulation of the cerebellum interferes with internal representations of sensory-motor information related to eye movements in humans. Cerebellum. 2011;10(4):711–9. PubMed DOI

Meck WH, Ivry RB (eds). Time in perception and action. Curr Opin Behav Sci. 2016;8:1–290.

Johansson F, Hesslow G, Medina JF. Mechanisms for motor timing in the cerebellar cortex. Curr Opin Behav Sci. 2016;8:53–9. PubMed DOI PMC

Koch G, Oliveri M, Torriero S, Salerno S, Gerfo EL, Caltagirone C. Repetitive TMS of cerebellum interferes with millisecond time processing. Exp Brain Res. 2007;179(2):291–9. PubMed DOI

Coull JT, Cheng RK, Meck WH. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology. 2011;36(1):3–25. PubMed DOI

Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40. PubMed DOI

Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci. 2013;36:313–36. PubMed DOI

Allman MJ, Teki S, Griffiths TD, Meck WH. Properties of the internal clock: first-and second-order principles of subjective time. Annu Rev Psychol. 2014;65:743–71. PubMed DOI

Ivry RB, Keele SW, Diener HC. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73(1):167–80. PubMed DOI

Heiney SA, Kim J, Augustine GJ, Medina JF. Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J Neurosci. 2014;34(6):2321–30. PubMed DOI PMC

Jirenhed D-A, Rasmussen A, Johansson F, Hesslow G. Learned response sequences in cerebellar Purkinje cells. Proc Natl Acad Sci U S A. 2017;114(23):6127–32. PubMed DOI PMC

Wetmore DZ, Jirenhed D-A, Rasmussen A, Johansson F, Schnitzer MJ, Hesslow G. Bidirectional plasticity of Purkinje cells matches temporal features of learning. J Neurosci. 2014;34(5):1731–7. PubMed DOI PMC

Gallistel CR, Wilkes JT. Minimum description length model selection in associative learning. Curr Opin Behav Sci. 2016;11:8–13. DOI

Lusk NA, Petter EA, MacDonald CJ, Meck WH. Cerebellar, hippocampal, and striatal time cells. Curr Opin Behav Sci. 2016;8:186–92. DOI

Ohmae S, Uematsu A, Tanaka M. Temporally specific sensory signals for the detection of stimulus omission in the primate deep cerebellar nuclei. J Neurosci. 2013;33(39):15432–41. PubMed DOI PMC

Ohmae S, Kunimatsu J, Tanaka M. Cerebellar roles in self-timing for sub-and supra-second intervals. J Neurosci. 2017;37(13):3511–22. PubMed DOI PMC

Broersen R, Onuki Y, Abdelgabar AR, Owens CB, Picard S, Willems J, et al. Impaired spatio-temporal predictive motor timing associated with spinocerebellar ataxia type 6. PLoS One. 2016;11(8):e0162042. PubMed DOI PMC

Coull JT, Davranche K, Nazarian B, Vidal F. Functional anatomy of timing differs for production versus prediction of time intervals. Neuropsychologia. 2013;51(2):309–19. PubMed DOI

Callu D, El Massioui N, Dutrieux G, Brown BL, Doyere V. Cognitive processing impairments in a supra-second temporal discrimination task in rats with cerebellar lesion. Neurobiol Learn Mem. 2009;91(3):250–9. PubMed DOI

Petter EA, Lusk NA, Hesslow G, Meck WH. Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neurosci Biobehav Rev. 2016;71:739–55. PubMed DOI

Rasmussen A, Jirenhed D-A. Learning and timing of voluntary blink responses match eyeblink conditioning. Sci Rep. 2017;7(1):3404. PubMed DOI PMC

Bares M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res. 2007;180(2):355–65. PubMed DOI

Bareš M, Lungu OV, Husárová I, Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson’s disease. Cerebellum. 2010;9(1):124–35. PubMed DOI

Bares M, Husarova I, Lungu OV. Essential tremor, the cerebellum, and motor timing: towards integrating them into one complex entity. Tremor Other Hyperkinet Mov. 2012;2:1–9.

Filip P, Lungu OV, Shaw DJ, Kasparek T, Bareš M. The mechanisms of movement control and time estimation in cervical dystonia patients. Neural Plast. 2013;2013:908741. https://doi.org/10.1155/2013/908741 .

Lungu OV, Bares M, Liu T, Gomez CM, Cechova I, Ashe J. Trial-to-trial adaptation: parsing out the roles of cerebellum and BG in predictive motor timing. J Cogn Neurosci. 2016;28(7):920–34. PubMed DOI

Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17(5):241–54. PubMed DOI PMC

Parker KL, Kim YC, Kelley RM, Nessler AJ, Chen KH, Muller-Ewald VA, et al. Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Mol Psychiatry. 2017;22(5):647–55. PubMed DOI PMC

Najafi F, Medina JF. Beyond “all-or-nothing” climbing fibers: graded representation of teaching signals in Purkinje cells. Front Neural Circuits. 2013;7:115. https://doi.org/10.3389/fncir.2013.00115 .

Witter L, Rudolph S, Pressler RT, Lahlaf SI, Regehr WG. Purkinje cell collaterals enable output signals from the cerebellar cortex to feed back to Purkinje cells and interneurons. Neuron. 2016;91(2):312–9. PubMed DOI PMC

Dean P, Porrill J, Ekerot C-F, Jörntell H. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci. 2010;11(1):30–43. PubMed DOI

Hausknecht M, Li W-K, Mauk M, Stone P. Machine learning capabilities of a simulated cerebellum. IEEE Trans Neural Netw Learn Syst. 2017;28(3):510–22. PubMed DOI

Raghavan RT, Prevosto V, Sommer MA. Contribution of cerebellar loops to action timing. Curr Opin Behav Sci. 2016;8:28–34. PubMed DOI PMC

Hallett M, Shahani BT, Young RR. EMG analysis of patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1975;38(12):1163–9. PubMed DOI PMC

Flament D, Hore J. Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol. 1986;55(6):1221–33. PubMed DOI

Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40(4):461–535. DOI

Manto MU, Hildebrand J, Jacquy J. Shift from hypermetria to hypometria in an aberrant recovery following cerebellar infarction. J Neurol Sci. 1998;157(1):42–51. PubMed DOI

Manto M. Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil. 2009;6(1):10. PubMed DOI PMC

Hallett M, Marsden CD. Ballistic flexion movements of the human thumb. J Physiol. 1979;294(1):33–50. PubMed DOI PMC

Hannaford B, Stark L. Roles of the elements of the triphasic control signal. Exp Neurol. 1985;90(3):619–34. PubMed DOI

Berardelli A, Rothwell JC, Day BL, Kachi T, Marsden CD. Duration of the first agonist EMG burst in ballistic arm movements. Brain Res. 1984;304(1):183–7. PubMed DOI

Flament D, Shapiro MB, Kempf T, Corcos DM. Time course and temporal order of changes in movement kinematics during learning of fast and accurate elbow flexions. Exp Brain Res. 1999;129(3):441–50. PubMed DOI

Brooks VB, Kozlovskaya IB, Atkin A, Horvath FE, Uno M. Effects of cooling dentate nucleus on tracking-task performance in monkeys. J Neurophysiol. 1973;36(6):974–95. PubMed DOI

Wild B, Klockgether T, Dichgans J. Acceleration deficit in patients with cerebellar lesions. A study of kinematic and EMG-parameters in fast wrist movements. Brain Res. 1996;713(1):186–91. PubMed DOI

Di Lazzaro V, Restuccia D, Nardone R, Leggio MG, Oliviero A, Profice P, et al. Motor cortex changes in a patient with hemicerebellectomy. Electroencephalogr Clin Neurophysiol. 1995;97(5):259–63. PubMed

Manto M, Godaux E, Jacquy J. Cerebellar hypermetria is larger when the inertial load is artificially increased. Ann Neurol. 1994;35(1):45–52. PubMed DOI

Manto M, Jacquy J, Hildebrand J, Godaux E. Recovery of hypermetria after a cerebellar stroke occurs as a multistage process. Ann Neurol. 1995;38(3):437–45. PubMed DOI

Manto M-U, Bosse P. A second mechanism of increase of cerebellar hypermetria in humans. J Physiol. 2003;547(Pt 3):989. PubMed PMC

Manto M, Godaux E, Jacquy J, Hildebrand J. Cerebellar hypermetria associated with a selective decrease in the rate of rise of antagonist activity. Ann Neurol. 1996;39(2):271–4. PubMed DOI

Hore J, Wild B, Diener HC. Cerebellar dysmetria at the elbow, wrist, and fingers. J Neurophysiol. 1991;65(3):563–71. PubMed DOI

Manto M, Godaux E, Jacquy J, Hildebrand JG. Analysis of cerebellar dysmetria associated with lithium intoxication. Neurol Res. 1996;18(5):416–24. PubMed DOI

Therrien AS, Bastian AJ. Cerebellar damage impairs internal predictions for sensory and motor function. Curr Opin Neurobiol. 2015;33:127–33. PubMed DOI PMC

Manto M, Van Den Braber N, Grimaldi G, Lammertse P. A new myohaptic instrument to assess wrist motion dynamically. Sensors. 2010;10(4):3180–94. PubMed DOI

Benussi A, Dell’Era V, Cotelli MS, Turla M, Casali C, Padovani A, et al. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul. 2017;10(2):242–50. PubMed DOI

Grimaldi G, Taib NOB, Manto M, Bodranghien F. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands. Front Syst Neurosci. 2014;8.

Huang Y-Z, Chang Y-S, Hsu M-J, Wong AMK, Chang Y-J. Restoration of central programmed movement pattern by temporal electrical stimulation-assisted training in patients with spinal cerebellar atrophy. Neural Plast. 2015;2015:462182. PubMed DOI PMC

Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. J Neurophysiol. 1999;82(1):103–14. PubMed DOI

Timmann D, Watts S, Hore J. Causes of left-right ball inaccuracy in overarm throws made by cerebellar patients. Exp Brain Res. 2000;130(4):441–52. PubMed DOI

Timmann D, Lee P, Watts S, Hore J. Kinematics of arm joint rotations in cerebellar and unskilled subjects associated with the inability to throw fast. Cerebellum. 2008;7(3):366. PubMed DOI

Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76(1):492–509. PubMed DOI

Woodruff-Pakand DS, Steinmetz JE. Past, present, and future of human eyeblink classical conditioning. Eyeblink Classical Conditioning: Volume I: Springer; 2002. p. 1–17.

Daum I, Schugens MM, Ackermann H, Lutzenberger W, Dichgans J, Birbaumer N. Classical conditioning after cerebellar lesions in humans. Behav Neurosci. 1993;107(5):748. PubMed DOI

Topka H, Valls-Solé J, Massaquoi SG, Hallett M. Deficit in classical conditioning in patients with cerebellar degeneration. Brain. 1993;116(4):961–9. PubMed DOI

Woodruff-Pak DS, Papka M, Ivry RB. Cerebellar involvement in eyeblink classical conditioning in humans. Neuropsychology. 1996;10(4):443. DOI

Gerwig M, Dimitrova A, Kolb FP, Maschke M, Brol B, Kunnel A, et al. Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain. 2003;126(1):71–94. PubMed DOI

Woodruff-Pak DS, Vogel RW, Ewers M, Coffey J, Boyko OB, Lemieux SK. MRI-assessed volume of cerebellum correlates with associative learning. Neurobiol Learn Mem. 2001;76(3):342–57. PubMed DOI

Dimitrova A, Gerwig M, Brol B, Gizewski ER, Forsting M, Beck A, et al. Correlation of cerebellar volume with eyeblink conditioning in healthy subjects and in patients with cerebellar cortical degeneration. Brain Res. 2008;1198:73–84. PubMed DOI

Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, et al. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci. 2005;25(15):3919–31. PubMed DOI

Ramnani N, Toni I, Josephs O, Ashburner J, Passingham RE. Learning-and expectation-related changes in the human brain during motor learning. J Neurophysiol. 2000;84(6):3026–35. PubMed DOI

Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE. Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci U S A. 2008;105(23):8108–13. PubMed DOI PMC

Yeo CH, Hardiman MJ, Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit. Exp Brain Res. 1985;60(1):99–113. PubMed DOI

Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem. 2003;10(6):427–55. PubMed DOI

Timmann D, Konczak J, Ilg W, Donchin O, Hermsdörfer J, Gizewski ER, et al. Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience. 2009;162(3):836–51. PubMed DOI

Papka M, Ivry RB, Woodruff-Pak DS. Selective disruption of eyeblink classical conditioning by concurrent tapping. Neuroreport. 1995;6(11):1493–7. PubMed DOI

Woodruff-Pak DS, Jaeger ME. Predictors of eyeblink classical conditioning over the adult age span. Psychol Aging. 1998;13(2):193. PubMed DOI

Boneau CA. The interstimulus interval and the latency of the conditioned eyelid response. J Exp Psychol. 1958;56(6):464. PubMed DOI

Ebel HC, Prokasy WF. Classical eyelid conditioning as a function of sustained and shifted interstimulus intervals. J Exp Psychol. 1963;65(1):52. DOI

McGlinchey-Berroth R, Fortier CB, Cermak LS, Disterhoft JF. Temporal discrimination learning in abstinent chronic alcoholics. Alcohol Clin Exp Res. 2002;26(6):804–11. PubMed DOI

Koekkoek SKE, Hulscher HC, Dortland BR, Hensbroek RA, Elgersma Y, Ruigrok TJH, et al. Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science. 2003;301(5640):1736–9. PubMed DOI

Mauk MD, Medina JF, Nores WL, Ohyama T. Cerebellar function: coordination, learning or timing? Curr Biol. 2000;10(14):R522–R5. PubMed DOI

Attwell PJE, Ivarsson M, Millar L, Yeo CH. Cerebellar mechanisms in eyeblink conditioning. Ann N Y Acad Sci. 2002;978(1):79–92. PubMed DOI

Bracha V, Zhao L, Wunderlich DA, Morrissy SJ, Bloedel JR. Patients with cerebellar lesions cannot acquire but are able to retain conditioned eyeblink reflexes. Brain. 1997;120(8):1401–13. PubMed DOI

Gerwig M, Guberina H, Eßer AC, Siebler M, Schoch B, Frings M, et al. Evaluation of multiple-session delay eyeblink conditioning comparing patients with focal cerebellar lesions and cerebellar degeneration. Behav Brain Res. 2010;212(2):143–51. PubMed DOI

Kronenbuerger M, Gerwig M, Brol B, Block F, Timmann D. Eyeblink conditioning is impaired in subjects with essential tremor. Brain. 2007;130(6):1538–51. PubMed DOI

Teo JTH, Van De Warrenburg BPC, Schneider SA, Rothwell JC, Bhatia KP. Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia. J Neurol Neurosurg Psychiatry. 2009;80(1):80–3. PubMed DOI

Smit AE, Van Der Geest JN, Vellema M, Koekkoek SKE, Willemsen R, Govaerts LCP, et al. Savings and extinction of conditioned eyeblink responses in fragile X syndrome. Genes Brain Behav. 2008;7(7):770–7. PubMed DOI PMC

Gerwig M, Rauschen L, Gaul C, Katsarava Z, Timmann D. Subclinical cerebellar dysfunction in patients with migraine: evidence from eyeblink conditioning. Cephalalgia. 2014;34(11):904–13. PubMed DOI

Forsyth JK, Bolbecker AR, Mehta CS, Klaunig MJ, Steinmetz JE, O’Donnell BF, et al. Cerebellar-dependent eyeblink conditioning deficits in schizophrenia spectrum disorders. Schizophr Bull. 2010;38(4):751–9. PubMed DOI PMC

Frings M, Gaertner K, Buderath P, Gerwig M, Christiansen H, Schoch B, et al. Timing of conditioned eyeblink responses is impaired in children with attention-deficit/hyperactivity disorder. Exp Brain Res. 2010;201(2):167–76. PubMed DOI

Yeo CH, Hesslow G. Cerebellum and conditioned reflexes. Trends Cogn Sci. 1998;2(9):322–30. PubMed DOI

Bracha V. Role of the cerebellum in eyeblink conditioning. Prog Brain Res. 2004;143:331–9. PubMed DOI

Bolbecker AR, Steinmetz AB, Mehta CS, Forsyth JK, Klaunig MJ, Lazar EK, et al. Exploration of cerebellar-dependent associative learning in schizophrenia: effects of varying and shifting interstimulus interval on eyeblink conditioning. Behav Neurosci. 2011;125(5):687. PubMed DOI PMC

Chess AC, Green JT. Abnormal topography and altered acquisition of conditioned eyeblink responses in a rodent model of attention-deficit/hyperactivity disorder. Behav Neurosci. 2008;122(1):63. PubMed DOI

Zuchowski ML, Timmann D, Gerwig M. Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS. Brain Stimul. 2014;7(4):525–31. PubMed DOI

Millenson JR, Kehoe EJ, Gormezano I. Classical conditioning of the rabbit’s nictitating membrane response under fixed and mixed CS-US intervals. Learn Motiv. 1977;8(3):351–66. DOI

Beyer L, Batsikadze G, Timmann D, Gerwig M. Cerebellar tDCS effects on conditioned eyeblinks usingdifferent electrode placements and stimulation protocols. Front Hum Neurosci. 2017;11:23. https://doi.org/10.3389/fnhum.2017.00023 .

Cheeran B, Talelli P, Mori F, Koch G, Suppa A, Edwards M, et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol. 2008;586(23):5717–25. PubMed DOI PMC

Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204. PubMed DOI PMC

Ichinohe N, Mori F, Shoumura K. A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res. 2000;880(1–2):191–7. PubMed DOI

Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with cerebellum. Proc Natl Acad Sci U S A. 2010;107(18):8452–6. PubMed DOI PMC

Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3. PubMed DOI

Pelzer EA, Hintzen A, Goldau M, Cramon DY, Timmermann L, Tittgemeyer M. Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci. 2013;38(8):3106–14. PubMed DOI

Milardi D, Arrigo A, Anastasi G, Cacciola A, Marino S, Mormina E, et al. Extensive direct subcortical cerebellum-basal ganglia connections in human brain as revealed by constrained spherical deconvolution tractography. Front Neuroanat. 2016:10.

Claassen DO, Jones CRG, Yu M, Dirnberger G, Malone T, Parkinson M, et al. Deciphering the impact of cerebellar and basal ganglia dysfunction in accuracy and variability of motor timing. Neuropsychologia. 2013;51(2):267–74. PubMed DOI

Schwartze M, Keller PE, Kotz SA. Spontaneous, synchronized, and corrective timing behavior in cerebellar lesion patients. Behav Brain Res. 2016;312:285–93. PubMed DOI

Avanzino L, Pelosin E, Vicario CM, Lagravinese G, Abbruzzese G, Martino D. Time processing andmotor control in movement disorders. Front Hum Neurosci. 2016;10:631. https://doi.org/10.3389/fnhum.2016.00631 .

Prudente CN, Hess EJ, Jinnah HA. Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience. 2014;260:23–35. PubMed DOI

Avanzino L, Tinazzi M, Ionta S, Fiorio M. Sensory-motor integration in focal dystonia. Neuropsychologia. 2015;79:288–300. PubMed DOI

Caligiore D, Helmich RC, Hallett M, Moustafa AA, Timmermann L, Toni I, et al. Parkinson’s disease as a system-level disorder. NPJ Parkinsons Dis. 2016;2:16025. PubMed DOI PMC

Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136(3):696–709. PubMed DOI

Helmich RC, Janssen MJR, Oyen WJG, Bloem BR, Toni I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol. 2011;69(2):269–81. PubMed DOI

Gao L, Zhang J, Hou Y, Hallett M, Chan P, Wu T. The cerebellum in dual-task performance inParkinson’s disease. Sci Rep. 2017;7:45662. https://doi.org/10.1038/srep45662 .

Avanzino L, Abbruzzese G. How does the cerebellum contribute to the pathophysiology of dystonia? Basal Ganglia. 2012;2(4):231–5.

Bologna M, Berardelli A. Cerebellum: an explanation for dystonia? Cerebellum Ataxias. 2017;4(1):6. PubMed DOI PMC

McIntosh GC, Brown SH, Rice RR, Thaut MH. Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62(1):22–6. PubMed DOI PMC

Heremans E, Nieuwboer A, Feys P, Vercruysse S, Vandenberghe W, Sharma N, et al. External cueing improves motor imagery quality in patients with Parkinson disease. Neurorehabil Neural Repair. 2012;26(1):27–35. PubMed DOI

Baltadjieva R, Giladi N, Gruendlinger L, Peretz C, Hausdorff JM. Marked alterations in the gait timing and rhythmicity of patients with de novo Parkinson’s disease. Eur J Neurosci. 2006;24(6):1815–20. PubMed DOI

Almeida QJ, Frank JS, Roy EA, Patla AE, Jog MS. Dopaminergic modulation of timing control and variability in the gait of Parkinson’s disease. Mov Disord. 2007;22(12):1735–42. PubMed DOI

Schwartze M, Kotz SA. Regional interplay for temporal processing in Parkinson’s disease: possibilities and challenges. Front Neurol. 2016;6:270. PubMed DOI PMC

Molinari M, Leggio MG, Filippini V, Gioia MC, Cerasa A, Thaut MH. Sensorimotor transduction of time information is preserved in subjects with cerebellar damage. Brain Res Bull. 2005;67(6):448–58. PubMed DOI

Avanzino L, Pelosin E, Martino D, Abbruzzese G. Motor timing deficits in sequential movements in Parkinson disease are related to action planning: a motor imagery study. PLoS One. 2013;8(9):e75454. PubMed DOI PMC

Pastor MA, Artieda J, Jahanshahi M, Obeso JA. Time estimation and reproduction is abnormal in Parkinson’s disease. Brain. 1992;115(1):211–25. PubMed DOI

O’Boyle DJ, Freeman JS, Cody FWJ. The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson’s disease. Brain. 1996;119(1):51–70. PubMed DOI

Harrington DL, Haaland KY, Hermanowitz N. Temporal processing in the basal ganglia. Neuropsychology. 1998;12(1):3. PubMed DOI

Jones CRG, Claassen DO, Yu M, Spies JR, Malone T, Dirnberger G, Jahanshahi M, Kubovy M. Modeling accuracy and variability of motor timing in treated and untreated Parkinson’s disease and healthy controls. Front Integr Neurosci. 2011;5:81. https://doi.org/10.3389/fnint.2011.00081 .

Elsinger CL, Rao SM, Zimbelman JL, Reynolds NC, Blindauer KA, Hoffmann RG. Neural basis for impaired time reproduction in Parkinson’s disease: an fMRI study. J Int Neuropsychol Soc. 2003;9(7):1088–98. PubMed DOI

Cerasa A, Hagberg GE, Peppe A, Bianciardi M, Gioia MC, Costa A, et al. Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson’s disease. Brain Res Bull. 2006;71(1):259–69. PubMed DOI

Jahanshahi M, Jones CRG, Zijlmans J, Katzenschlager R, Lee L, Quinn N, et al. Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease. Brain. 2010;133(3):727–45. PubMed DOI

Assmus A, Marshall JC, Noth J, Zilles K, Fink GR. Difficulty of perceptual spatiotemporal integration modulates the neural activity of left inferior parietal cortex. Neuroscience. 2005;132(4):923–7. PubMed DOI

Field DT, Wann JP. Perceiving time to collision activates the sensorimotor cortex. Curr Biol. 2005;15(5):453–8. PubMed DOI

O’Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28(9):2252–60. PubMed DOI PMC

Filip P, Lošák J, Kašpárek T, Vaníček J, Bareš M. Neural network of predictive motor timing in thecontext of gender differences. Neural Plast. 2016;2016:2073454. https://doi.org/10.1155/2016/2073454 .

Husárová I, Lungu OV, Mareček R, Mikl M, Gescheidt T, Krupa P, et al. Functional imaging of the cerebellum and basal ganglia during predictive motor timing in early Parkinson’s disease. J Neuroimaging. 2014;24(1):45–53. PubMed DOI

Husárová I, Mikl M, Lungu OV, Mareček R, Vaníček J, Bareš M. Similar circuits but different connectivity patterns between the cerebellum, basal ganglia, and supplementary motor area in early Parkinson’s disease patients and controls during predictive motor timing. J Neuroimaging. 2013;23(4):452–62. PubMed DOI

Furuya S, Altenmüller E. Finger-specific loss of independent control of movements in musicians with focal dystonia. Neuroscience. 2013;247:152–63. PubMed DOI

Jabusch HC, Schneider U, Altenmüller E. Δ9-Tetrahydrocannabinol improves motor control in a patient with musician’s dystonia. Mov Disord. 2004;19(8):990–1. PubMed DOI

Furuya S, Nitsche MA, Paulus W, Altenmüller E. Surmounting retraining limits in musicians’ dystonia by transcranial stimulation. Ann Neurol. 2014;75(5):700–7. PubMed DOI

Van Der Steen MC, van Vugt FT, Keller PE, Altenmüller E. Basic timing abilities stay intact in patients with musician’s dystonia. PLoS One. 2014;9(3):e92906. PubMed DOI PMC

Avanzino L, Bove M, Pelosin E, Ogliastro C, Lagravinese G, Martino D. The cerebellum predicts the temporal consequences of observed motor acts. PLoS One. 2015;10(2):e0116607. PubMed DOI PMC

Avanzino L, Martino D, Martino I, Pelosin E, Vicario CM, Bove M, et al. Temporal expectation in focal hand dystonia. Brain. 2013;136(2):444–54. PubMed DOI

Martino D, Lagravinese G, Pelosin E, Chaudhuri RK, Vicario CM, Abbruzzese G, et al. Temporal processing of perceived body movement in cervical dystonia. Mov Disord. 2015;30(7):1005–7. PubMed DOI

Filip P, Gallea C, Lehéricy S, Bertasi E, Popa T, Mareček R, et al. Disruption in cerebellar and basal ganglia networks during a visuospatial task in cervical dystonia. Mov Disord. 2017;32(5):757–68. PubMed DOI

Avanzino L, Ravaschio A, Lagravinese G, Bonassi G, Abbruzzese G, Pelosin E. Adaptation of feedforward movement control is abnormal in patients with cervical dystonia and tremor. Clin Neurophysiol. 2018;129(1):319–26.

Louis ED. The primary type of tremor in essential tremor is kinetic rather than postural: cross-sectional observation of tremor phenomenology in 369 cases. Eur J Neurol. 2013;20(4):725–7. PubMed DOI

Critchley M. Observations on essential (heredofamilial) tremor. Brain. 1949;72(2):113–39. PubMed DOI

Louis ED, Ottman R, Allen HW. How common is the most common adult movement disorder? Estimates of the prevalence of essential tremor throughout the world. Mov Disord. 1998;13(1):5–10. PubMed DOI

Louis ED. Non-motor symptoms in essential tremor: a review of the current data and state of the field. Parkinsonism Relat Disord. 2016;22:S115–S8. PubMed DOI

Passamonti L, Cerasa A, Quattrone A. Neuroimaging of essential tremor: what is the evidence for cerebellar involvement? Tremor Other Hyperkinet Mov (N Y). 2012;2:02-67-421-3. https://doi.org/10.7916/D8F76B8G .

Wilms H, Sievers J, Deuschl G. Animal models of tremor. Mov Disord. 1999;14(4):557–71. PubMed DOI

Benito-León J, Labiano-Fontcuberta A. Linking essential tremor to the cerebellum: clinical evidence. Cerebellum. 2016;15(3):253–62. PubMed DOI

Filip P, Lungu OV, Manto M-U, Bareš M. Linking essential tremor to the cerebellum: physiological evidence. Cerebellum. 2016;15(6):774–80. PubMed DOI

Louis ED. Linking essential tremor to the cerebellum: neuropathological evidence. Cerebellum. 2016;15(3):235–42. PubMed DOI

Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6(10):755–65. PubMed DOI

Buhusi CV, Meck WH. Relativity theory and time perception: single or multiple clocks. PLoS One. 2009;4(7):e6268. PubMed DOI PMC

Wiener M, Turkeltaub P, Coslett HB. The image of time: a voxel-wise meta-analysis. NeuroImage. 2010;49(2):1728–40. PubMed DOI

Elble RJ, Higgins C, Hughes L. Essential tremor entrains rapid voluntary movements. Exp Neurol. 1994;126(1):138–43. PubMed DOI

Montgomery EB, Baker KB, Lyons K, Koller WC. Motor initiation and execution in essential tremor and Parkinson’s disease. Mov Disord. 2000;15(3):511–5. PubMed DOI

Özekmekçi S, Kiziltan G, Vural M, Ertan S, Apaydin H, Erginöz E. Assessment of movement time in patients with essential tremor. J Neurol. 2005;252(8):964–7. PubMed DOI

Jiménez-Jiménez FJ, Rubio L, Alonso-Navarro H, Calleja M, Pilo-de-la-Fuente B, Plaza-Nieto JF, et al. Impairment of rapid repetitive finger movements and visual reaction time in patients with essential tremor. Eur J Neurol. 2010;17(1):152–9. PubMed DOI

Duval C, Sadikot AF, Panisset M. Bradykinesia in patients with essential tremor. Brain Res. 2006;1115(1):213–6. PubMed DOI

Avanzino L, Bove M, Tacchino A, Ruggeri P, Giannini A, Trompetto C, et al. Cerebellar involvement in timing accuracy of rhythmic finger movements in essential tremor. Eur J Neurosci. 2009;30(10):1971–9. PubMed DOI

Farkas Z, Szirmai I, Kamondi A. Impaired rhythm generation in essential tremor. Mov Disord. 2006;21(8):1196–9. PubMed DOI

Helmchen C, Hagenow A, Miesner J, Sprenger A, Rambold H, Wenzelburger R, et al. Eye movement abnormalities in essential tremor may indicate cerebellar dysfunction. Brain. 2003;126(6):1319–32. PubMed DOI

Trillenberg P, Führer J, Sprenger A, Hagenow A, Kömpf D, Wenzelburger R, et al. Eye–hand coordination in essential tremor. Mov Disord. 2006;21(3):373–9. PubMed DOI

Gitchel GT, Wetzel PA, Baron MS. Slowed saccades and increased square wave jerks in essential tremor. Tremor Other Hyperkinet Mov. 2013;3:tre-03-178-4116-2. https://doi.org/10.7916/D8251GXN .

Brown SH, Cooke JD. Movement-related phasic muscle activation. I. Relations with temporal profile of movement. J Neurophysiol. 1990;63(3):455–64. PubMed DOI

Britton TC, Thompson PD, Day BL, Rothwell JC, Findley LJ, Marsden CD. Rapid wrist movements in patients with essential tremor: the critical role of the second agonist burst. Brain. 1994;117(1):39–47. PubMed DOI

Köster B, Deuschl G, Lauk M, Timmer J, Guschlbauer B, Lücking CH. Essential tremor and cerebellar dysfunction: abnormal ballistic movements. J Neurol Neurosurg Psychiatry. 2002;73(4):400–5. PubMed DOI PMC

Anderson VC, Burchiel KJ, Hart MJ, Berk C, Lou J-S. A randomized comparison of thalamic stimulation and lesion on self-paced finger movement in essential tremor. Neurosci Lett. 2009;462(2):166–70. PubMed DOI

Braitenberg V. Functional interpretation of cerebellar histology. Nature. 1961;190(4775):539. DOI

Molinari M, Leggio MG, Thaut MH. The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. Cerebellum. 2007;6(1):18–23. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace