Consensus Paper: Cerebellum and Ageing

. 2024 Apr ; 23 (2) : 802-832. [epub] 20230710

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37428408

Grantová podpora
R21 AG077307 NIA NIH HHS - United States
T32 AG052354 NIA NIH HHS - United States
P30 AG066509 NIA NIH HHS - United States
U19 AG073172 NIA NIH HHS - United States
R01 AG064010 NIA NIH HHS - United States
U19 AG065169 NIA NIH HHS - United States

Odkazy

PubMed 37428408
PubMed Central PMC10776824
DOI 10.1007/s12311-023-01577-7
PII: 10.1007/s12311-023-01577-7
Knihovny.cz E-zdroje

Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.

1st Department of Neurology Faculty of Medicine Masaryk University and St Anne's Teaching Hospital Brno Czech Republic

Ataxia Center Cognitive Behavioural neurology Unit Massachusetts General Hospital and Harvard Medical School Boston MA USA

Ataxia Laboratory 1 R C C S Santa Lucia Foundation Rome Italy

Center for Geriatric and Gerontology Taipei Veterans General Hospital Taipei Taiwan

Center for Healthy Longevity and Aging Sciences National Yang Ming Chiao Tung University College of Medicine Taipei Taiwan

Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA

CHNO Des Quinze Vingts INSERM DGOS CIC 1423 28 rue de Charenton 75012 Paris France

Department of Medical Education Tokyo Medical University Tokyo Japan

Department of Neurology Charles University 1st Faculty of Medicine and General University Hospital Prague Czech Republic

Department of Neurology Massachusetts General Hospital and Harvard Medical School Boston MA USA

Department of Neurology Neurological Institute Taipei Veterans General Hospital Taipei Taiwan

Department of Neurology School of Medicine University of Minnesota Minneapolis USA

Department of Paediatrics Warren Alpert Medical School of Brown University 222 Richmond St Providence RI 02903 USA

Department of Psychiatry and Behavioural Sciences University of Washington Seattle WA USA

Department of Psychological and Brain Sciences Texas A and M University 4235 TAMU College Station TX 77843 USA

Department of Psychology Georgia State University Atlanta GA USA

Department of Psychology Sapienza University of Rome Rome Italy

Department of Psychology Stavanger University Institute of Social Sciences Kjell Arholms Gate 41 4021 Stavanger Norway

Department of Psychology The Education University of Hong Kong New Territories Tai Po Hong Kong China

Faculty of Psychology and Neuroscience Department of Cognitive Neuroscience Maastricht University PO BOX 616 6200 MD Maastricht The Netherlands

Freie Universität Berlin Fachbereich Mathematik und Informatik Arnimallee 12 14195 Berlin Germany

Geriatric Research Education and Clinical Center Veteran's Affairs Medical Center Puget Sound Seattle WA USA

Gerontology Institute Georgia State University Atlanta GA USA

Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston MA USA

Graduate School of Advanced Integrated Studies in Human Survivability Kyoto University Kyoto Japan

Jissen Women's University Tokyo Japan

King's College London Institute of Psychiatry Psychology and Neuroscience Centre for Neuroimaging Sciences Box 89 De Crespigny Park London PO SE5 8AF UK

Laboratory for Neuroanatomy and Cerebellar Neurobiology Massachusetts General Hospital and Harvard Medical School Boston MA USA

Laboratory of Neuropsychology and Human Neuroscience Department of Psychology The University of Hong Kong Hong Kong China

Noninvasive Neuromodulation Unit Experimental Therapeutics and Pathophysiology Branch National Institute of Mental Health NIH Bethesda USA

Research Center for Child Mental Development University of Fukui Fukui Japan

Rhode Island Hospital Department for Diagnostic Imaging 1 Hoppin St Providence RI 02903 USA

School for Mental Health and Neuroscience Alzheimer Centre Limburg Maastricht University PO BOX 616 6200 MD Maastricht The Netherlands

Service de Neurologie Médiathèque Jean Jacquy CHU Charleroi Charleroi Belgium

Service des Neurosciences University of Mons Mons Belgium

Sorbonne Université INSERM CNRS Institut de la Vision 17 rue Moreau F 75012 Paris France

State Key Laboratory of Brain and Cognitive Sciences The University of Hong Kong Hong Kong China

Taipei Municipal Gan Dau Hospital Taipei Taiwan

Texas A and M Institute for Neuroscience Texas A and M University College Station TX USA

United Graduate School of Child Development Osaka University Kanazawa University Hamamatsu University School of Medicine Chiba University and University of Fukui Osaka Japan

Université Côte d'Azur LAMHESS Nice France

Université Versailles St Quentin en Yvelines Paris France

Zobrazit více v PubMed

Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Sillitoe RV. Handbook of Cerebellum and Cerebellar Disorders. Springer, 2022

Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE, Guell X, Heleven E, Lupo M, Ma Q, Michelutti M, Olivito G, Pu M, Rice LC, Schmahmann JD, Siciliano L, Sokolov AA, Stoodley CJ, van Dun K, Vandervert L, Leggio M. Consensus Paper: cerebellum and social cognition. Cerebellum 2020;19(6):833–868 PubMed PMC

Bareš M, Apps R, Avanzino L, Breska A, D’Angelo E, Filip P, Gerwig M, Ivry RB, Lawrenson CL, Louis ED, Lusk NA, Manto M, Meck WH, Mitoma H, Petter EA. Consensus paper: decoding the contributions of the cerebellum as a time machine. from neurons to clinical applications. Cerebellum 2019;18(2):266–286 PubMed

Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci 2018;19(6):338–350 PubMed PMC

D’Angelo E. Physiology of the cerebellum. Handb Clin Neurol 2018;154:85–108 PubMed

GBD 2017 US Neurological Disorders Collaborators, Feigin VL, Vos T, Alahdab F, Amit AML, Bärnighausen TW, Beghi E, Beheshti M, Chavan PP, Criqui MH, Desai R, Dhamminda Dharmaratne S, Dorsey ER, Wilder Eagan A, Elgendy IY, Filip I, Giampaoli S, Giussani G, Hafezi-Nejad N, Hole MK, Ikeda T, Owens Johnson C, Kalani R, Khatab K, Khubchandani J, Kim D, Koroshetz WJ, Krishnamoorthy V, Krishnamurthi RV, Liu X, Lo WD, Logroscino G, Mensah GA, Miller TR, Mohammed S, Mokdad AH, Moradi-Lakeh M, Morrison SD, Shivamurthy VKN, Naghavi M, Nichols E, Norrving B, Odell CM, Pupillo E, Radfar A, Roth GA, Shafieesabet A, Sheikh A, Sheikhbahaei S, Shin JI, Singh JA, Steiner TJ, Stovner LJ, Wallin MT, Weiss J, Wu C, Zunt JR, Adelson JD, Murray CJL. Burden of neurological disorders across the US from 1990-2017: a global burden of disease study. JAMA Neurol 2021;78(2):165–176 PubMed PMC

Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 2019;15(10):565–581 PubMed

Jacobs HIL, Hopkins DA, Mayrhofer HC, Bruner E, van Leeuwen FW, Raaijmakers W, Schmahmann JD. The cerebellum in Alzheimer’s disease: evaluating its role in cognitive decline. Brain 2018;141(1):37–47 PubMed

Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 2005;6(10):755–65 PubMed

Wencil EB, Coslett HB, Aguirre GK, Chatterjee A. Carving the clock at its component joints: neural bases for interval timing. J Neurophysiol 2010;104(1):160–8 PubMed PMC

Buonomano DV, Maass W. State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci 2009;10(2):113–25 PubMed

Filip P, Lošák J, Kašpárek T, Vaníček J, Bareš M. Neural network of predictive motor timing in the context of gender differences. Neural Plasticity 2016;2016 PubMed PMC

Filip P, Gallea C, Lehéricy S, Bertasi E, Popa T, Mareček R, et al. Disruption in cerebellar and basal ganglia networks during a visuospatial task in cervical dystonia. Mov Disord 2017;32(5):757–68 PubMed

Bares M, Husarova I, Lungu OV. Essential tremor, the cerebellum, and motor timing: towards integrating them into one complex entity. Tremor Other Hyperkinetic Mov 2012;2:1–9 PubMed PMC

Naccarato M, Calautti C, Jones PS, Day DJ, Carpenter TA, Baron JC. Does healthy aging effect the hemispheric activation balance during paced index-to-thumb opposition task? An fMRI study. Neuroimage 2006;32(3):1250–6 PubMed

Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH, et al. Neurophysiological correlates of age-related changes in human motor function. Neurology 2002;58(4):630. PubMed

Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Ann Rev Psychol 2009;60:173–96 PubMed PMC

Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, et al. Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 2001;22(4):581–94 PubMed

Bernard J, Nguyen AD, Hausman HK, Maldonado T, Ballard HK, Eakin SM, et al. Shaky scaffolding: age differences in cerebellar activation revealed through activation likelihood estimation meta-analysis. bioRxiv 2019;716530 PubMed PMC

Horvath S, Mah V, Lu AT, Woo JS, Choi OW, Jasinska AJ, et al. The cerebellum ages slowly according to the epigenetic clock. Aging (Albany NY) 2015;7(5):294. PubMed PMC

Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013;14(10):3156 PubMed PMC

Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, et al. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 1993;34(4):609–16 PubMed

Filip P, Gallea C, Lehéricy S, Lungu O, Bareš M. Neural scaffolding as the foundation for stable performance of aging cerebellum. Cerebellum 2019;18(3):500–10 PubMed

Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 2009;44(2):489–501 PubMed

Filip P, Lungu OV, Bareš M. Dystonia and the cerebellum: A new field of interest in movement disorders? Clin Neurophysiol 2013;124(7):1269–76 PubMed

Marcián V, Filip P, Bareš M, Brázdil M. Cerebellar dysfunction and ataxia in patients with epilepsy: coincidence, consequence, or cause? Tremor Other Hyperkinetic Mov 2016; 6:376. PubMed PMC

Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, Yamazaki T. Consensus Paper: the cerebellum’s role in movement and cognition. Cerebellum 2014; 13:151–77 PubMed PMC

Kansal K, Yang Z, Fishman AM, Sair HI, Ying SH, Jedynak BM, Onyike CU. Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration. Brain 2016;140. doi: 10.1093/brain/aww327 PubMed DOI PMC

Langner R, Eickhoff SB. Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention. Psychol Bull. 2013;139(4):870–900 PubMed PMC

E KH, Chen SH, Ho MH, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35(2):593–615 PubMed PMC

Roberts RD, Stankov L. Individual differences in speed of mental processing and human cognitive abilities: troward a taxonomic model. Learning Individ Diff 1999; 11. doi: 10.1016/S1041-6080(00)80007-2 DOI

Habeck C, Gazes Y, Razlighi Q, Steffener J, Brickman A, Barulli D, Stern Y. The reference ability neural network study: life-time stability of reference-ability neural networks derived from task maps of young adults. Neuroimage 2016; 125. doi: 10.1016/j.neuroimage.2015.10.077 PubMed DOI PMC

Habas C. Functional connectivity of the cognitive cerebellum. Frontiers System Neurosci 2021; 15. doi: 10.3389/fnsys.2021.642225 PubMed DOI PMC

Forn C, Ripollés P, Cruz-Gómez AJ, Belenguer A, González-Torre JA, Ávila C. Task-load manipulation in the symbol digit modalities test: an alternative measure of information processing speed. Brain Cognition 2013;82. doi: 10.1016/j.bandc.2013.04.003 PubMed DOI

Silva PHR, Spedo CT, Baldassarini CR, Benini CD, Ferreira DA, Barreira AA, Leoni RF. Brain functional and effective connectivity underlying the information processing speed assessed by the Symbol Digit Modalities Test. Neuroimage 2019; 184. doi: 10.1016/j.neuroimage.2018.09.080 PubMed DOI

Wong CHY, Liu J, Lee TMC, Tao J, Wong AWK, Chau BKH, Chan CCH. Fronto-cerebellar connectivity mediating cognitive processing speed. Neuroimage 2021;226. doi: 10.1016/j.neuroimage.2020.117556 PubMed DOI

Gao M, Wong CHY, Huang H, Shao R, Huang R, Chan CCH, Lee TMC. Connectome-based models can predict processing speed in older adults. Neuroimage 2020; 223. doi: 10.1016/j.neuroimage.2020.117290 PubMed DOI

Wong CHY, Liu J, Tao J, Chen LD, Yuan HL, Wong MNK, Xu YW, Lee TMC, Chan CCH. Causal influences of salience/cerebellar networks on dorsal attention network subserved age-related cognitive slowing. GeroScience 2022;10.1007/s11357-022-00686-1. Advance online publication. 10.1007/s11357-022-00686-1 PubMed DOI PMC

Bernard JA, Seidler RD. Moving forward: Age effects on the cerebellum underlie cognitive and motor declines. Neurosci Biobehav Rev 2014; 42. doi: 10.1016/j.neubiorev.2014.02.011 PubMed DOI PMC

Eckert MA. Slowing down: age-related neurobiological predictors of processing speed. Frontiers Neurosci 2011;5. doi: 10.3389/fnins.2011.00025 PubMed DOI PMC

Chapter Ramnani N. 10 Automatic and controlled processing in the corticocerebellar system. Progr Brain Res 2014;210. doi: 10.1016/B978-0-444-63356-9.00010-8 PubMed DOI

Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–434. PubMed

Pelzer EA, Hintzen A, Goldau M, von Cramon DY, Timmermann L, Tittgemeyer M. Cerebellar networks with basal ganglia: Feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci 2013;38:3106–3114. PubMed

Bernard JA, Peltier SJ, Wiggins JL, Jaeggi SM, Buschkuehl M, Fling BW, Kwak Y, Jonides J, Monk CS, Seidler RD. Disrupted cortico-cerebellar connectivity in older adults. Neuroimage 2013; 83: 103–119 PubMed PMC

Di Martino A, Scheres A, Margulies DS, Kelly AMC, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP. Functional connectivity of human striatum: a resting state fMRI study. Cereb Cortex 2008;18:2735–2747 PubMed

Hausman HK, Jackson TB, Goen JRM, Bernard JA. From synchrony to asynchrony: cerebellar-basal ganglia functional circuits in young and older adults. Cereb Cortex 2020;30:718–729 PubMed

Bernard JA, Seidler RD, Hassevoort KM, Benson BL, Welsh RC, Wiggins JL, Jaeggi SM, Buschkuehl M, Monk CS, Jonides J, Peltier SJ. Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Front Neuroanat. 2012. Aug 10;6:31. PubMed PMC

Jackson TB, Bernard JA. Cerebello-basal ganglia networks and cortical network global efficiency. Cerebellum 2022. Jun 3. doi: 10.1007/s12311-022-01418-z. PubMed DOI PMC

Klostermann EC, Braskie MN, Landau SM, O’Neil JP, Jagust WJ. Dopamine and frontostriatal networks in cognitive aging. Neurobiol Aging 2012; 33:623.e15–623.e24. PubMed PMC

Bernard JA, Ballard HK, Jackson TB. Cerebellar dentate connectivity across adulthood: a large-scale resting state functional connectivity investigation. Cereb Cortex Commun 2021;2 :tgab050. PubMed PMC

Carp J, Park J, Polk TA, Park DC. Age differences in neural distinctiveness revealed by multi-voxel pattern analysis. Neuroimage 2011;56:736–743 PubMed PMC

Festini SB, Bernard JA, Kwak Y, Peltier S, Bohnen NI, Müller MLTM, Dayalu P, Seidler RD. Altered cerebellar connectivity in parkinson’s patients ON and OFF L-DOPA medication. Front Hum Neurosci 2015;9:214. doi: 10.3389/fnhum.2015.00214 PubMed DOI PMC

Kelly C, De Zubicaray G, Di Martino A, Copland DA, Reiss PT, Klein DF, Castellanos FX, Milham MP, McMahon K. L-dopa modulates functional connectivity in striatal cognitive and motor networks: A double-blind placebo-controlled study. J Neurosci 2009;29:7364–7378 PubMed PMC

Fearnley JM, Lees AJ. Ageing and Parkinson’s disease : substantia nigra regional selectivity. Brain 1991;114:2283–2301. PubMed

Hogan MJ. The cerebellum in thought and action: a fronto-cerebellar aging hypothesis. New Ideas Psychol 2004;22, 97–125, doi:10.1016/j.newideapsych.2004.09.002 DOI

Hogan MJ, Staff RT, Bunting BD et al. Cerebellar brain volume accounts for variance in cognitive performance in older adults. Cortex 2011;47, 441–450, doi:10.1016/j.cortex.2010.01.001 PubMed DOI

Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 2004;16, 367–378, doi:10.1176/jnp.16.3.367 PubMed DOI

Han S, An Y, Carass A, Prince JL, Resnick SM. Longitudinal analysis of regional cerebellum volumes during normal aging. Neuroimage 2020;220, 117062, doi:10.1016/j.neuroimage.2020.117062 PubMed DOI PMC

Nadkarni NK, Nunley KA, Aizenstein H, et al. Association between cerebellar gray matter volumes, gait speed, and information-processing ability in older adults enrolled in the Health ABC study. J Gerontol A Biol Sci Med Sci 2014;69, 996–1003, doi:10.1093/gerona/glt151 PubMed DOI PMC

Kim HJ, Cheong EN, Jo S et al. The cerebellum could serve as a potential imaging biomarker of dementia conversion in patients with amyloid-negative amnestic mild cognitive impairment. Eur J Neurol 2021;28, 1520–1527, doi:10.1111/ene.14770 PubMed DOI

Andersen K, Andersen BB, Pakkenberg B. Stereological quantification of the cerebellum in patients with Alzheimer’s disease. Neurobiol Aging 2012;33, 197 e111–120, doi:10.1016/j.neurobiolaging.2010.06.013 PubMed DOI

Liang KJ, Carlson ES. Resistance, vulnerability and resilience: A review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol Learn Mem 2020;170, 106981, doi:10.1016/j.nlm.2019.01.004 PubMed DOI PMC

Locke TM, Soden ME, Miller SM, et al. Dopamine D1 receptor-positive neurons in the lateral nucleus of the cerebellum contribute to cognitive behavior. Biol Psychiatry 2018;84, 401–412, doi:10.1016/j.biopsych.2018.01.019 PubMed DOI PMC

Bernard JA, Leopold DR, Calhoun VD, Mittal VA. Regional cerebellar volume and cognitive function from adolescence to late middle age. Hum Brain Mapp 2015. ;36, 1102–1120, doi:10.1002/hbm.22690 PubMed DOI PMC

Romero JE, Coupe P, Lanuza E, et al. Toward a unified analysis of cerebellum maturation and aging across the entire lifespan: A MRI analysis. Hum Brain Mapp 2021;42, 1287–1303, doi:10.1002/hbm.25293 PubMed DOI PMC

Diedrichsen J, Maderwald S, Küper M, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage 2011;54, 1786–1794, doi:10.1016/j.neuroimage.2010.10.035 PubMed DOI

Gilissen EP, Leroy K, Yilmaz Z, et al. A neuronal aging pattern unique to humans and common chimpanzees. Brain Struct Funct 2016;221, 647–664, doi:10.1007/s00429-014-0931-5 PubMed DOI

Chen J, Cohen ML, Lerner AJ, Yang Y, Herrup K. DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer’s disease. Mol Neurodegener 2010;5, 60, doi:10.1186/1750-1326-5-60 PubMed DOI PMC

Bernard JA. Don’t forget the little brain: A framework for incorporating the cerebellum into the understanding of cognitive aging. Neurosci Biobehav Rev 2022;137, 104639, doi:10.1016/j.neubiorev.2022.104639 PubMed DOI PMC

Yao Q, Tang F, Wang Y, et al. Effect of cerebellum stimulation on cognitive recovery in patients with Alzheimer disease: A randomized clinical trial. Brain Stimul 2022;15, 910–920 doi:10.1016/j.brs.2022.06.004 PubMed DOI

Arleo A, Rondi-Reig L. Multimodal sensory integration and concurrent navigation strategies for spatial cognition in real and artificial organisms. J Integr Neurosci 2007;6:327–66 10.1142/s0219635207001593 PubMed DOI

Colombo D, Serino S, Tuena C, Pedroli E, Dakanalis A, Cipresso P, et al. Egocentric and allocentric spatial reference frames in aging: A systematic review. Neurosci Biobehav Rev 2017;80:605–21. 10.1016/j.neubiorev.2017.07.012 PubMed DOI

Lester AW, Moffat SD, Wiener JM, Barnes CA, Wolbers T. The aging navigational system. Neuron 2017;95:1019–35. 10.1016/j.neuron.2017.06.037 PubMed DOI PMC

Ramanoël S, Durteste M, Bécu M, Habas C, Arleo A. Differential brain activity in regions linked to visuospatial processing during landmark-based navigation in young and healthy older adults. Front Hum Neurosci 2020;14:552111. 10.3389/fnhum.2020.552111 PubMed DOI PMC

Igloi K, Doeller CF, Paradis A-L, Benchenane K, Berthoz A, Burgess N, et al. Interaction between hippocampus and cerebellum Crus I in sequence-based but not place-based navigation. Cereb Cortex 2015;25:4146–54. 10.1093/cercor/bhu132 PubMed DOI PMC

Hauser MFA, Heba S, Schmidt-Wilcke T, Tegenthoff M, Manahan-Vaughan D. Cerebellar-hippocampal processing in passive perception of visuospatial change: An ego- and allocentric axis? Hum Brain Mapp 2020;41:1153–66. 10.1002/hbm.24865 PubMed DOI PMC

Rondi-Reig L, Paradis A-L, Fallahnezhad M. A liaison brought to light: cerebellum-hippocampus, partners for spatial cognition. Cerebellum 2022;21:826–37. 10.1007/s12311-022-01422-3 PubMed DOI

Yuan P, Daugherty AM, Raz N. Turning bias in virtual spatial navigation: Age-related differences and neuroanatomical correlates. Biol Psychol 2014;96:8–19. 10.1016/j.biopsycho.2013.10.009 PubMed DOI PMC

Daugherty AM, Raz N. A virtual water maze revisited: two-year changes in navigation performance and their neural correlates in healthy adults. Neuroimage. 2017;146:492–506. 10.1016/j.neuroimage.2016.09.044 PubMed DOI PMC

Moffat SD, Elkins W, Resnick SM. Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiol Aging 2006;27:965–72. 10.1016/j.neurobiolaging.2005.05.011 PubMed DOI

Antonova E, Parslow D, Brammer M, Dawson GR, Jackson SHD, Morris RG. Age-related neural activity during allocentric spatial memory. Memory 2009;17(2):125–43. 10.1080/09658210802077348 PubMed DOI

Ramanoël S, Durteste M, Perot V, Habas C, Arleo A. An appraisal of the role of the neocerebellum for spatial navigation in healthy aging. Cerebellum 2023;22(2):235–239 PubMed PMC

Mirino P, Pecchinenda A, Boccia M, Capirchio A, D’Antonio F, Guariglia C. Cerebellum-cortical interaction in spatial navigation and its alteration in dementias. Brain Sci 2022;12. https://www.mdpi.com/2076-3425/12/5/523 PubMed PMC

Gellersen HM, Guell X, Sami S. Differential vulnerability of the cerebellum in healthy ageing and Alzheimer’s disease. Neuroimage Clin 2021;30:102605. 10.1016/j.nicl.2021.102605 PubMed DOI PMC

World Health Organization. Decade of healthy ageing: baseline report. World Health Organization, Geneva, Switzerland; 2021. https://cdn.who.int/media/docs/default-source/mca-documents/decade-of-healthy-ageing-baseline-report_06012021.pdf. Accessed 25 June 2021.

Panza F, Lozupone M, Solfrizzi V, Sardone R, Dibello V, Di Lena L, D’Urso F, Stallone R, Petruzzi M, Giannelli G, Quaranta N, Bellomo A, Greco A, Daniele A, Seripa D, Logroscino G. Different cognitive frailty models and health- and cognitive-related outcomes in older age: from epidemiology to prevention. J Alzheimers Dis 2018;62:993–1012. doi: 10.3233/JAD-170963 PubMed DOI PMC

Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairment—a review of the evidence and causal mechanisms. Ageing Res Rev 2013;12:840–851. doi: 10.1016/j.arr.2013.06.004 PubMed DOI

Zheng L, Li G, Gao D, Wang S, Meng X, Wang C, Yuan H, Chen L. Cognitive frailty as a predictor of dementia among older adults: A systematic review and meta-analysis. Arch Gerontol Geriatr 2020;87:103997. doi: 10.1016/j.archger.2019.103997 PubMed DOI

Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, Peng LN, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang T, Akishita M, Arai H. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc 2020;21:300–307.e2. doi: 10.1016/j.jamda.2019.12.012 PubMed DOI

Chung CP, Lee WJ, Peng LN, Shimada H, Tsai TF, Lin CP, Arai H, Chen LK. Physio-cognitive decline syndrome as the phenotype and treatment target of unhealthy aging. J Nutr Health Aging. 2021;25(10):1179–1189. doi: 10.1007/s12603-021-1693-4. PubMed DOI

Shimada H, Doi T, Lee S, Makizako H, Chen LK, Arai H. Cognitive Frailty Predicts Incident Dementia among Community-Dwelling Older People. J Clin Med 2018;7:250. doi: 10.3390/jcm7090250 PubMed DOI PMC

Tsutsumimoto K, Doi T, Nakakubo S, Kim M, Kurita S, Ishii H, Shimada H. Cognitive Frailty as a Risk Factor for Incident Disability During Late Life: A 24-Month Follow-Up Longitudinal Study. J Nutr Health Aging 2020;24:494–499. doi: 10.1007/s12603-020-1365-9 PubMed DOI

Chen WT, Chou KH, Liu LK, Lee PL, Lee WJ, Chen LK, Wang PN, Lin CP. Reduced cerebellar gray matter is a neural signature of physical frailty. Hum Brain Mapp 2015;36:3666–3676. doi: 10.1002/hbm.22870 PubMed DOI PMC

Liu LK, Chou KH, Hsu CCH, Peng LN, Lee WJ, Chen WT, Lin CP, Chung CP, Wang PN, Chen LK. Cerebellar-limbic neurocircuit is the novel biosignature of physio-cognitive decline syndrome. Aging (Albany NY) 2020;12:25319–25336. doi: 10.18632/aging.104135 PubMed DOI PMC

Nishita Y, Nakamura A, Kato T, Otsuka R, Iwata K, Tange C, Ando F, Ito K, Shimokata H, Arai H. Links Between Physical Frailty and Regional Gray Matter Volumes in Older Adults: A Voxel-Based Morphometry Study. J Am Med Dir Assoc 2019;20:1587–1592.e7. doi: 10.1016/j.jamda.2019.09.001 PubMed DOI

Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev. 2017. Aug;79:66–86. doi: 10.1016/j.neubiorev.2017.04.030. PubMed DOI

Tedesco AM, Chiricozzi FR, Clausi S , Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain 2011;134: 3672–3686 PubMed

Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 2005;15:1676–1689 PubMed

Damoiseaux JS, Beckman CF, Sanz Arigita EJ, Barkhof F, Scheltens Ph, Stam CJ, Rombouts SARB. Reduced resting-state brain activity in the “default network” in normal aging. Cerebral Cortex 2008;18:1856–1864. PubMed

Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL. Disruption of large-scale brain systems in advanced aging. Neuron 2007;56:924–935 PubMed PMC

Wu T, Zang Y, Wang L, Long X, Hallett M, Chen Y, Chan P. Aging influence on functional connectivity of the motor network in the resting state. Neurosci Lett 2007;42:164–168. PubMed

Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 2009;29:8586–8594 PubMed PMC

O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex 2010;20:953–965 PubMed PMC

Maguire EA, Frith CD. Aging affects the engagement of the hippocampus during autobiographical memory retrieval. Brain 2003;126:1511–1523 PubMed

Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer’s disease. Nat Rev Neurol 2011; 7: 137–152. doi: 10.1038/nrneurol.2011.2 PubMed DOI PMC

Camicioli RM. Mild motor impairment: motor change preceding mild cognitive impairment and dementia. Alzheimers Dementia 2010;6, S92. doi: 10.1016/j.jalz.2010.05.282 DOI

Bruchhage MMK, Correia S, Malloy P, Salloway S, Deoni S. Machine learning classification identifies cerebellar contributions to early and moderate cognitive decline in Alzheimer’s disease. Frontiers Aging Neurosci 2020;12, 524024 PubMed PMC

Ito M. The Cerebellum: Brain for an implicit self. Upper Saddle River: New Jersey, 2012

Stoodley CJ, Desmond JE, Schmahmann JD. Functional topography of the human cerebellum revealed by functional neuroimaging studies. In: Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer Netherlands, 2013, pp. 1717–1751

Leto K, Arancillo M, Becker EBE, Buffo A, Chiang C, et al. Consensus paper: cerebellar development. Cerebellum 2016;15(6), 789–828 PubMed PMC

Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN. Cerebellar development during childhood and adolescence: a longitudinal morphometric MRI study. NeuroImage 2010; 49(1), 67–70 PubMed PMC

Gauvrit T, Benderradji H, Buee L, Blum D, Vieau D. Early-Life Environment Influence on Late-Onset Alzheimer’s Disease. Frontiers Cell Dev Biol 2022;10, 834661–834661 PubMed PMC

Serra L, Cercignani M, Lenzi D, Perri R, Fadda L, Caltagirone C, Macaluso E, Bozzali M. Grey and white matter changes at different stages of Alzheimer’s disease. J Alzheimers Dis 2010;19(1):147–59 PubMed

Sullivan EV, Pfefferbaum A. Diffusion tensor imaging and aging. Neurosci Biobehav Rev 2006;30(6), 749–761 PubMed

Limperopolous C, Chilingaryan G, Sullivan N, Guizard N, Robertson RL, du Plessis AJ. Injury to the premature cerebellum: outcome is related to remote cortical development. Cereb Cortex 2014; 24(3), 728–736. PubMed PMC

Piller S. Blots on a field? Science 2022. ; 377 (6604). doi: 10.1126/science.ade0209. PubMed DOI

Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome The cerebellar cognitive affective syndrome. Brain 1998; 141(May 1998):561–79 PubMed

Schmahmann JD, Guell X, Stoodley CJ, Halko MA. The Theory and Neuroscience of Cerebellar Cognition. Annu Rev Neurosci 2019; 42(1): 337–364 PubMed

Frangou S, Modabbernia A, Williams SCR, Papachristou E, Doucet GE, et al. Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years. Hum. Brain Mapp 2022; 43(1):431–451 PubMed PMC

Hoogendam YY, van der Geest JN, van der Lijn F, van der Lugt A, Niessen WJ, et al. Determinants of cerebellar and cerebral volume in the general elderly population. Neurobiol Aging 2012;33(12):2774–2781 PubMed

Buhrmann A, Brands AMA, van der Grond J, Schilder C, van der Mast RC, et al. Cerebellar Grey Matter Volume in Older Persons Is Associated with Worse Cognitive Functioning. Cerebellum 2021;20:9–20 PubMed

Chaudhari K, Wang L, Kruse J, Winters A, Sumien N, et al. Early loss of cerebellar Purkinje cells in human and a transgenic mouse model of Alzheimer’s disease. Neurol Res 2021. ;43(7):570–581 PubMed PMC

Mavroudis I, Petridis F, Kazis D, Njau S, Costa V, Baloyannis S. Purkinje cells pathology in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 2019;34(7):439–49 PubMed PMC

Mavroudis IA, Fotiou DF, Adipepe LF, Manani MG, Njau SD, et al. Morphological changes of the human purkinje cells and deposition of neuritic plaques and neurofibrillary tangles on the cerebellar cortex of Alzheimer’s disease. Am J Alzheimers Dis Other Demen 2010;25(7):585–591 PubMed PMC

Guo CC, Tan R, Hodges JR, Hu X, Sami S, Hornberger M. Network-selective vulnerability of the human cerebellum to Alzheimer’s disease and frontotemporal dementia. Brain 2016;139(5):1527–38 PubMed PMC

Lin CY, Chen CH, Tom SE, Kuo SH. Cerebellar Volume Is Associated with Cognitive Decline in Mild Cognitive Impairment: Results from ADNI. Cerebellum 2020;19(2):217–225 PubMed PMC

Pagen LHG, Van De Ven VG, Gronenschild EHBM, Priovoulos N, Verhey FRJ, Jacobs HIL. 2020. Contributions of cerebro-cerebellar default mode connectivity patterns to memory performance in mild cognitive impairment. J Alzheimer Dis 2020;75(2):633–647 PubMed PMC

Guell X. Functional Gradients of the Cerebellum: a Review of Practical Applications. Cerebellum 2022; 21(6):1061–72 PubMed PMC

Guell X, Schmahmann J. Cerebellar Functional Anatomy: a Didactic Summary Based on Human fMRI Evidence. Cerebellum 2020;19:1–5 PubMed

Guell X, Schmahmann J, Gabrieli J, Ghosh S. Functional gradients of the cerebellum. Elife 2018; 7:e36652. PubMed PMC

Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82(4), 239–259 PubMed

Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. J Neuropathol Exp Neurol 2012;71:362–381 PubMed PMC

Cole G, Neal JW, Singhrao SK, Jasani B, Newman GR. The distribution of amyloid plaques in the cerebellum and brain stem in Down’s syndrome and Alzheimer’s disease: a light microscopical analysis. Acta Neuropathol 1993;85(5):542–552 PubMed

Ghisays V, Lopera F, Goradia DD, Protas HD, Malek-Ahmadi MH, et al. PET evidence of preclinical cerebellar amyloid plaque deposition in autosomal dominant Alzheimer’s disease-causing Presenilin-1 E280A mutation carriers. NeuroImage Clin 2021; 31:102749. PubMed PMC

Wang H, D’Andrea M, Nagele R. Cerebellar diffuse amyloid plaques are derived from dendritic Abeta42 accumulations in Purkinje cells. Neurobiol Aging 2002; 23(2):213–23 PubMed

Shimada H, Minatani S, Takeuchi J, Takeda A, Kawabe J, et al. Heavy tau burden with subtle amyloid beta accumulation in the cerebral cortex and cerebellum in a case of familial alzheimer’s disease with app osaka mutation. Int J Mol Sci. 2020; 21(12):4443. PubMed PMC

Jacobs HIL, Becker JA, Kwong K, Engels-Domínguez N, Prokopiou PC, et al. In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer’s disease pathology and cognitive decline. Sci Transl Med 2021;13(612):eabj2511. PubMed PMC

Del Cerro I, Villarreal MF, Abulafia C, Duarte-Abritta B, Sánchez SM, et al. Disrupted functional connectivity of the locus coeruleus in healthy adults with parental history of Alzheimer’s disease. J Psychiatr Res 2020;123:81–88 PubMed

Olivito G, Serra L, Marra C, Di Domenico C, Caltagirone C, et al. Cerebellar dentate nucleus functional connectivity with cerebral cortex in Alzheimer’s disease and memory: a seed-based approach. Neurobiol Aging 2020;89:32–40 PubMed

Tang F, Zhu D, Ma W, Yao Q, Li Q, Shi J. Differences changes in cerebellar functional connectivity between mild cognitive impairment and Alzheimer’s disease: a seed-based approach. Front Neurol 2021;12:645171. PubMed PMC

Zhou Z, Zhu R, Shao W, Zhang SJ, Wang L, et al. Changes in Resting-State Functional Connectivity of Cerebellum in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease: A Case-Control Study. Front Syst Neurosci 2021;15:596221. PubMed PMC

Woodruff-Pak DS. Eyeblink Classical Conditioning Differentiates Normal Aging from Alzheimer’s Disease. Integr. Physiol Behav Sci 2001;36(2):87–108 PubMed

Woodruff-Pak DS, Foy MR, Akopian GG, Lee KH, Zach J, et al. Differential effects and rates of normal aging in cerebellum and hippocampus. Proc Natl Acad Sci (USA) 2010;107(4): 1624–1629 PubMed PMC

Schmahmann JD, Weilburg JB and Sherman JC. The neuropsychiatry of the cerebellum - insights from the clinic. Cerebellum 2007: 6:254–67. doi 10.1080/14734220701490995 PubMed DOI

Depping MS, Schmitgen MM, Kubera KM and Wolf RC. Cerebellar Contributions to Major Depression. Front Psychiatry 2018: 9:634. doi 10.3389/fpsyt.2018.00634 PubMed DOI PMC

Grieve SM, Korgaonkar MS, Koslow SH, Gordon E and Williams LM. Widespread reductions in gray matter volume in depression. NeuroImage Clin 2013: 3:332–9. doi 10.1016/j.nicl.2013.08.016 PubMed DOI PMC

Lai CH and Wu YT. The gray matter alterations in major depressive disorder and panic disorder: Putative differences in the pathogenesis. J Affective Disord 2015: 186:1–6. doi 10.1016/j.jad.2015.07.022 PubMed DOI

Xu LY, Xu FC, Liu C, Ji YF, Wu JM, Wang Y, Wang HB and Yu YQ. Relationship between cerebellar structure and emotional memory in depression. Brain Behavior 2017: 7:e00738. doi 10.1002/brb3.738 PubMed DOI PMC

Zhang YN, Li H, Shen ZW, Xu C, Huang YJ and Wu RH. Healthy individuals vs patients with bipolar or unipolar depression in gray matter volume. World J Clin Cases 2021: 9:1304–17. doi 10.12998/wjcc.v9.i6.1304 PubMed DOI PMC

Depping MS, Wolf ND, Vasic N, Sambataro F, Hirjak D, Thomann PA and Wolf RC. Abnormal cerebellar volume in acute and remitted major depression. Progr Neuro-psychopharmacol Biol Psych 2016: 71:97–102. doi 10.1016/j.pnpbp.2016.06.005 PubMed DOI

Depping MS, Nolte HM, Hirjak D, Palm E, Hofer S, Stieltjes B, Maier-Hein K, Sambataro F, Wolf RC and Thomann PA. Cerebellar volume change in response to electroconvulsive therapy in patients with major depression. Progr Neuro-psychopharmacol Biol Psych 2017: 73:31–5. doi 10.1016/j.pnpbp.2016.09.007 PubMed DOI

Bogoian HR, King TZ, Turner JA, Semmel ES and Dotson VM. Linking depressive symptom dimensions to cerebellar subregion volumes in later life. Translat Psychiatry 2020: 10:201. doi 10.1038/s41398-020-00883-6 PubMed DOI PMC

Li J, Gong H, Xu H, Ding Q, He N, Huang Y, Jin Y, Zhang C, Voon V, Sun B, Yan F and Zhan S. Abnormal voxel-wise degree centrality in patients with late-life depression: a resting-state functional magnetic resonance imaging study. Front Psychiatry 2019: 10:1024. doi 10.3389/fpsyt.2019.01024 PubMed DOI PMC

Liu F, Hu M, Wang S, Guo W, Zhao J, Li J, Xun G, Long Z, Zhang J, Wang Y, Zeng L, Gao Q, Wooderson SC, Chen J and Chen H. Abnormal regional spontaneous neural activity in first-episode, treatment-naive patients with late-life depression: a resting-state fMRI study. Progr Neuro-psychopharmacol Biol Psych 2012: 39:326–31. doi 10.1016/j.pnpbp.2012.07.004 PubMed DOI

Avedisova AS, Samotaeva IS, Luzin RV, Semenovyh NS, Sergunova KA, Akzhigitov RG and Zakharova RV. [Apathy in depression: a morphometric analysis]. Zh Nevrol Psikhiatr Im S S Korsakova 2019: 119:141–7. doi 10.17116/jnevro2019119051141 PubMed DOI

Salo KI, Scharfen J, Wilden ID, Schubotz RI and Holling H. Confining the Concept of Vascular Depression to late-onset depression: a meta-analysis of MRI-defined hyperintensity burden in major depressive disorder and bipolar disorder. Front Psychol 2019: 10:1241. doi 10.3389/fpsyg.2019.01241 PubMed DOI PMC

Ataullah AHM, Naqvi IA. Cerebellar dysfunction. StatPearls. Treasure Island (FL); 2022, Aug 22.

Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell 2016;166:822–839. doi:10.1016/j.cell.2016.07.050 PubMed DOI PMC

Flurkey K, Papaconstantinou J, Miller RA, Harrison DE. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci (USA). 2001;98: 6736. PubMed PMC

Choi H, Joe S, Nam H. Development of tissue-specific age predictors using DNA methylation data. Genes 2019;10. doi:10.3390/genes10110888 PubMed DOI PMC

El Khoury LY, Gorrie-Stone T, Smart M, Hughes A, Bao Y, Andrayas A, et al. Systematic underestimation of the epigenetic clock and age acceleration in older subjects. Genome Biol 2019;20: 1–10 PubMed PMC

Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 2013;49: 359–367 PubMed PMC

Li X, Li W, Xu Y. Human age prediction based on DNA methylation using a gradient boosting regressor. Genes . 2018;9. doi:10.3390/genes9090424 PubMed DOI PMC

Bryant P, Elofsson A. The relationship between ageing and changes in the human blood and brain methylomes. NAR Genom Bioinform 2022;4. doi:10.1093/nargab/lqac001 PubMed DOI PMC

Reynolds LM, Taylor JR, Ding J, Lohman K, Johnson C, Siscovick D, et al. Age-related variations in the methylome associated with gene expression in human monocytes and T cells. Nat Commun 2014;5. doi:10.1038/ncomms6366 PubMed DOI PMC

Lu AT, Hannon E, Levine ME, Hao K, Crimmins EM, Lunnon K, et al. Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum. Nat Commun 2016;7. doi:10.1038/ncomms10561 PubMed DOI PMC

Jin Z, Liu Y. DNA methylation in human diseases. Genes Diseases 2018;5:1. PubMed PMC

Slieker RC, Relton CL, Gaunt TR, Slagboom PE, Heijmans BT. Age-related DNA methylation changes are tissue-specific with ELOVL2 promoter methylation as exception. Epigenetics Chromatin 2018;11: 1–11 PubMed PMC

Moore LD, Le T, Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacol 2012;38: 23–38 PubMed PMC

Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 2010;34: 721. PubMed PMC

Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 2019;11. doi:10.18632/aging.101684 PubMed DOI PMC

Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U. Trajectories of brain aging in middle-aged and older adults: regional and individual differences. Neuroimage 2010;51(2):501–11. 10.1016/j.neuroimage.2010.03.020 PubMed DOI PMC

Ramanoël S, Hoyau E, Kauffmann L, Renard F, Pichat C, Boudiaf N, et al. Gray matter volume and cognitive performance during normal aging. A voxel-based morphometry study. Front Aging Neurosci 2018;10:235. 10.3389/fnagi.2018.00235 PubMed DOI PMC

Nyberg L, Lövdén M, Riklund K, Lindenberger U, Bäckman L. Memory aging and brain maintenance. Trends Cogn Sci 2012;16(5):292–305. 10.1016/j.tics.2012.04.005 PubMed DOI

Verghese J, Lipton RB, Katz MJ, Hall CB, Derby CA, Kuslansky G, et al. Leisure activities and the risk of dementia in the elderly. N Engl J Med 2003;348(25):2508–16. 10.1056/NEJMoa022252 PubMed DOI

Zatorre RJ, Chen JL, Penhune VB. When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 2007;8(7):547–58. 10.1038/nrn2152 PubMed DOI

Hutchinson S, Lee LH, Gaab N, Schlaug G. Cerebellar volume of musicians. Cereb Cortex 2003;13(9):943–49. 10.1093/cercor/13.9.943 PubMed DOI

Paquette S, Fujii S, Li HC, Schlaug G. The cerebellum’s contribution to beat interval discrimination. Neuroimage 2017;163:177–82. 10.1016/j.neuroimage.2017.09.017 PubMed DOI PMC

Yamashita M, Ohsawa C, Suzuki M, Guo X, Sadakata M, Otsuka Y, et al. Neural advantages of older musicians involve the cerebellum: implications for healthy aging through lifelong musical instrument training. Front Hum Neurosci 2022;15:784026. 10.3389/fnhum.2021.784026 PubMed DOI PMC

Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2. J Neurol 2018;265(3):597–606. 10.1007/s00415-018-8738-6 PubMed DOI

Baumann S, Koeneke S, Schmidt CF, Meyer M, Lutz K, Jancke L. A network for audio-motor coordination in skilled pianists and non-musicians. Brain Res 2007;1161:65–78. 10.1016/j.brainres.2007.05.045 PubMed DOI

Hanakawa T, Immisch I, Toma K, Dimyan MA, Van Gelderen P, Hallett M. Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 2003;89(2):989–1002. 10.1152/jn.00132.2002 PubMed DOI

Meister IG, Krings T, Foltys H, Boroojerdi B, Müller M, Töpper R, et al. Playing piano in the mind—an fMRI study on music imagery and performance in pianists. Brain Res Cogn Brain Res 2004;19(3):219–28. 10.1016/j.cogbrainres.2003.12.005 PubMed DOI

Watanabe T, Yagishita S, Kikyo H. Memory of music: roles of right hippocampus and left inferior frontal gyrus. Neuroimage 2008;39(1):483–91. 10.1016/j.neuroimage.2007.08.024 PubMed DOI

Herholz SC, Coffey EBJ, Pantev C, Zatorre RJ. Dissociation of neural networks for predisposition and for training-related plasticity in auditory-motor learning. Cereb Cortex 2016;26(7):3125–34. 10.1093/cercor/bhv138 PubMed DOI PMC

Mitoma H, Manto M, Hampe CS. Time is cerebellum. Cerebellum 2018;17(4):387–391 PubMed PMC

Mitoma H, Buffo A, Gelfo F, Guell X, Fucà E, Kakei S, et al. Consensus paper. Cerebellar reserve: From cerebellar physiology to cerebellar disorders. Cerebellum 2020;19(1):131–153 PubMed PMC

Mitoma H, Kakei S, Yamaguchi K, Manto M. Physiology of cerebellar reserve: redundancy and plasticity of a modular machine. Int J Mol Sci 2021;22(9):4777. PubMed PMC

Manto M, Kakei S, Mitoma H. The critical need to develop tools assessing cerebellar reserve for the delivery and assessment of non-invasive cerebellar stimulation. Cerebellum Ataxias 2021;8(1):2. PubMed PMC

Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 1917;40:461–535

Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 2012;11(11):1006–1012 PubMed PMC

Stern Y. An approach to studying the neural correlates of reserve. Brain Imaging Behav 2017;11(2):410–416 PubMed PMC

Palmer SJ, Ng B, Abugharbieh R, Eigenraam L, McKeown MJ. Motor reserve and novel area recruitment: Amplitude and spatial characteristics of compensation in Parkinson’s disease. Eur J Neurosci 2009;29(11):2187–2196 PubMed

Colin F, Ris L, Godaux E. Neuroanatomy of the cerebellum. In The cerebellum and Its Disorders; Manto M, Pandolfo M, Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 6–29

Walloe S, Pakkenberg B, Fabricius K. Stereological estimation of total cell numbers in the human cerebral and cerebellar cortex. Front Hum Neurosci 2014; 8: 508. PubMed PMC

Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. Science 1995;269(5232):1880–1882 PubMed

Popa LS, Hewitt AL, Ebner TJ. Purkinje cell simple spike discharge encodes error signals consistent with a forward internal model. Cerebellum 2013;12(3):331–333 PubMed PMC

Tanaka H, Ishikawa T, Kakei S. Neural evidence of the cerebellum as a state predictor. Cerebellum 2019;18(3):349–371 PubMed PMC

Tanaka H, Ishikawa T, Lee J, Kakei S. The cerebro-cerebellum as a locus of forward model; A review. Front Syst Neurosci 2020;14:19. PubMed PMC

Wu HS, Sugihara I, Shinoda Y. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol 1999;411:97–118 PubMed

Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, et al. Cerebellar modules and their role as operational cerebellar processing units: a consensus paper [corrected]. Cerebellum 2018;17(5):654–682 PubMed PMC

De Zeeuw CI, Lisberger SG, Raymond JL. Diversity and dynamics in the cerebellum. Nat Neurosci 2021, 24, 160–167 PubMed

Hirano T. Around LTD hypothesis in motor learning. Cerebellum 2014;13(5):645–50 PubMed

Schmahmann JD. From movement to thought: Anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 1996;4(3):174–98 PubMed

Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol 1997;41:31–60 PubMed

Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 2003;23(23):8432–44 PubMed PMC

Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 2010;46(7): 831–844 PubMed PMC

Guell X, Hoche F, Schmahmann JD. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum 2015. Feb;14(1):50–8 PubMed

Thal DR, Rüb U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 2002;58(12):1791–800 PubMed

Blennow K, Bogdanovic N, Alafuzoff I, Ekman R, Davidsson P. Synaptic pathology in Alzheimer’s disease: Relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J Neural Transm 1996;103(5):603–618 PubMed

Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain 2013;136(3):696–709 PubMed PMC

Arnold Anteraper S, Guell X, D’Mello A, Joshi N, Whitfield- Gabrieli S, Joshi G. Disrupted cerebro-cerebellar intrinsic functional connectivity in young adults with high-functioning autism spectrum disorder: A data-driven, whole-brain, high temporal resolution fMRI study. Brain Connect 2019;9(1):48–59 PubMed

Moberget T, Doan NT, Alnæs D, Kaufmann T, Córdova-Palomera A, Lagerberg TV, et al. Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls. Mol Psychiatry 2018;23(6):1512–20 PubMed

Andersen BB, Gundersen HJ, Pakkenberg B. Aging of the human cerebellum: A stereological study. J Comp Neurol 2003;466(3): 356–365 PubMed

Fernández-Ruiz J, Hall C, Vergara P, Díaz R. Prism adaptation in normal aging: slower adaptation rate and larger aftereffect. Brain Res Cogn Brain Res 2009;9(3):223–226 PubMed

King BR, Fogel SM, Albouy G, Doyon J. Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults. Front Hum Neurosci 2013;7: 142. PubMed PMC

Hashimoto Y, Honda T, Matsumura K, Nakao M, Soga K, Katano K, et al. Quantitative evaluation of human cerebellum-dependent motor learning through prism adaptation of hand-reaching movement. PLoS ONE 2015;10(3):e0119376. PubMed PMC

Van Dun K, Mitoma H, Manto M. Cerebellar cortex as a therapeutic target for neurostimulation. Cerebellum 2018;17(6);777–787 PubMed

Nuzzo C, Ruggiero F, Cortese F, Cova I, Priori A, Ferrucci R. Non-invasive cerebellar stimulation in cerebellar disorders. CNS Neurol Disord Drug Targets 2018;17(3):193–198 PubMed

Sadeghihassanabadi F, Frey BM, Backhaus W, Choe CU, Zittel S, Schön G, Bönstrup M, Cheng B, Thomalla G, Gerloff C, Schulz R. Structural cerebellar reserve positively influences outcome after severe stroke. Brain Commun 2022. Aug 4;4(6):fcac203. PubMed PMC

Pini L, Manenti R, Cotelli M, Pizzini FB, Frisoni GB, Pievani M. Non-invasive brain stimulation in dementia: a complex network story. NDD [Internet]. 2018. [cited 2019 May 28];18:281–301. Available from: https://www.karger.com/Article/FullText/495945 PubMed

Koppelmans V, Hoogendam YY, Hirsiger S, Mérillat S, Jäncke L, Seidler RD. Regional cerebellar volumetric correlates of manual motor and cognitive function. Brain Struct Function 2017;222:1929–44. 10.1007/s00429-016-1317-7 PubMed DOI

Reuter-Lorenz PA, Park DC. Human neuroscience and the aging mind: a new look at old problems. J Gerontol B Psychol Sci Soc Sci 2010;65B:405–15 PubMed PMC

Holviala J, Kraemer WJ, Sillanpää E, Karppinen H, Avela J, Kauhanen A, et al. Effects of strength, endurance and combined training on muscle strength, walking speed and dynamic balance in aging men. Eur J Appl Physiol 2012;112:1335–47. 10.1007/s00421-011-2089-7 PubMed DOI

Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiol 2016;127:1031–48 PubMed PMC

Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol (Lond) 2000;527:633–9 PubMed PMC

Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 2005;166:23–30 PubMed

Lindberg PG, Verneau M, Boterff QL, Cuenca-Maia M, Baron J-C, Maier MA. Age- and task-dependent effects of cerebellar tDCS on manual dexterity and motor learning–A preliminary study. Neurophysiologie Clin 2022;52(5):354–365 PubMed

Yosephi MH, Ehsani F, Zoghi M, Jaberzadeh S. Multi-session anodal tDCS enhances the effects of postural training on balance and postural stability in older adults with high fall risk: Primary motor cortex versus cerebellar stimulation. Brain Stim 2018;11:1239–50 PubMed

Hardwick RM, Celnik PA. Cerebellar direct current stimulation enhances motor learning in older adults. Neurobiol Aging 2014;35:2217–21 PubMed PMC

Weightman M, Brittain J-S, Punt D, Miall RC, Jenkinson N. Targeted tDCS selectively improves motor adaptation with the proximal and distal upper limb. Brain Stim 2020;13:707–16 PubMed

Hulst T, John L, Küper M, van der Geest JN, Göricke SL, Donchin O, et al. Cerebellar patients do not benefit from cerebellar or M1 transcranial direct current stimulation during force-field reaching adaptation. J Neurophysiol 2017;118:732–48 PubMed PMC

Rauscher M, Yavari F, Batsikadze G, Ludolph N, Ilg W, Nitsche MA, et al. Lack of cerebellar tDCS effects on learning of a complex whole body dynamic balance task in middle-aged (50–65 years) adults. Neurol Res Pract 2020;2:38. PubMed PMC

Oldrati V, Schutter DJLG. Targeting the Human Cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum 2018;17:228–36 PubMed PMC

Raz N, Torres IJ, Spencer WD, White K, Acker JD. Age-related regional differences in cerebellar vermis observed in vivo. Arch Neurol 1992;49:412–6 PubMed

Shah SA, Doraiswamy PM, Husain MM, Figiel GS, Boyko OB, McDonald WM, et al. Assessment of posterior fossa structures with midsagittal MRI: The effects of age. Neurobiol Aging 1991;12:371–4 PubMed

Abe O, Yamasue H, Aoki S, Suga M, Yamada H, Kasai K, et al. Aging in the CNS: Comparison of gray/white matter volume and diffusion tensor data. Neurobiol Aging 2008;29:102–16 PubMed

Lee JY, Lyoo IK, Kim SU, Jang HS, Lee DW, Jeon HJ, et al. Intellect declines in healthy elderly subjects and cerebellum. Psychiatry Clin Neurosci 2005;59:45–51 PubMed

Paul R, Grieve SM, Chaudary B, Gordon N, Lawrence J, Cooper N, et al. Relative contributions of the cerebellar vermis and prefrontal lobe volumes on cognitive function across the adult lifespan. Neurobiol Aging 2009;30:457–65 PubMed

Donchin O, Rabe K, Diedrichsen J, Lally N, Schoch B, Gizewski ER, et al. Cerebellar regions involved in adaptation to force field and visuomotor perturbation. J Neurophysiol 2012;107:134–47 PubMed

Parazzini M, Rossi E, Ferrucci R, Liorni I, Priori A, Ravazzani P. Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clin Neurophysiol 2014;125:577–84 PubMed

Ferrucci R, Cortese F, Priori A. Cerebellar tDCS: How to Do It. Cerebellum 2015;14:27–30 PubMed PMC

Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific non-invasive direct current stimulation. J Neurosci 2009;29:9115–22 PubMed PMC

Galea JM, Vazquez A, Pasricha N, Orban de Xivry J-J, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebral Cortex 2011;21:1761–70 PubMed PMC

Rampersad SM, Janssen AM, Lucka F, Aydin Ü, Lanfer B, Lew S, et al. Simulating Transcranial Direct Current Stimulation With a Detailed Anisotropic Human Head Model. IEEE Trans Neural Syst Rehab Eng 2014;22:441–52 PubMed

Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, et al. Cerebellar transcranial direct current stimulation (ctDCS): a novel approach to understanding cerebellar function in health and disease. Neuroscientist 2016;22:83–97 PubMed PMC

Rezaee Z, Dutta A. Cerebellar Lobules Optimal Stimulation (CLOS): a computational pipeline to optimize cerebellar lobule-specific electric field distribution. Frontiers Neurosci 2019;13 :266 PubMed PMC

Summers JJ, Kang N, Cauraugh JH. Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta- analysis. Ageing Res Rev 2016;25:42–54 PubMed

Habich A, Fehér KD, Antonenko D, Boraxbekk C-J, Flöel A, Nissen C, et al. Stimulating aged brains with transcranial direct current stimulation: opportunities and challenges. Psychiatry Res: Neuroimaging. 2020;306:111179. PubMed

Klaus J, Schutter DJLG. Electrode montage-dependent intracranial variability in electric fields induced by cerebellar transcranial direct current stimulation. Sci Rep 2021;11:22183. PubMed PMC

Rezaee Z, Dutta A. Lobule-specific dosage considerations for cerebellar transcranial direct current stimulation during healthy aging: a computational modeling study using age-specific magnetic resonance imaging templates. Neuromodulation 2020;23:341–65 PubMed

Mahdavi S, Towhidkhah F. Computational human head models of tDCS: Influence of brain atrophy on current density distribution. Brain Stim 2018;11:104–7 PubMed

Damoiseaux S Jessica. Resting-state fMRI as a biomarker for Alzheimer’s disease? Alzheimers Res Ther 2012; 4(2): 8. PubMed PMC

De Sanctis P, Solis-Escalante T, Seeber M, Wagner J, Ferris DP, Gramann K. Time to move: Brain dynamics underlying natural action and cognition. Eur J Neurosci 2021; 54(12), 8075–8080 PubMed PMC

Delaux A, de Saint Aubert JB, Ramanoël S, Bécu M, Gehrke L, Klug M, Chavarriaga R, Sahel JA, Gramann K, Arleo A. Mobile brain/body imaging of landmark-based navigation with high-density EEG. Eur J Neurosci 2021;54(12), 8256–8282 PubMed PMC

Rocco G, Delaire E, Ramanoël S, Meste O, Magnié-Mauro MN, Grova C, Lebrun J. Densifying optodes montage to enhance cerebellar fNRIS. The Society for functional Near Infrared Spectroscopy (fNIRS), Boston, USA, 2022.

Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, Zago S, Priori A. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot 2012;26:786–799 PubMed PMC

To WT, De Ridder D, Hart J Jr, Vanneste S. Changing brain networks through non-invasive neuromodulation. Front Hum Neurosci 2018;12:128. PubMed PMC

Maldonado T, Jackson TB, Bernard JA. Anodal cerebellar stimulation increases cortical activation: Evidence for cerebellar scaffolding of cortical processing. Hum Brain Mapp 2023;44(4):1666–1682 PubMed PMC

Beuriat PA, Cristofori I, Gordon B, Grafman J. The shifting role of the cerebellum in executive, emotional and social processing across the lifespan. Behav Brain Funct 2022;18(1):6. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...