Neural Network of Predictive Motor Timing in the Context of Gender Differences
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27019753
PubMed Central
PMC4785273
DOI
10.1155/2016/2073454
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku MeSH
- mozek fyziologie MeSH
- nervové dráhy fyziologie MeSH
- vnímání času fyziologie MeSH
- vnímání pohybu fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Time perception is an essential part of our everyday lives, in both the prospective and the retrospective domains. However, our knowledge of temporal processing is mainly limited to the networks responsible for comparing or maintaining specific intervals or frequencies. In the presented fMRI study, we sought to characterize the neural nodes engaged specifically in predictive temporal analysis, the estimation of the future position of an object with varying movement parameters, and the contingent neuroanatomical signature of differences in behavioral performance between genders. The established dominant cerebellar engagement offers novel evidence in favor of a pivotal role of this structure in predictive short-term timing, overshadowing the basal ganglia reported together with the frontal cortex as dominant in retrospective temporal processing in the subsecond spectrum. Furthermore, we discovered lower performance in this task and massively increased cerebellar activity in women compared to men, indicative of strategy differences between the genders. This promotes the view that predictive temporal computing utilizes comparable structures in the retrospective timing processes, but with a definite dominance of the cerebellum.
Zobrazit více v PubMed
Buhusi C. V., Meck W. H. What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience. 2005;6(10):755–765. doi: 10.1038/nrn1764. PubMed DOI
Ivry R. B., Schlerf J. E. Dedicated and intrinsic models of time perception. Trends in Cognitive Sciences. 2008;12(7):273–280. doi: 10.1016/j.tics.2008.04.002. PubMed DOI PMC
Wiener M., Turkeltaub P., Coslett H. B. The image of time: a voxel-wise meta-analysis. NeuroImage. 2010;49(2):1728–1740. doi: 10.1016/j.neuroimage.2009.09.064. PubMed DOI
Wencil E. B., Coslett H. B., Aguirre G. K., Chatterjee A. Carving the clock at its component joints: neural bases for interval timing. Journal of Neurophysiology. 2010;104(1):160–168. doi: 10.1152/jn.00029.2009. PubMed DOI PMC
Meck W. H., Penney T. B., Pouthas V. Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology. 2008;18(2):145–152. doi: 10.1016/j.conb.2008.08.002. PubMed DOI
Gibbon J. Scalar expectancy theory and Weber's law in animal timing. Psychological Review. 1977;84(3):279–325. doi: 10.1037/0033-295X.84.3.279. DOI
Treisman M. Temporal discrimination and the indifference interval: implications for a model of the ‘internal clock’. Psychological Monographs. 1963;77(13):1–31. PubMed
Buhusi C. V., Meck W. H. Relativity theory and time perception: single or multiple clocks? PLoS ONE. 2009;4(7) doi: 10.1371/journal.pone.0006268.e6268 PubMed DOI PMC
Buonomano D. V., Maass W. State-dependent computations: spatiotemporal processing in cortical networks. Nature Reviews Neuroscience. 2009;10(2):113–125. doi: 10.1038/nrn2558. PubMed DOI
Karmarkar U. R., Buonomano D. V. Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007;53(3):427–438. doi: 10.1016/j.neuron.2007.01.006. PubMed DOI PMC
Bueti D., Macaluso E. Physiological correlates of subjective time: evidence for the temporal accumulator hypothesis. NeuroImage. 2011;57(3):1251–1263. doi: 10.1016/j.neuroimage.2011.05.014. PubMed DOI
Spencer R. M. C., Karmarkar U., Ivry R. B. Evaluating dedicated and intrinsic models of temporal encoding by varying context. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009;364(1525):1853–1863. doi: 10.1098/rstb.2009.0024. PubMed DOI PMC
Durstewitz D. Self-organizing neural integrator predicts interval times through climbing activity. The Journal of Neuroscience. 2003;23(12):5342–5353. PubMed PMC
Merchant H., Zarco W., Prado L. Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. Journal of Neurophysiology. 2008;99(2):939–949. doi: 10.1152/jn.01225.2007. PubMed DOI
Lewis P. A., Miall R. C. Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia. 2003;41(12):1583–1592. doi: 10.1016/S0028-3932(03)00118-0. PubMed DOI
Morillon B., Kell C. A., Giraud A.-L. Three stages and four neural systems in time estimation. Journal of Neuroscience. 2009;29(47):14803–14811. doi: 10.1523/JNEUROSCI.3222-09.2009. PubMed DOI PMC
Ivry R. B., Keele S. W. Timing functions of the cerebellum. Journal of Cognitive Neuroscience. 1989;1(2):136–152. doi: 10.1162/jocn.1989.1.2.136. PubMed DOI
Mangels J. A., Ivry R. B., Shimizu N. Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Cognitive Brain Research. 1998;7(1):15–39. doi: 10.1016/s0926-6410(98)00005-6. PubMed DOI
Ackermann H., Gräber S., Hertrich I., Daum I. Categorical speech perception in cerebellar disorders. Brain and Language. 1997;60(2):323–331. doi: 10.1006/brln.1997.1826. PubMed DOI
Bares M., Lungu O., Liu T., Waechter T., Gomez C. M., Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Experimental Brain Research. 2007;180(2):355–365. doi: 10.1007/s00221-007-0857-8. PubMed DOI
Bares M., Lungu O. V., Liu T., Waechter T., Gomez C. M., Ashe J. The neural substrate of predictive motor timing in spinocerebellar ataxia. Cerebellum. 2011;10(2):233–244. doi: 10.1007/s12311-010-0237-y. PubMed DOI
Filip P., Lungu O. V., Shaw D. J., Kasparek T., Bareš M. The mechanisms of movement control and time estimation in cervical dystonia patients. Neural Plasticity. 2013;2013:10. doi: 10.1155/2013/908741.908741 PubMed DOI PMC
Hayashi M. J., Kanai R., Tanabe H. C., et al. Interaction of numerosity and time in prefrontal and parietal cortex. Journal of Neuroscience. 2013;33(3):883–893. doi: 10.1523/jneurosci.6257-11.2013. PubMed DOI PMC
Bueti D., Walsh V., Frith C., Rees G. Different brain circuits underlie motor and perceptual representations of temporal intervals. Journal of Cognitive Neuroscience. 2008;20(2):204–214. doi: 10.1162/jocn.2008.20.2.204. PubMed DOI
Oullier O., Jantzen K. J., Steinberg F. L., Kelso J. A. S. Neural substrates of real and imagined sensorimotor coordination. Cerebral Cortex. 2005;15(7):975–985. doi: 10.1093/cercor/bhh198. PubMed DOI
Raz N., Gunning-Dixon F., Head D., Williamson A., Acker J. D. Age and sex differences in the cerebellum and the ventral pons: a prospective MR study of healthy adults. American Journal of Neuroradiology. 2001;22(6):1161–1167. PubMed PMC
Volkow N. D., Wang G.-J., Fowler J. S., et al. Gender differences in cerebellar metabolism: test-retest reproducibility. The American Journal of Psychiatry. 1997;154(1):119–121. doi: 10.1176/ajp.154.1.119. PubMed DOI
Maccoby E. E., Jacklin C. N. The Psychology of Sex Differences. Palo Alto, Calif, USA: Stanford University Press; 1974.
Rosselli M., Ardila A., Matute E., Inozemtseva O. Gender differences and cognitive correlates of mathematical skills in school-aged children. Child Neuropsychology. 2009;15(3):216–231. doi: 10.1080/09297040802195205. PubMed DOI
Joseph R. The evolution of sex differences in language, sexuality, and visual-spatial skills. Archives of Sexual Behavior. 2000;29(1):35–66. doi: 10.1023/a:1001834404611. PubMed DOI
Noble C. E., Baker B. L., Jones T. A. Age and sex parameters in psychomotor learning. Perceptual and Motor Skills. 1964;19(3):935–945. doi: 10.2466/pms.1964.19.3.935. PubMed DOI
Adam J. J. Gender differences in choice reaction time: evidence for differential strategies. Ergonomics. 1999;42(2):327–335. doi: 10.1080/001401399185685. PubMed DOI
Misra N., Mahajan K. K., Maini B. K. Comparative study of visual and auditory reaction time of hands and feet in males and females. Indian Journal of Physiology and Pharmacology. 1985;29(4):213–218. PubMed
Der G., Deary I. J. Age and sex differences in reaction time in adulthood: results from the United Kingdom Health and Lifestyle Survey. Psychology and Aging. 2006;21(1):62–73. doi: 10.1037/0882-7974.21.1.62. PubMed DOI
Oldfield R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113. doi: 10.1016/0028-3932(71)90067-4. PubMed DOI
Husárová I., Lungu O. V., Mareček R., et al. Functional imaging of the cerebellum and basal ganglia during predictive motor timing in early Parkinson's disease. Journal of Neuroimaging. 2014;24(1):45–53. doi: 10.1111/j.1552-6569.2011.00663.x. PubMed DOI
Husárová I., Mikl M., Lungu O. V., Mareček R., Vaníček J., Bareš M. Similar circuits but different connectivity patterns between the cerebellum, basal ganglia, and supplementary motor area in early Parkinson's disease patients and controls during predictive motor timing. Journal of Neuroimaging. 2013;23(4):452–462. doi: 10.1111/jon.12030. PubMed DOI
Bareš M., Lungu O. V., Husárová I., Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease. Cerebellum. 2010;9(1):124–135. doi: 10.1007/s12311-009-0133-5. PubMed DOI
Lee K.-H., Egleston P. N., Brown W. H., Gregory A. N., Barker A. T., Woodruff P. W. R. The role of the cerebellum in subsecond time perception: evidence from repetitive transcranial magnetic stimulation. Journal of Cognitive Neuroscience. 2007;19(1):147–157. doi: 10.1162/jocn.2007.19.1.147. PubMed DOI
Del Olmo M. F., Cheeran B., Koch G., Rothwell J. C. Role of the cerebellum in externally paced rhythmic finger movements. Journal of Neurophysiology. 2007;98(1):145–152. doi: 10.1152/jn.01088.2006. PubMed DOI
Koch G., Oliveri M., Torriero S., Salerno S., Gerfo E. L., Caltagirone C. Repetitive TMS of cerebellum interferes with millisecond time processing. Experimental Brain Research. 2007;179(2):291–299. doi: 10.1007/s00221-006-0791-1. PubMed DOI
Penhune V. B., Zatorre R. J., Evans A. C. Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction. Journal of Cognitive Neuroscience. 1998;10(6):752–765. doi: 10.1162/089892998563149. PubMed DOI
Mayville J. M., Fuchs A., Ding M., Cheyne D., Deecke L., Kelso J. A. S. Event-related changes in neuromagnetic activity associated with syncopation and synchronization timing tasks. Human Brain Mapping. 2001;14(2):65–80. doi: 10.1002/hbm.1042. PubMed DOI PMC
Schubotz R. I., Friederici A. D., Von Cramon D. Y. Time perception and motor timing: a common cortical and subcortical basis revealed by fMRI. NeuroImage. 2000;11(1):1–12. doi: 10.1006/nimg.1999.0514. PubMed DOI
Wu X., Ashe J., Bushara K. O. Role of olivocerebellar system in timing without awareness. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(33):13818–13822. doi: 10.1073/pnas.1104096108. PubMed DOI PMC
Wu X., Nestrasil I., Ashe J., Tuite P., Bushara K. Inferior olive response to passive tactile and visual stimulation with variable interstimulus intervals. Cerebellum. 2010;9(4):598–602. doi: 10.1007/s12311-010-0203-8. PubMed DOI
Ivry R. B., Spencer R. M., Zelaznik H. N., Diedrichsen J. The cerebellum and event timing. Annals of the New York Academy of Sciences. 2002;978:302–317. doi: 10.1111/j.1749-6632.2002.tb07576.x. PubMed DOI
Coull J. T., Nobre A. C. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. The Journal of Neuroscience. 1998;18(18):7426–7435. PubMed PMC
Assmus A., Marshall J. C., Ritzl A., Noth J., Zilles K., Fink G. R. Left inferior parietal cortex integrates time and space during collision judgments. NeuroImage. 2003;20(1):S82–S88. doi: 10.1016/j.neuroimage.2003.09.025. PubMed DOI
O'Reilly J. X., Mesulam M. M., Nobre A. C. The cerebellum predicts the timing of perceptual events. Journal of Neuroscience. 2008;28(9):2252–2260. doi: 10.1523/JNEUROSCI.2742-07.2008. PubMed DOI PMC
Rao S. M., Mayer A. R., Harrington D. L. The evolution of brain activation during temporal processing. Nature Neuroscience. 2001;4(3):317–323. doi: 10.1038/85191. PubMed DOI
Coull J. T., Nazarian B., Vidal F. Timing, storage, and comparison of stimulus duration engage discrete anatomical components of a perceptual timing network. Journal of Cognitive Neuroscience. 2008;20(12):2185–2197. doi: 10.1162/jocn.2008.20153. PubMed DOI
Ferrandez A. M., Hugueville L., Lehéricy S., Poline J. B., Marsault C., Pouthas V. Basal ganglia and supplementary motor area subtend duration perception: an fMRI study. NeuroImage. 2003;19(4):1532–1544. doi: 10.1016/s1053-8119(03)00159-9. PubMed DOI
Bueti D., van Dongen E. V., Walsh V. The role of superior temporal cortex in auditory timing. PLoS ONE. 2008;3(6) doi: 10.1371/journal.pone.0002481.e2481 PubMed DOI PMC
Kanai R., Lloyd H., Bueti D., Walsh V. Modality-independent role of the primary auditory cortex in time estimation. Experimental Brain Research. 2011;209(3):465–471. doi: 10.1007/s00221-011-2577-3. PubMed DOI
Giedd J. N., Snell J. W., Lange N., et al. Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cerebral Cortex. 1996;6(4):551–560. doi: 10.1093/cercor/6.4.551. PubMed DOI
Raz N. The Handbook of Aging and Cognition. 2nd. Lawrence Erlbaum Associates Publishers; 2000. Aging of the brain and its impact on cognitive performance: integration of structural and functional findings; pp. 1–90.
Nopoulos P., Flaum M., O'Leary D., Andreasen N. C. Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Research. 2000;98(1):1–13. doi: 10.1016/s0925-4927(99)00044-x. PubMed DOI
Henery C. C., Mayhew T. M. The cerebrum and cerebellum of the fixed human brain: efficient and unbiased estimates of volumes and cortical surface areas. Journal of Anatomy. 1989;167:167–180. PubMed PMC
Gur R. C., Mozley L. H., Mozley P. D., et al. Sex differences in regional cerebral glucose metabolism during a resting state. Science. 1995;267(5197):528–531. doi: 10.1126/science.7824953. PubMed DOI
Kawachi T., Ishii K., Sakamoto S., Matsui M., Mori T., Sasaki M. Gender differences in cerebral glucose metabolism: a PET study. Journal of the Neurological Sciences. 2002;199(1-2):79–83. doi: 10.1016/s0022-510x(02)00112-0. PubMed DOI
Garn C. L., Allen M. D., Larsen J. D. An fMRI study of sex differences in brain activation during object naming. Cortex. 2009;45(5):610–618. doi: 10.1016/j.cortex.2008.02.004. PubMed DOI
Gur R. C., Alsop D., Glahn D., et al. An fMRI study of sex differences in regional activation to a verbal and a spatial task. Brain and Language. 2000;74(2):157–170. doi: 10.1006/brln.2000.2325. PubMed DOI
Šveljo O. B., Koprivšek K. M., Lučić M. A., Prvulović M. B., Ćulić M. Gender differences in brain areas involved in silent counting by means of fMRI. Nonlinear Biomedical Physics. 2010;4(supplement 1, article S2) doi: 10.1186/1753-4631-4-2. PubMed DOI PMC
Daum I., Ackermann H., Schugens M. M., Reimold C., Dichgans J., Birbaumer N. The cerebellum and cognitive functions in humans. Behavioral Neuroscience. 1993;107(3):411–419. doi: 10.1037/0735-7044.107.3.411. PubMed DOI
Watson P. J. Nonmotor functions of the cerebellum. Psychological Bulletin. 1978;85(5):944–967. doi: 10.1037/0033-2909.85.5.944. PubMed DOI
Strick P. L., Dum R. P., Fiez J. A. Cerebellum and nonmotor function. Annual Review of Neuroscience. 2009;32:413–434. doi: 10.1146/annurev.neuro.31.060407.125606. PubMed DOI
Consensus Paper: Cerebellum and Ageing
Neural Scaffolding as the Foundation for Stable Performance of Aging Cerebellum
The mystery of the cerebellum: clues from experimental and clinical observations