Neural Network of Predictive Motor Timing in the Context of Gender Differences

. 2016 ; 2016 () : 2073454. [epub] 20160225

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27019753

Time perception is an essential part of our everyday lives, in both the prospective and the retrospective domains. However, our knowledge of temporal processing is mainly limited to the networks responsible for comparing or maintaining specific intervals or frequencies. In the presented fMRI study, we sought to characterize the neural nodes engaged specifically in predictive temporal analysis, the estimation of the future position of an object with varying movement parameters, and the contingent neuroanatomical signature of differences in behavioral performance between genders. The established dominant cerebellar engagement offers novel evidence in favor of a pivotal role of this structure in predictive short-term timing, overshadowing the basal ganglia reported together with the frontal cortex as dominant in retrospective temporal processing in the subsecond spectrum. Furthermore, we discovered lower performance in this task and massively increased cerebellar activity in women compared to men, indicative of strategy differences between the genders. This promotes the view that predictive temporal computing utilizes comparable structures in the retrospective timing processes, but with a definite dominance of the cerebellum.

Zobrazit více v PubMed

Buhusi C. V., Meck W. H. What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience. 2005;6(10):755–765. doi: 10.1038/nrn1764. PubMed DOI

Ivry R. B., Schlerf J. E. Dedicated and intrinsic models of time perception. Trends in Cognitive Sciences. 2008;12(7):273–280. doi: 10.1016/j.tics.2008.04.002. PubMed DOI PMC

Wiener M., Turkeltaub P., Coslett H. B. The image of time: a voxel-wise meta-analysis. NeuroImage. 2010;49(2):1728–1740. doi: 10.1016/j.neuroimage.2009.09.064. PubMed DOI

Wencil E. B., Coslett H. B., Aguirre G. K., Chatterjee A. Carving the clock at its component joints: neural bases for interval timing. Journal of Neurophysiology. 2010;104(1):160–168. doi: 10.1152/jn.00029.2009. PubMed DOI PMC

Meck W. H., Penney T. B., Pouthas V. Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology. 2008;18(2):145–152. doi: 10.1016/j.conb.2008.08.002. PubMed DOI

Gibbon J. Scalar expectancy theory and Weber's law in animal timing. Psychological Review. 1977;84(3):279–325. doi: 10.1037/0033-295X.84.3.279. DOI

Treisman M. Temporal discrimination and the indifference interval: implications for a model of the ‘internal clock’. Psychological Monographs. 1963;77(13):1–31. PubMed

Buhusi C. V., Meck W. H. Relativity theory and time perception: single or multiple clocks? PLoS ONE. 2009;4(7) doi: 10.1371/journal.pone.0006268.e6268 PubMed DOI PMC

Buonomano D. V., Maass W. State-dependent computations: spatiotemporal processing in cortical networks. Nature Reviews Neuroscience. 2009;10(2):113–125. doi: 10.1038/nrn2558. PubMed DOI

Karmarkar U. R., Buonomano D. V. Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007;53(3):427–438. doi: 10.1016/j.neuron.2007.01.006. PubMed DOI PMC

Bueti D., Macaluso E. Physiological correlates of subjective time: evidence for the temporal accumulator hypothesis. NeuroImage. 2011;57(3):1251–1263. doi: 10.1016/j.neuroimage.2011.05.014. PubMed DOI

Spencer R. M. C., Karmarkar U., Ivry R. B. Evaluating dedicated and intrinsic models of temporal encoding by varying context. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009;364(1525):1853–1863. doi: 10.1098/rstb.2009.0024. PubMed DOI PMC

Durstewitz D. Self-organizing neural integrator predicts interval times through climbing activity. The Journal of Neuroscience. 2003;23(12):5342–5353. PubMed PMC

Merchant H., Zarco W., Prado L. Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. Journal of Neurophysiology. 2008;99(2):939–949. doi: 10.1152/jn.01225.2007. PubMed DOI

Lewis P. A., Miall R. C. Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia. 2003;41(12):1583–1592. doi: 10.1016/S0028-3932(03)00118-0. PubMed DOI

Morillon B., Kell C. A., Giraud A.-L. Three stages and four neural systems in time estimation. Journal of Neuroscience. 2009;29(47):14803–14811. doi: 10.1523/JNEUROSCI.3222-09.2009. PubMed DOI PMC

Ivry R. B., Keele S. W. Timing functions of the cerebellum. Journal of Cognitive Neuroscience. 1989;1(2):136–152. doi: 10.1162/jocn.1989.1.2.136. PubMed DOI

Mangels J. A., Ivry R. B., Shimizu N. Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Cognitive Brain Research. 1998;7(1):15–39. doi: 10.1016/s0926-6410(98)00005-6. PubMed DOI

Ackermann H., Gräber S., Hertrich I., Daum I. Categorical speech perception in cerebellar disorders. Brain and Language. 1997;60(2):323–331. doi: 10.1006/brln.1997.1826. PubMed DOI

Bares M., Lungu O., Liu T., Waechter T., Gomez C. M., Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Experimental Brain Research. 2007;180(2):355–365. doi: 10.1007/s00221-007-0857-8. PubMed DOI

Bares M., Lungu O. V., Liu T., Waechter T., Gomez C. M., Ashe J. The neural substrate of predictive motor timing in spinocerebellar ataxia. Cerebellum. 2011;10(2):233–244. doi: 10.1007/s12311-010-0237-y. PubMed DOI

Filip P., Lungu O. V., Shaw D. J., Kasparek T., Bareš M. The mechanisms of movement control and time estimation in cervical dystonia patients. Neural Plasticity. 2013;2013:10. doi: 10.1155/2013/908741.908741 PubMed DOI PMC

Hayashi M. J., Kanai R., Tanabe H. C., et al. Interaction of numerosity and time in prefrontal and parietal cortex. Journal of Neuroscience. 2013;33(3):883–893. doi: 10.1523/jneurosci.6257-11.2013. PubMed DOI PMC

Bueti D., Walsh V., Frith C., Rees G. Different brain circuits underlie motor and perceptual representations of temporal intervals. Journal of Cognitive Neuroscience. 2008;20(2):204–214. doi: 10.1162/jocn.2008.20.2.204. PubMed DOI

Oullier O., Jantzen K. J., Steinberg F. L., Kelso J. A. S. Neural substrates of real and imagined sensorimotor coordination. Cerebral Cortex. 2005;15(7):975–985. doi: 10.1093/cercor/bhh198. PubMed DOI

Raz N., Gunning-Dixon F., Head D., Williamson A., Acker J. D. Age and sex differences in the cerebellum and the ventral pons: a prospective MR study of healthy adults. American Journal of Neuroradiology. 2001;22(6):1161–1167. PubMed PMC

Volkow N. D., Wang G.-J., Fowler J. S., et al. Gender differences in cerebellar metabolism: test-retest reproducibility. The American Journal of Psychiatry. 1997;154(1):119–121. doi: 10.1176/ajp.154.1.119. PubMed DOI

Maccoby E. E., Jacklin C. N. The Psychology of Sex Differences. Palo Alto, Calif, USA: Stanford University Press; 1974.

Rosselli M., Ardila A., Matute E., Inozemtseva O. Gender differences and cognitive correlates of mathematical skills in school-aged children. Child Neuropsychology. 2009;15(3):216–231. doi: 10.1080/09297040802195205. PubMed DOI

Joseph R. The evolution of sex differences in language, sexuality, and visual-spatial skills. Archives of Sexual Behavior. 2000;29(1):35–66. doi: 10.1023/a:1001834404611. PubMed DOI

Noble C. E., Baker B. L., Jones T. A. Age and sex parameters in psychomotor learning. Perceptual and Motor Skills. 1964;19(3):935–945. doi: 10.2466/pms.1964.19.3.935. PubMed DOI

Adam J. J. Gender differences in choice reaction time: evidence for differential strategies. Ergonomics. 1999;42(2):327–335. doi: 10.1080/001401399185685. PubMed DOI

Misra N., Mahajan K. K., Maini B. K. Comparative study of visual and auditory reaction time of hands and feet in males and females. Indian Journal of Physiology and Pharmacology. 1985;29(4):213–218. PubMed

Der G., Deary I. J. Age and sex differences in reaction time in adulthood: results from the United Kingdom Health and Lifestyle Survey. Psychology and Aging. 2006;21(1):62–73. doi: 10.1037/0882-7974.21.1.62. PubMed DOI

Oldfield R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113. doi: 10.1016/0028-3932(71)90067-4. PubMed DOI

Husárová I., Lungu O. V., Mareček R., et al. Functional imaging of the cerebellum and basal ganglia during predictive motor timing in early Parkinson's disease. Journal of Neuroimaging. 2014;24(1):45–53. doi: 10.1111/j.1552-6569.2011.00663.x. PubMed DOI

Husárová I., Mikl M., Lungu O. V., Mareček R., Vaníček J., Bareš M. Similar circuits but different connectivity patterns between the cerebellum, basal ganglia, and supplementary motor area in early Parkinson's disease patients and controls during predictive motor timing. Journal of Neuroimaging. 2013;23(4):452–462. doi: 10.1111/jon.12030. PubMed DOI

Bareš M., Lungu O. V., Husárová I., Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease. Cerebellum. 2010;9(1):124–135. doi: 10.1007/s12311-009-0133-5. PubMed DOI

Lee K.-H., Egleston P. N., Brown W. H., Gregory A. N., Barker A. T., Woodruff P. W. R. The role of the cerebellum in subsecond time perception: evidence from repetitive transcranial magnetic stimulation. Journal of Cognitive Neuroscience. 2007;19(1):147–157. doi: 10.1162/jocn.2007.19.1.147. PubMed DOI

Del Olmo M. F., Cheeran B., Koch G., Rothwell J. C. Role of the cerebellum in externally paced rhythmic finger movements. Journal of Neurophysiology. 2007;98(1):145–152. doi: 10.1152/jn.01088.2006. PubMed DOI

Koch G., Oliveri M., Torriero S., Salerno S., Gerfo E. L., Caltagirone C. Repetitive TMS of cerebellum interferes with millisecond time processing. Experimental Brain Research. 2007;179(2):291–299. doi: 10.1007/s00221-006-0791-1. PubMed DOI

Penhune V. B., Zatorre R. J., Evans A. C. Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction. Journal of Cognitive Neuroscience. 1998;10(6):752–765. doi: 10.1162/089892998563149. PubMed DOI

Mayville J. M., Fuchs A., Ding M., Cheyne D., Deecke L., Kelso J. A. S. Event-related changes in neuromagnetic activity associated with syncopation and synchronization timing tasks. Human Brain Mapping. 2001;14(2):65–80. doi: 10.1002/hbm.1042. PubMed DOI PMC

Schubotz R. I., Friederici A. D., Von Cramon D. Y. Time perception and motor timing: a common cortical and subcortical basis revealed by fMRI. NeuroImage. 2000;11(1):1–12. doi: 10.1006/nimg.1999.0514. PubMed DOI

Wu X., Ashe J., Bushara K. O. Role of olivocerebellar system in timing without awareness. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(33):13818–13822. doi: 10.1073/pnas.1104096108. PubMed DOI PMC

Wu X., Nestrasil I., Ashe J., Tuite P., Bushara K. Inferior olive response to passive tactile and visual stimulation with variable interstimulus intervals. Cerebellum. 2010;9(4):598–602. doi: 10.1007/s12311-010-0203-8. PubMed DOI

Ivry R. B., Spencer R. M., Zelaznik H. N., Diedrichsen J. The cerebellum and event timing. Annals of the New York Academy of Sciences. 2002;978:302–317. doi: 10.1111/j.1749-6632.2002.tb07576.x. PubMed DOI

Coull J. T., Nobre A. C. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. The Journal of Neuroscience. 1998;18(18):7426–7435. PubMed PMC

Assmus A., Marshall J. C., Ritzl A., Noth J., Zilles K., Fink G. R. Left inferior parietal cortex integrates time and space during collision judgments. NeuroImage. 2003;20(1):S82–S88. doi: 10.1016/j.neuroimage.2003.09.025. PubMed DOI

O'Reilly J. X., Mesulam M. M., Nobre A. C. The cerebellum predicts the timing of perceptual events. Journal of Neuroscience. 2008;28(9):2252–2260. doi: 10.1523/JNEUROSCI.2742-07.2008. PubMed DOI PMC

Rao S. M., Mayer A. R., Harrington D. L. The evolution of brain activation during temporal processing. Nature Neuroscience. 2001;4(3):317–323. doi: 10.1038/85191. PubMed DOI

Coull J. T., Nazarian B., Vidal F. Timing, storage, and comparison of stimulus duration engage discrete anatomical components of a perceptual timing network. Journal of Cognitive Neuroscience. 2008;20(12):2185–2197. doi: 10.1162/jocn.2008.20153. PubMed DOI

Ferrandez A. M., Hugueville L., Lehéricy S., Poline J. B., Marsault C., Pouthas V. Basal ganglia and supplementary motor area subtend duration perception: an fMRI study. NeuroImage. 2003;19(4):1532–1544. doi: 10.1016/s1053-8119(03)00159-9. PubMed DOI

Bueti D., van Dongen E. V., Walsh V. The role of superior temporal cortex in auditory timing. PLoS ONE. 2008;3(6) doi: 10.1371/journal.pone.0002481.e2481 PubMed DOI PMC

Kanai R., Lloyd H., Bueti D., Walsh V. Modality-independent role of the primary auditory cortex in time estimation. Experimental Brain Research. 2011;209(3):465–471. doi: 10.1007/s00221-011-2577-3. PubMed DOI

Giedd J. N., Snell J. W., Lange N., et al. Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cerebral Cortex. 1996;6(4):551–560. doi: 10.1093/cercor/6.4.551. PubMed DOI

Raz N. The Handbook of Aging and Cognition. 2nd. Lawrence Erlbaum Associates Publishers; 2000. Aging of the brain and its impact on cognitive performance: integration of structural and functional findings; pp. 1–90.

Nopoulos P., Flaum M., O'Leary D., Andreasen N. C. Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Research. 2000;98(1):1–13. doi: 10.1016/s0925-4927(99)00044-x. PubMed DOI

Henery C. C., Mayhew T. M. The cerebrum and cerebellum of the fixed human brain: efficient and unbiased estimates of volumes and cortical surface areas. Journal of Anatomy. 1989;167:167–180. PubMed PMC

Gur R. C., Mozley L. H., Mozley P. D., et al. Sex differences in regional cerebral glucose metabolism during a resting state. Science. 1995;267(5197):528–531. doi: 10.1126/science.7824953. PubMed DOI

Kawachi T., Ishii K., Sakamoto S., Matsui M., Mori T., Sasaki M. Gender differences in cerebral glucose metabolism: a PET study. Journal of the Neurological Sciences. 2002;199(1-2):79–83. doi: 10.1016/s0022-510x(02)00112-0. PubMed DOI

Garn C. L., Allen M. D., Larsen J. D. An fMRI study of sex differences in brain activation during object naming. Cortex. 2009;45(5):610–618. doi: 10.1016/j.cortex.2008.02.004. PubMed DOI

Gur R. C., Alsop D., Glahn D., et al. An fMRI study of sex differences in regional activation to a verbal and a spatial task. Brain and Language. 2000;74(2):157–170. doi: 10.1006/brln.2000.2325. PubMed DOI

Šveljo O. B., Koprivšek K. M., Lučić M. A., Prvulović M. B., Ćulić M. Gender differences in brain areas involved in silent counting by means of fMRI. Nonlinear Biomedical Physics. 2010;4(supplement 1, article S2) doi: 10.1186/1753-4631-4-2. PubMed DOI PMC

Daum I., Ackermann H., Schugens M. M., Reimold C., Dichgans J., Birbaumer N. The cerebellum and cognitive functions in humans. Behavioral Neuroscience. 1993;107(3):411–419. doi: 10.1037/0735-7044.107.3.411. PubMed DOI

Watson P. J. Nonmotor functions of the cerebellum. Psychological Bulletin. 1978;85(5):944–967. doi: 10.1037/0033-2909.85.5.944. PubMed DOI

Strick P. L., Dum R. P., Fiez J. A. Cerebellum and nonmotor function. Annual Review of Neuroscience. 2009;32:413–434. doi: 10.1146/annurev.neuro.31.060407.125606. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...