Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease

. 2010 Mar ; 9 (1) : 124-35.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19851820

There is evidence that both the basal ganglia and the cerebellum play a role in the neural representation of time in a variety of behaviours, but whether one of them is more important is not yet clear. To address this question in the context of predictive motor timing, we tested patients with various movement disorders implicating these two structures in a motor-timing task. Specifically, we investigated four different groups: (1) patients with early Parkinson's disease (PD); (2) patients with sporadic spinocerebellar ataxia (SCA); (3) patients with familial essential tremor (ET); and (4) matched healthy controls. We used a predictive motor-timing task that involved mediated interception of a moving target, and we assessed the effect of movement type (acceleration, deceleration and constant), speed (slow, medium and fast) and angle (0 degrees , 15 degrees and 30 degrees) on performance (hit, early error and late error). The main results showed that PD group and arm ET subgroup did not significantly differ from the control group. SCA and head ET subjects (severe and mild cerebellar damage, respectively) were significantly worse at interception than the other two groups. Our findings support the idea that the basal ganglia play a less significant role in predictive motor timing than the cerebellum. The fact that SCA and ET subjects seemed to have a fundamental problem with predictive motor timing suggests that the cerebellum plays an essential role in integrating incoming visual information with the motor output in a timely manner, and that ET is a heterogeneous entity that deserves increased attention from clinicians.

Zobrazit více v PubMed

Brain. 2007 Dec;130(Pt 12):3297-307 PubMed

Neurosci Lett. 2009 Feb 6;450(3):287-91 PubMed

Mov Disord. 2008 Dec 15;23(16):2423-4 PubMed

J Neurophysiol. 2005 May;93(5):2809-21 PubMed

Cereb Cortex. 1995 Mar-Apr;5(2):95-110 PubMed

Brain. 2004 Mar;127(Pt 3):561-74 PubMed

Curr Opin Neurobiol. 2004 Apr;14(2):225-32 PubMed

J Neurosci. 2006 May 31;26(22):5990-5 PubMed

Neuroimage. 2007 Jun;36(2):378-87 PubMed

Arch Neurol. 2008 Jan;65(1):101-7 PubMed

J Neurosci. 2006 Nov 22;26(47):12266-73 PubMed

Exp Brain Res. 2003 Jan;148(2):238-46 PubMed

Cerebellum. 2007;6(1):18-23 PubMed

J Neurosci. 2004 Mar 10;24(10):2585-91 PubMed

Neuropsychology. 1998 Jan;12(1):3-12 PubMed

Neuropsychologia. 2007 Jan 28;45(2):321-31 PubMed

Clin Neurophysiol. 2005 Jun;116(6):1405-14 PubMed

J Neurosci. 2005 Apr 13;25(15):3919-31 PubMed

Mov Disord. 2007 Sep 15;22(12):1735-42 PubMed

Neuroimage. 2000 Jan;11(1):1-12 PubMed

Curr Opin Neurobiol. 2003 Apr;13(2):250-5 PubMed

Brain Res Cogn Brain Res. 2004 Oct;21(2):193-205 PubMed

J Neurosci. 2008 Feb 27;28(9):2252-60 PubMed

Nature. 1999 Jul 22;400(6742):364-7 PubMed

Curr Opin Neurobiol. 2006 Dec;16(6):645-9 PubMed

Hum Brain Mapp. 2005 May;25(1):118-28 PubMed

Neurology. 2000;54(11 Suppl 4):S7 PubMed

Cerebellum. 2006;5(4):286-8 PubMed

Neurology. 1995 Aug;45(8):1540-5 PubMed

Brain Cogn. 2005 Jun;58(1):1-8 PubMed

Eur J Neurosci. 2002 Oct;16(8):1609-19 PubMed

Exp Brain Res. 2007 Jun;180(2):355-65 PubMed

Neurology. 2008 Apr 15;70(16 Pt 2):1452-5 PubMed

Cerebellum. 2008;7(3):314-31 PubMed

Science. 2003 May 30;300(5624):1437-9 PubMed

Prog Brain Res. 1967;25:334-46 PubMed

Annu Rev Neurosci. 2004;27:307-40 PubMed

Mov Disord. 2008 Jan 30;23(2):174-82 PubMed

Mov Disord. 2009 Aug 15;24(11):1606-12 PubMed

Brain. 1992 Oct;115 ( Pt 5):1323-42 PubMed

J Neurophysiol. 2005 Jun;93(6):3189-99 PubMed

J Neurol Sci. 1997 Feb 12;145(2):205-11 PubMed

J Neurophysiol. 1999 Nov;82(5):2108-19 PubMed

Exp Brain Res. 2001 May;138(2):251-7 PubMed

Parkinsonism Relat Disord. 2003 Jan;9(3):139-44 PubMed

J Neurophysiol. 2007 Jul;98(1):54-62 PubMed

AJNR Am J Neuroradiol. 2008 Oct;29(9):1692-7 PubMed

Ann N Y Acad Sci. 2002 Dec;978:302-17 PubMed

Mov Disord. 2008 Aug 15;23(11):1602-5 PubMed

Cerebellum. 2007;6(1):7-17 PubMed

Mov Disord. 2006 Aug;21(8):1196-9 PubMed

Neurology. 2006 Apr 11;66(7):968-75 PubMed

Brain Cogn. 2005 Jun;58(1):84-93 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Quantitative but Not Qualitative Performance Changes in Predictive Motor Timing as a Result of Overtraining

. 2020 Apr ; 19 (2) : 201-207.

Consensus paper: Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications

. 2019 Apr ; 18 (2) : 266-286.

The mystery of the cerebellum: clues from experimental and clinical observations

. 2018 ; 5 () : 8. [epub] 20180329

Linking Essential Tremor to the Cerebellum: Physiological Evidence

. 2016 Dec ; 15 (6) : 774-780.

Predictive Motor Timing and the Cerebellar Vermis in Schizophrenia: An fMRI Study

. 2016 Nov ; 42 (6) : 1517-1527. [epub] 20160517

Neural Network of Predictive Motor Timing in the Context of Gender Differences

. 2016 ; 2016 () : 2073454. [epub] 20160225

Abnormalities in myelination of the superior cerebellar peduncle in patients with schizophrenia and deficits in movement sequencing

. 2014 Aug ; 13 (4) : 415-24.

The mechanisms of movement control and time estimation in cervical dystonia patients

. 2013 ; 2013 () : 908741. [epub] 20131001

Essential tremor, the cerebellum, and motor timing: towards integrating them into one complex entity

. 2012 ; 2 () : . [epub] 20120912

Is the cerebellum a potential target for stimulation in Parkinson's disease? Results of 1-Hz rTMS on upper limb motor tasks

. 2011 Dec ; 10 (4) : 804-11.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace