The mystery of the cerebellum: clues from experimental and clinical observations
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
29610671
PubMed Central
PMC5877388
DOI
10.1186/s40673-018-0087-9
PII: 87
Knihovny.cz E-zdroje
- Klíčová slova
- Anatomy, Cerebellum, Cognition, Fear, History, Motor, Timing, Tremor,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The cerebellum has a striking homogeneous cytoarchitecture and participates in both motor and non-motor domains. Indeed, a wealth of evidence from neuroanatomical, electrophysiological, neuroimaging and clinical studies has substantially modified our traditional view on the cerebellum as a sole calibrator of sensorimotor functions. Despite the major advances of the last four decades of cerebellar research, outstanding questions remain regarding the mechanisms and functions of the cerebellar circuitry. We discuss major clues from both experimental and clinical studies, with a focus on rodent models in fear behaviour, on the role of the cerebellum in motor control, on cerebellar contributions to timing and our appraisal of the pathogenesis of cerebellar tremor. The cerebellum occupies a central position to optimize behaviour, motor control, timing procedures and to prevent body oscillations. More than ever, the cerebellum is now considered as a major actor on the scene of disorders affecting the CNS, extending from motor disorders to cognitive and affective disorders. However, the respective roles of the mossy fibres, the climbing fibres, cerebellar cortex and cerebellar nuclei remains unknown or partially known at best in most cases. Research is now moving towards a better definition of the roles of cerebellar modules and microzones. This will impact on the management of cerebellar disorders.
Department of Neurology Centre Hospitalier Universitaire de Charleroi 6000 Charleroi Belgium
Department of Neurology School of Medicine University of Minnesota Minneapolis USA
Department of Neurology Semmelweis University Üllői út 26 Budapest 1083 Hungary
FNRS ULB Erasme 808 Route de Lennik 1070 Bruxelles Belgium
Laboratoire de Médecine Expérimentale Site Vésale ULB Unité 222 6110 Montigny le Tilleul Belgium
Zobrazit více v PubMed
Anand BK, Malhotra CL, Singh B, Dua S. Cerebellar projections to limbic system. J Neurophysiol. 1959;22:451–457. PubMed
Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurosci Res. 1976;2:133–146. PubMed
Adamaszek M, D'Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, Leggio M, Mariën P, Molinari M, Moulton E, Orsi L, Van Overwalle F, Papadelis C, Priori A, Sacchetti B, Schutter DJ, Styliadis C, Verhoeven J. Consensus paper: cerebellum and emotion. Cerebellum. 2016;16(2):552–576. PubMed
Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–579. PubMed
Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10:670–681. PubMed
Asdourian D, Frerichs K. Some effects of cerebellar stimulation. Psychon Sci. 1970;18:261–262.
Supple WF, Jr, Leaton RN, Fanselow MS. Effects of cerebellar vermal lesions on species-specific fear responses, neophobia, and taste-aversion learning in rats. Physiol Behav. 1987;39:579–586. PubMed
Koutsikou S, Crook JJ, Earl EV, Leith JL, Watson TC, Lumb BM, Apps R. Neural substrates underlying fear-evoked freezing: the periaqueductal grey-cerebellar link. J Physiol. 2014;592:2197–2213. PubMed PMC
Teune TM, Van Der Burg J, Van Der Moer J, Voogd J, Ruigrok TJ. Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res. 2000;124:141–172. PubMed
Salvatore BAC, Gianpaolo B, Giuseppe S, Maria R, Daniele B, Giovanna V, Giuseppina C. The cerebellum-periaqueductal gray connectivity: a constrained spherical deconvolution tractography study. IJAE. 2017;122, n°1 (Suppl): 27, 2017, Firenze University Press.
De Oca BM, Decola JP, Maren S, Fanselow MS. Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J Neurosci. 1998;18:3426–3432. PubMed PMC
Kim JJ, Rison RA, Fanselow MS. Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behav Neurosci. 1993;107:1093–1098. PubMed
Watson TC, Cerminara NL, Lumb BM, Apps R. Neural correlates of fear in the periaqueductal gray. J Neurosci. 2016;36:12707–12719. PubMed PMC
Reis DJ, Doba N, Nathan MA. Predatory attack, grooming, and consummatory behaviors evoked by electrical stimulation of cat cerebellar nuclei. Science. 1973;182:845–847. PubMed
Bandler RDA. Midbrain periaqueductal gray control of defensive behavior in the cat and the rat. The midbrain periaqueductal gray matter. Boston: Springer; 1991.
Bradley DJ, Pascoe JP, Paton JF, Spyer KM. Cardiovascular and respiratory responses evoked from the posterior cerebellar cortex and fastigial nucleus in the cat. J Physiol. 1987;393:107–121. PubMed PMC
Supple WF, Jr, Kapp BS. The anterior cerebellar vermis: essential involvement in classically conditioned bradycardia in the rabbit. J Neurosci. 1993;13:3705–3711. PubMed PMC
Stella G, Stevan G. Changes in the heart rate from stimulation of the cerebellar cortex in decerebrate dogs. Arch Int Pharmacodyn Ther. 1962;136:1–11. PubMed
Achari NK, Al-ubaidy S, Downman CB. Cardiovascular responses elicited by fastigial and hypothalamic stimulation in conscious cats. Brain Res. 1973;60:439–447. PubMed
Supple WF, Leaton RN., Jr Lesions of the cerebellar vermis and cerebellar hemispheres: effects on heart rate conditioning in rats. Behav Neurosci. 1990;104:934–947. PubMed
Maschke M, Schugens M, Kindsvater K, Drepper J, Kolb FP, Diener HC, Daum I, Timmann D. Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J Neurol Neurosurg Psychiatry. 2002;72(1):116–118. PubMed PMC
Schienle A, Scharmuller W. Cerebellar activity and connectivity during the experience of disgust and happiness. Neuroscience. 2013;246:375–381. PubMed
Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C. Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci U S A. 2002;99:8406–8411. PubMed PMC
Sacchetti B, Sacco T, Strata P. Reversible inactivation of amygdala and cerebellum but not perirhinal cortex impairs reactivated fear memories. Eur J Neurosci. 2007;25:2875–2884. PubMed
Ito M. Mechanisms of motor learning in the cerebellum. Brain Res. 2000;886:237–245. PubMed
Cerminara NLC, Aoki H, Loft M, Sugihara I, Apps R. Structural basis of cerebellar microcircuits in the rat. J Neurosci. 2013;33(42):16427–16442. PubMed PMC
D'Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits. 2013;6:116. PubMed PMC
Schmahmann JD. Cerebellar cognitive affective syndrome and the neuropsychiatry of the cerebellum. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of cerebellum and cerebellar disorders. Dordrecht: Springer; 2013. pp. 1717–1751.
Oscarsson O. Functional organization of the spino- and cuneocerebellar tracts. Physiol Rev. 1965;45:495–522. PubMed
Voogd J. Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK, editors. The human nervous system. 2. Amsterdam: Elsevier; 2004. pp. 321–392.
Dow RS. Some novel concepts of cerebellar physiology. Mt Sinai J Med. 1974;41(1):103–19. PubMed
Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, Mariën P, Nowak DA, Schmahmann JD, Serrao M, Steiner KM, Strupp M, Tilikete C, Timmann D, van Dun K. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. 2016;15(3):369–391. PubMed PMC
Manto M, Mariën P. Schmahmann’s syndrome - identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias. 2015;2:2. PubMed PMC
Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–8594. PubMed PMC
Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–2497. PubMed PMC
Habas C, Manto M. Probing the neuroanatomy of the cerebellum using tractography Handbook. In: The Cerebellum: Disorders and Treatments. Handbook of Clinical Neurology. Manto M, Huisman T (Ed). Vol 155. UK: Elsevier. In Press. PubMed
Du Y, Fryer SL, Fu Z, Lin D, Sui J, Chen J, Damaraju E, Mennigen E, Stuart B, Loewy RL, Mathalon DH, Calhoun VD. Dynamic functional connectivity impairments in early schizophrenia and clinical high-risk for psychosis. Neuroimage. 2017;(17):30849–2. PubMed PMC
Walther S, Stegmayer K, Federspiel A, Bohlhalter S, Wiest R, Viher PV. Aberrant hyperconnectivity in the motor system at rest is linked to motor abnormalities in schizophrenia spectrum disorders. Schizophr Bull. 2017;43(5):982–992. PubMed PMC
Guo X, Dominick KC, Minai AA, Li H, Erickson CA, Lu LJ. Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front Neurosci. 2017;11:460. PubMed PMC
Olivito G, Clausi S, Laghi F, Tedesco AM, Baiocco R, Mastropasqua C, Molinari M, Cercignani M, Bozzali M, Leggio M. Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum. 2017;16(2):283–292. PubMed
Khan AJ, Nair A, Keown CL, Datko MC, Lincoln AJ, Müller RA. Cerebro-cerebellar resting-state functional connectivity in children and adolescents with autism spectrum disorder. Biol Psychiatry. 2015;78(9):625–634. PubMed PMC
Caligiore D, Pezzulo G, Baldassarre G, Bostan AC, Strick PL, Doya K, Helmich RC, Dirkx M, Houk J, Jörntell H, Lago-Rodriguez A, Galea JM, Miall RC, Popa T, Kishore A, Verschure PF, Zucca R, Herreros I. Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex. Cerebellum. 2017;16(1):203–229. PubMed PMC
Pozzi NG, Arnulfo G, Canessa A, Steigerwald F, Nickl R, Homola GA, Fato MM, Matthies C, Pacchetti C, Volkmann J, Isaias IU. Distinctive neuronal firing patterns in subterritories of the subthalamic nucleus. Clin Neurophysiol. 2016;127(11):3387–3393. PubMed
Ito M, Yoshida M, Obata K. Monosynaptic inhibition of the intracerebellar nuclei induced from the cerebellar cortex. Experentia. 1964;20:575–576. PubMed
Eccles JC, Ito M, Szentagothai J. The cerebellum as a neuronal machine. New York: Springer; 1967.
Bauswein E, Kolb FP, Leimbeck B, Rubia FJ. Simple and complex spike activity of cerebellar Purkinje cells during active and passive movements in the awake monkey. J Physiol. 1983;339:379–394. PubMed PMC
Lamarre Y, Mercier LA. Neurophysiological studies of harmaline-induced tremor in the cat. Can J Physiol Pharmacol. 1971;49(12):1049–1058. PubMed
Albus JS. The theory of cerebellar function. Math Biosci. 1971;10:25–61.
Ashe J, Bushara K. The olivo-cerebellar system as a neural clock. Adv Exp Med Biol. 2014;829:155–165. PubMed
De Gruijl JR, Hoogland TM, De Zeeuw CI. Behavioral correlates of complex spike synchrony in cerebellar microzones. J Neurosci. 2014;34(27):8937–8947. PubMed PMC
Alviña K, Ellis-Davies G, Khodakhah K. T-type calcium channels mediate rebound firing in intact deep cerebellar neurons. Neuroscience. 2009;158(2):635–641. PubMed PMC
Porrill J, Dean P, Anderson SR. Adaptive filters and internal models: multilevel description of cerebellar function. Neural Netw. 2013;47:134–149. PubMed
Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2(9):338–347. PubMed
Marr D. A theory of cerebellar cortex. J Physiol Lond. 1969;202:437–470. PubMed PMC
Kahn F. Man in structure and function. New York: Alfred A, Knopf; 1943.
Mugnaini E. The length of cerebellar parallel fibers in chicken and rhesus monkey. J Comp Neurol. 1983;220(1):7–15. PubMed
Popa LS, Hewitt AL, Ebner TJ. Purkinje cell simple spike discharge encodes error signals consistent with a forward internal model. Cerebellum. 2013;12:331–333. PubMed PMC
Popa LS, Streng ML, Ebner TJ. Long-term predictive and feedback encoding of motor signals in the simple spike discharge of purkinje cells. eNeuro. 2017;4(2). PubMed PMC
Manto M. Motor disorders. In: Manto M, Huisman T, editors. Handbook of clinical neurology. The cerebellum from children to adults. UK: Elsevier. In Press.
Holmes G. The symptoms of acute cerebellar injuries from gunshot wounds. Brain. 1917;40:461–535.
Holmes G. Clinical symptoms of cerebellar disease and their interpretation. The Croonian lecture III. Lancet. 1922;2:59–65.
Manto M, Godaux E, Jacquy J. Cerebellar hypermetria is larger when the inertial load is artificially increased. Ann Neurol. 1994;35(1):45–52. PubMed
Manto M, Godaux E, Jacquy J. Detection of silent cerebellar lesions by increasing the inertial load of the moving hand. Ann Neurol. 1995;37(3):344–350. PubMed
Hore J, Flament D. Changes in motor cortex neural discharge associated with the development of cerebellar limb ataxia. J Neurophysiol. 1988;60(4):1285–1302. PubMed
Di Lazzaro V, Restuccia D, Nardone R, Leggio MG, Oliviero A, Profice P, Tonali P, Molinari M. Motor cortex changes in a patient with hemicerebellectomy. Electroencephalogr Clin Neurophysiol. 1995;97(5):259–263. PubMed
Bhanpuri NH, Okamura AM, Bastian AJ. Predicting and correcting ataxia using a model of cerebellar function. Brain. 2014;137(Pt 7):1931–1944. PubMed PMC
Mariën P, Manto M. Cerebellum as a master-piece for linguistic predictability. Cerebellum. 2017; 10.1007/s12311-017-0894-1. PubMed
Manto M, Haines D. Cerebellar research: two centuries of discoveries. Cerebellum. 2012;11(2):446–448. PubMed
Molinari M, Restuccia D, Leggio MG. State estimation, response prediction, and cerebellar sensory processing for behavioral control. Cerebellum. 2009;8(3):399–402. PubMed
Molinari M. Sequencing. In: Gruol DL, Koibuchi N, Manto M, Molinari M, Schmahmann JD, Shen Y, editors. Essentials of cerebellum and cerebellar disorders. Switzerland: Springer; 2016. pp. 397–402.
Nixon PD. The role of the cerebellum in preparing responses to predictable sensory events. Cerebellum. 2003;2(2):114–122. PubMed
Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6(10):755–765. PubMed
Wiener M, Turkeltaub P, Coslett HB. The image of time: a voxel-wise meta-analysis. NeuroImage. 2010;49(2):1728–1740. PubMed
Ivry RB, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1(2):136–152. PubMed
Lewis PA, Miall RC. Brain activation patterns during measurement of sub-and supra-second intervals. Neuropsychologia. 2003;41(12):1583–1592. PubMed
Filip P, Lošák J, Kašpárek T, Vaníček J, Bareš M. Neural network of predictive motor timing in the context of gender differences. Neural Plasticity. 2016;2016:2073454. PubMed PMC
Spencer R, Zelaznik HN, Diedrichsen J, Ivry RB. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Sci Signal. 2003;300(5624):1437. PubMed
Basso G, Nichelli P, Frassinetti F, Di Pellegrino G. Time perception in a neglected space. Neuroreport. 1996;7(13):2111–2114. PubMed
Bares M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res. 2007;180(2):355–365. PubMed
Bares M, Lungu OV, Liu T, Waechter T, Gomez CM, Ashe J. The neural substrate of predictive motor timing in spinocerebellar ataxia. Cerebellum. 2011;10(2):233–244. PubMed
Husárová I, Lungu OV, Mareček R, Mikl M, Gescheidt T, Krupa P, et al. Functional imaging of the cerebellum and basal ganglia during predictive motor timing in early Parkinson’s disease. J Neuroimaging. 2014;24(1):45–53. PubMed
Harding IH, Corben LA, Delatycki MB, Stagnitti MR, Storey E, Egan GF, Georgiou-Karistianis N. Cerebral compensation during motor function in Friedreich ataxia: the IMAGE-FRDA study. Mov Disord. 2017;32(8):1221–1229. PubMed
Lang CE, Bastian AJ. Cerebellar subjects show impaired adaptation of anticipatory EMG during catching. J Neurophysiol. 1999;82(5):2108–2119. PubMed
Buijink AWG, Broersma M, van der Stouwe AMM, van Wingen GA, Groot PFC, Speelman JD, et al. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor. Park Rel Dis. 2015;21(4):383–388. PubMed
Bareš M, Lungu OV, Husárová I, Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease. Cerebellum. 2010;9(1):124–135. PubMed
Bares M, Husarova I, Lungu OV. Essential tremor, the cerebellum, and motor timing: towards integrating them into one complex entity. Tremor Other Hyperkinetic Movements. 2012;2:1–9. PubMed PMC
Husárová I, Mikl M, Lungu OV, Mareček R, Vaníček J, Bareš M. Similar circuits but different connectivity patterns between the cerebellum, basal ganglia, and supplementary motor area in early Parkinson's disease patients and controls during predictive motor timing. J Neuroimaging. 2013;23(4):452–462. PubMed
Filip P, Lungu OV, Bareš M. Dystonia and the cerebellum: a new field of interest in movement disorders? Clin Neurophysiol. 2013;124(7):1269–1276. PubMed
Filip P, Lungu OV, Shaw DJ, Kasparek T, Bareš M. The mechanisms of movement control and time estimation in cervical dystonia patients. Neural Plasticity. 2013;2013:908741. PubMed PMC
Filip P, Gallea C, Lehéricy S, Bertasi E, Popa T, Mareček R, et al. Disruption in cerebellar and basal ganglia networks during a visuospatial task in cervical dystonia. Mov Disord. 2017;32(5):757–768. PubMed
Tewari A, Fremont R, Khodakhah K. It’s not just the basal ganglia: cerebellum as a target for dystonia therapeutics. Mov Disord. 2017;32(11):1537–1545. PubMed PMC
Bares M, Filip P. Cerebellum and dystonia: The story continues. Shall the patients benefit from new discoveries? Clin Neurophysiol 2017. (17)31087-8.93. PubMed
Elble RJ. Origins of tremor. Lancet. 2000;355:1113–1114. PubMed
Cagnan H, Little S, Foltynie T, Limousin P, Zrinzo L, Hariz M, et al. The nature of tremor circuits inparkinsonian and essential tremor. Brain. 2014;137:3223–3234. PubMed PMC
Ferrier D, Turner WA. A record of experiments illustrative of the symptomatology and degenerations following lesions of the cerebellum and its peduncles and related structures in monkeys. Philos Trans Royal Soc Lond (B) 1894;185:719–778.
Larochelle L, Bedard P, Boucher R, Poirier LJ. The rubro-olivo-cerebello-rubral loop and postural tremor in the monkey. J Neurol Sci. 1970;11:53–64. PubMed
Poirier LJ, Lafleur J, de Lean J, Guiot G, Larochelle L, Boucher R. Physiopathology of the cerebellum in the monkey. 2. Motor disturbances associated with partial and complete destruction of cerebellar structures. J Neurol Sci. 1974;22:491–509. PubMed
Brooks V, Cooke J and Thomas J. The continuity of movements. Control of posture and locomotion. Springer; 1973. pp. 257-272.
Flament D, Hore J. Comparison of cerebellar intention tremor under isotonic and isometric conditions. Brain Res. 1988;439:179–186. PubMed
Marek M, Paus S, Allert N, Madler B, Klockgether T, Urbach H, et al. Ataxia and tremor due to lesions involving cerebellar projection pathways: a DTI tractographic study in six patients. J Neurol. 2015;262:54–58. PubMed
Coenen VA, Allert N, Paus S, Kronenburger M, Urbach H, Madler B. Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study. Neurosurgery. 2014;75:657–670. PubMed
Timmann D, Konczak J, Ilg W, Donchin O, Hermsdorfer J, Gizewski ER, et al. Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience. 2009;162:836–851. PubMed
Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13:55–73. PubMed PMC
Schlerf JE, Verstynen TD, Ivry RB, Spencer RM. Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol. 2010;103:3330–3336. PubMed PMC
Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, Kabani N, Toga A, Evans A, Petrides M. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage. 1999;10(3 Pt 1):233–260. PubMed
Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. NeuroImage. 2009;46:39–46. PubMed
Diedrichsen J, Maderwald S, Kuper M, Thurling M, Rabe K, Gizewski ER, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. NeuroImage. 2011;54:1786–1794. PubMed
van Baarsen KM, Kleinnijenhuis M, Jbabdi S, Sotiropoulos SN, Grotenhuis JA, van Cappellen van Walsum AM. A probabilistic atlas of the cerebellar white matter. NeuroImage. 2016;124:724–732. PubMed
Deuschl G, Bain P, Brin M. Consensus statement of the Movement Disorder Society on tremor. Mov Disord. 1998;13:2–23. PubMed
Nakamura R, Kamakura K, Tadano Y, Hosoda Y, Nagata N, Tsuchiya K, et al. MR imaging findings of tremors associated with lesions in cerebellar outflow tracts: report of two cases. Mov Disord. 1993;8:209–212. PubMed
Brown P, Rothwell JC, Stevens JM, Lees AJ, Marsden CD. Cerebellar axial postural tremor. Mov Disord. 1997;12:977–984. PubMed
Louis ED, Lynch T, Ford B, Greene P, Bressman SB, Fahn S. Delayed-onset cerebellar syndrome. Arch Neurol. 1996;53:450–454. PubMed
Cole JD, Philip HI, Sedgwick EM. Stability and tremor in the fingers associated with cerebellar hemisphere and cerebellar tract lesions in man. J Neurol Neurosurg Psychiatry. 1988;51:1558–1568. PubMed PMC
Milanov I. Electromyographic differentiation of tremors. Clin Neurophysiol. 2001;112:1626–1632. PubMed
Bhatia KP, Bain P, Bajaj N, Elble RJ, Hallett M, Louis ED, Raethjen J, Stamelou M, Testa CM, Deuschl G. Tremor task force of the international parkinson and movement disorder society. Consensus statement on the classification of tremors. From the task force on tremor of the international parkinson and movement disorder society. Mov Disord. 2018;33(1):75–87. PubMed PMC
Konczak J, Pierscianek D, Hirsiger S, Bultmann U, Schoch B, Gizewski ER, et al. Recovery of upper limb function after cerebellar stroke: lesion symptom mapping and arm kinematics. Stroke. 2010;41:2191–2200. PubMed
Nicoletti G, Manners D, Novellino F, Condino F, Malucelli E, Barbiroli B, et al. Diffusion tensor MRI changes in cerebellar structures of patients with familial essential tremor. Neurology. 2010;74:988–994. PubMed
Broersma M, van der Stouwe AM, Buijink AW, de Jong BM, Groot PF, Speelman JD, et al. Bilateral cerebellar activation in unilaterally challenged essential tremor. NeuroImage Clin. 2016;11:1–9. PubMed PMC
Louis ED, Vonsattel JP. The emerging neuropathology of essential tremor. Mov Disord. 2008;23:174–182. PubMed PMC
Shill HA, Adler CH, Sabbagh MN, Connor DJ, Caviness JN, Hentz JG, et al. Pathologic findings in prospectively ascertained essential tremor subjects. Neurology. 2008;70:1452–1455. PubMed
Cerasa A, Quattrone A. Linking essential tremor to the cerebellum-neuroimaging evidence. Cerebellum. 2016;15:263–275. PubMed
Dupuis MJ, Delwaide PJ, Boucquey D, Gonsette RE. Homolateral disappearance of essential tremor after cerebellar stroke. Mov Disord. 1989;4:183–187. PubMed
Chahine LM, Ghosh D. Essential tremor after ipsilateral cerebellar hemispherectomy: support for the thalamus as the central oscillator. J Child Neurol. 2009;24:861–864. PubMed
Benito-Leon J, Labiano-Fontcuberta A. Linking essential tremor to the cerebellum: clinical evidence. Cerebellum. 2016;15:253–262. PubMed
Farkas Z, Szirmai I, Kamondi A. Impaired rhythm generation in essential tremor. Mov Disord. 2006;21:1196–1199. PubMed
Guell X, Hoche F, Schmahmann JD. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum. 2015;14(1):50–58. PubMed
Embryonic Cerebellar Graft Morphology Differs in Two Mouse Models of Cerebellar Degeneration