Expression of Neuronal Nicotinic Acetylcholine Receptor and Early Oxidative DNA Damage in Aging Rat Brain-The Effects of Memantine
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40004097
PubMed Central
PMC11855568
DOI
10.3390/ijms26041634
PII: ijms26041634
Knihovny.cz E-zdroje
- Klíčová slova
- aging, brain, memantine, nicotinic receptor, oxidative stress,
- MeSH
- alfa7 nikotinové acetylcholinové receptory metabolismus genetika MeSH
- DNA-glykosylasy metabolismus genetika MeSH
- krysa rodu Rattus MeSH
- memantin * farmakologie MeSH
- mozek * metabolismus účinky léků patologie MeSH
- neurony metabolismus účinky léků MeSH
- nikotinové receptory * metabolismus genetika MeSH
- oxidační stres * účinky léků MeSH
- poškození DNA * účinky léků MeSH
- potkani Wistar * MeSH
- stárnutí * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alfa7 nikotinové acetylcholinové receptory MeSH
- DNA-glykosylasy MeSH
- memantin * MeSH
- nikotinové receptory * MeSH
- OGG1 protein, rat MeSH Prohlížeč
Aging and age-related neurodegenerative disorders are characterized by the dysfunction or loss of brain nicotinic acetylcholine receptors (nAChRs), and these changes may be related to other senescence markers, such as oxidative stress and DNA repair dysfunction. However, the mechanism of nAChR loss in the aging brain and the modification of this process by drugs (e.g., memantine, Mem) are not yet fully understood. To study whether the differences in nAChR expression in the rat brain occur due to aging or oxidative stress and are modulated by Mem, we analyzed nAChR subunits (at RNA and protein levels) and other biomarkers by real-time quantitative polymerase chain reaction (RQ-PCR) and Western blot validation. Twenty-one female Wistar rats were divided into four groups, depending on age, and the oldest group received injections of Mem or water with the use of intragastric catheters. We studied the cerebral grey matter (CGM), subcortical white matter (SCWM), and cerebellum (Ce). Results showed an age-related decrease of α7 nAChR mRNA level in SCWM. The α7 nAChR mRNA loss was accompanied by reduced expression of 8-oxoguanine DNA glycosylase 1 (OGG1) and an increased tumor necrosis factor alpha (TNFα) level. In the water group, we observed a higher level of α7 nAChR protein in the SCWM and Ce. Biomarker levels changed, but to a different extent depending on the brain area. Importantly, the dysfunction in antioxidative status was stopped and even regressed under Mem treatment. After two weeks of treatment, an increase in TP53 protein level and a decrease in 8-oxo-2'deoxyguanosine (8-oxo-2'dG) level were observed. We conclude that Mem administration may be protective against the senescence process by antioxidative mechanisms.
Faculty of Medicine Poznan Medical University 55 Bulgarska St 60 320 Poznan Poland
Institute of Veterinary Medicine Nicolaus Copernicus University 87 100 Torun Poland
Physiology Graduate Faculty North Carolina State University Raleigh NC 27695 USA
Zobrazit více v PubMed
Mohamed W.M.Y., Yi C., Soreq L., Yamashita T. Editorial: Genes and Aging: From Bench-to-Bedside. Front. Aging Neurosci. 2022;14:886967. doi: 10.3389/fnagi.2022.886967. PubMed DOI PMC
Dorszewska J., Ong K.T., Zabel M., Marchetti C. Editorial: Insights into Mechanisms Underlying Brain Impairment in Aging, Volume II. Front. Aging Neurosci. 2023;15:1242271. doi: 10.3389/fnagi.2023.1242271. PubMed DOI PMC
Dorszewska J. Cell Biology of Normal Brain Aging: Synaptic Plasticity-Cell Death. Aging Clin. Exp. Res. 2013;25:25–34. doi: 10.1007/s40520-013-0004-2. PubMed DOI
Kowalska M., Wize K., Prendecki M., Lianeri M., Kozubski W., Dorszewska J. Genetic Variants and Oxidative Stress in Alzheimer’s Disease. Curr. Alzheimer Res. 2020;17:208–223. doi: 10.2174/1567205017666200224121447. PubMed DOI
MohanKumar S.M.J., Murugan A., Palaniyappan A., MohanKumar P.S. Role of Cytokines and Reactive Oxygen Species in Brain Aging. Mech. Ageing Dev. 2023;214:111855. doi: 10.1016/j.mad.2023.111855. PubMed DOI PMC
Iskusnykh I.Y., Zakharova A.A., Kryl’skii E.D., Popova T.N. Aging, Neurodegenerative Disorders, and Cerebellum. Int. J. Mol. Sci. 2024;25:1018. doi: 10.3390/ijms25021018. PubMed DOI PMC
Burmistrov D.E., Gudkov S.V., Franceschi C., Vedunova M.V. Sex as a Determinant of Age-Related Changes in the Brain. Int. J. Mol. Sci. 2024;25:7122. doi: 10.3390/ijms25137122. PubMed DOI PMC
Bychkov M.L., Isaev A.B., Andreev-Andrievskiy A.A., Petrov K., Paramonov A.S., Kirpichnikov M.P., Lyukmanova E.N. Aβ1-42 Accumulation Accompanies Changed Expression of Ly6/uPAR Proteins, Dysregulation of the Cholinergic System, and Degeneration of Astrocytes in the Cerebellum of Mouse Model of Early Alzheimer Disease. Int. J. Mol. Sci. 2023;24:14852. doi: 10.3390/ijms241914852. PubMed DOI PMC
Liu R.-M. Aging, Cellular Senescence, and Alzheimer’s Disease. Int. J. Mol. Sci. 2022;23:1989. doi: 10.3390/ijms23041989. PubMed DOI PMC
Gasiorowska A., Wydrych M., Drapich P., Zadrozny M., Steczkowska M., Niewiadomski W., Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front. Aging Neurosci. 2021;13:654931. doi: 10.3389/fnagi.2021.654931. PubMed DOI PMC
Kunnath A.J., Gifford R.H., Wallace M.T. Cholinergic Modulation of Sensory Perception and Plasticity. Neurosci. Biobehav. Rev. 2023;152:105323. doi: 10.1016/j.neubiorev.2023.105323. PubMed DOI PMC
Echeverria V., Mendoza C., Iarkov A. Nicotinic Acetylcholine Receptors and Learning and Memory Deficits in Neuroinflammatory Diseases. Front. Neurosci. 2023;17:1179611. doi: 10.3389/fnins.2023.1179611. PubMed DOI PMC
Lee C.-H., Hung S.-Y. Physiologic Functions and Therapeutic Applications of A7 Nicotinic Acetylcholine Receptor in Brain Disorders. Pharmaceutics. 2022;15:31. doi: 10.3390/pharmaceutics15010031. PubMed DOI PMC
Utkin Y.N. Aging Affects Nicotinic Acetylcholine Receptors in Brain. Cent. Nerv. Syst. Agents Med. Chem. 2019;19:119–124. doi: 10.2174/1871524919666190320102834. PubMed DOI
Crestini A., Carbone E., Rivabene R., Ancidoni A., Rosa P., Tata A.M., Fabrizi E., Locuratolo N., Vanacore N., Lacorte E., et al. A Systematic Review on Drugs Acting as Nicotinic Acetylcholine Receptor Agonists in the Treatment of Dementia. Cells. 2024;13:237. doi: 10.3390/cells13030237. PubMed DOI PMC
Korczowska-Łącka I., Hurła M., Banaszek N., Kobylarek D., Szymanowicz O., Kozubski W., Dorszewska J. Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases. Mol. Neurobiol. 2023;60:4132–4149. doi: 10.1007/s12035-023-03329-4. PubMed DOI PMC
Ionescu-Tucker A., Cotman C.W. Emerging Roles of Oxidative Stress in Brain Aging and Alzheimer’s Disease. Neurobiol. Aging. 2021;107:86–95. doi: 10.1016/j.neurobiolaging.2021.07.014. PubMed DOI
Mecocci P., Boccardi V., Cecchetti R., Bastiani P., Scamosci M., Ruggiero C., Baroni M. A Long Journey into Aging, Brain Aging, and Alzheimer’s Disease Following the Oxidative Stress Tracks. J. Alzheimers Dis. 2018;62:1319–1335. doi: 10.3233/JAD-170732. PubMed DOI PMC
Kandlur A., Satyamoorthy K., Gangadharan G. Oxidative Stress in Cognitive and Epigenetic Aging: A Retrospective Glance. Front. Mol. Neurosci. 2020;13:41. doi: 10.3389/fnmol.2020.00041. PubMed DOI PMC
Li J., Haj Ebrahimi A., Ali A.B. Advances in Therapeutics to Alleviate Cognitive Decline and Neuropsychiatric Symptoms of Alzheimer’s Disease. Int. J. Mol. Sci. 2024;25:5169. doi: 10.3390/ijms25105169. PubMed DOI PMC
Arleo A., Bareš M., Bernard J.A., Bogoian H.R., Bruchhage M.M.K., Bryant P., Carlson E.S., Chan C.C.H., Chen L.-K., Chung C.-P., et al. Consensus Paper: Cerebellum and Ageing. Cerebellum. 2024;23:802–832. doi: 10.1007/s12311-023-01577-7. PubMed DOI PMC
Cohen J., Mathew A., Dourvetakis K.D., Sanchez-Guerrero E., Pangeni R.P., Gurusamy N., Aenlle K.K., Ravindran G., Twahir A., Isler D., et al. Recent Research Trends in Neuroinflammatory and Neurodegenerative Disorders. Cells. 2024;13:511. doi: 10.3390/cells13060511. PubMed DOI PMC
Aye S., Bouteloup V., Tate A., Wimo A., Handels R., Jean D., Winblad B., Jönsson L. Health-Related Quality of Life in Subjective Cognitive Decline and Mild Cognitive Impairment: A Longitudinal Cohort Analysis. Alzheimers Res. Ther. 2023;15:200. doi: 10.1186/s13195-023-01344-0. PubMed DOI PMC
Mank A., Rijnhart J.J.M., van Maurik I.S., Jönsson L., Handels R., Bakker E.D., Teunissen C.E., van Berckel B.N.M., van Harten A.C., Berkhof J., et al. A Longitudinal Study on Quality of Life Along the Spectrum of Alzheimer’s Disease. Alzheimers Res. Ther. 2022;14:132. doi: 10.1186/s13195-022-01075-8. PubMed DOI PMC
Martyr A., Gamble L.D., Hunt A., Quinn C., Morris R.G., Henderson C., Allan L., Opdebeeck C., Charlwood C., Jones R.W., et al. Differences in Trajectories of Quality of Life According to Type of Dementia: 6-Year Longitudinal Findings from the IDEAL Programme. BMC Med. 2024;22:265. doi: 10.1186/s12916-024-03492-y. PubMed DOI PMC
Gao Y., Zhao Y., Li M., Lawless R.D., Schilling K.G., Xu L., Shafer A.T., Beason-Held L.L., Resnick S.M., Rogers B.P., et al. Functional Alterations in Bipartite Network of White and Grey Matters During Aging. Neuroimage. 2023;278:120277. doi: 10.1016/j.neuroimage.2023.120277. PubMed DOI PMC
Xu L., Gao Y., Li M., Lawless R., Zhao Y., Schilling K.G., Rogers B.P., Anderson A.W., Ding Z., Landman B.A., et al. Functional Correlation Tensors in Brain White Matter and the Effects of Normal Aging. Brain Imaging Behav. 2024;18:1197–1214. doi: 10.1007/s11682-024-00914-6. PubMed DOI PMC
Rozycka A., Steinborn B., Trzeciak W.H. The 1674+11C>T Polymorphism of CHRNA4 Is Associated with Juvenile Myoclonic Epilepsy. Seizure. 2009;18:601–603. doi: 10.1016/j.seizure.2009.06.007. PubMed DOI
Pastor V., Medina J.H. A7 Nicotinic Acetylcholine Receptor in Memory Processing. Eur. J. Neurosci. 2024;59:2138–2154. doi: 10.1111/ejn.15913. PubMed DOI
Ongnok B., Prathumsap N., Chunchai T., Pantiya P., Arunsak B., Chattipakorn N., Chattipakorn S.C. Nicotinic and Muscarinic Acetylcholine Receptor Agonists Counteract Cognitive Impairment in a Rat Model of Doxorubicin-Induced Chemobrain via Attenuation of Multiple Programmed Cell Death Pathways. Mol. Neurobiol. 2024;61:8831–8850. doi: 10.1007/s12035-024-04145-0. PubMed DOI
Askew C.E., Lopez A.J., Wood M.A., Metherate R. Nicotine Excites VIP Interneurons to Disinhibit Pyramidal Neurons in Auditory Cortex. Synapse. 2019;73:e22116. doi: 10.1002/syn.22116. PubMed DOI PMC
Ghimire M., Cai R., Ling L., Hackett T.A., Caspary D.M. Nicotinic Receptor Subunit Distribution in Auditory Cortex: Impact of Aging on Receptor Number and Function. J. Neurosci. 2020;40:5724–5739. doi: 10.1523/JNEUROSCI.0093-20.2020. PubMed DOI PMC
Counts S.E., He B., Che S., Ikonomovic M.D., DeKosky S.T., Ginsberg S.D., Mufson E.J. Alpha7 Nicotinic Receptor Up-Regulation in Cholinergic Basal Forebrain Neurons in Alzheimer Disease. Arch. Neurol. 2007;64:1771–1776. doi: 10.1001/archneur.64.12.1771. PubMed DOI
Dorszewska J., Florczak J., Rózycka A., Jaroszewska-Kolecka J., Trzeciak W.H., Kozubski W. Polymorphisms of the CHRNA4 Gene Encoding the Alpha4 Subunit of Nicotinic Acetylcholine Receptor as Related to the Oxidative DNA Damage and the Level of Apoptotic Proteins in Lymphocytes of the Patients with Alzheimer’s Disease. DNA Cell Biol. 2005;24:786–794. doi: 10.1089/dna.2005.24.786. PubMed DOI
Dorszewska J., Kempisty B., Jaroszewska-Kolecka J., Rózycka A., Florczak J., Lianeri M., Jagodziński P.P., Kozubski W. Expression and Polymorphisms of Gene 8-Oxoguanine Glycosylase 1 and the Level of Oxidative DNA Damage in Peripheral Blood Lymphocytes of Patients with Alzheimer’s Disease. DNA Cell Biol. 2009;28:579–588. doi: 10.1089/dna.2009.0926. PubMed DOI
Dezor M., Dorszewska J., Florczak J., Kempisty B., Jaroszewska-Kolecka J., Rozycka A., Polrolniczak A., Bugaj R., Jagodzinski P.P., Kozubski W. Expression of 8-Oxoguanine DNA Glycosylase 1 (OGG1) and the Level of P53 and TNF-Alpha Proteins in Peripheral Lymphocytes of Patients with Alzheimer’s Disease. Folia Neuropathol. 2011;49:123–131. PubMed
Dorszewska J., Florczak J., Rozycka A., Kempisty B., Jaroszewska-Kolecka J., Chojnacka K., Trzeciak W.H., Kozubski W. Oxidative DNA Damage and Level of Thiols as Related to Polymorphisms of MTHFR, MTR, MTHFD1 in Alzheimer’s and Parkinson’s Diseases. Acta Neurobiol. Exp. (Wars) 2007;67:113–129. doi: 10.55782/ane-2007-1639. PubMed DOI
Dai Q., Ma Y., Liu C., Zhao R., Chen Q., Chen W., Wang X., Jiang X., Li S. Association of 8-Hydroxy-2’-Deoxyguanosine with Motoric Cognitive Risk in Elderly Chinese People: RUGAO Longevity and Aging Cross-Sectional Study. BMC Geriatr. 2024;24:331. doi: 10.1186/s12877-024-04943-0. PubMed DOI PMC
Sáez G.T. DNA Injury and Repair Systems. Int. J. Mol. Sci. 2018;19:1902. doi: 10.3390/ijms19071902. PubMed DOI PMC
Sas K., Szabó E., Vécsei L. Mitochondria, Oxidative Stress and the Kynurenine System, with a Focus on Ageing and Neuroprotection. Molecules. 2018;23:191. doi: 10.3390/molecules23010191. PubMed DOI PMC
Voskarides K., Giannopoulou N. The Role of TP53 in Adaptation and Evolution. Cells. 2023;12:512. doi: 10.3390/cells12030512. PubMed DOI PMC
Zhao T., Ye S., Tang Z., Guo L., Ma Z., Zhang Y., Yang C., Peng J., Chen J. Loss-of-Function of P53 Isoform Δ113p53 Accelerates Brain Aging in Zebrafish. Cell Death Dis. 2021;12:151. doi: 10.1038/s41419-021-03438-9. PubMed DOI PMC
Dorszewska J., Oczkowska A., Suwalska M., Rozycka A., Florczak-Wyspianska J., Dezor M., Lianeri M., Jagodzinski P.P., Kowalczyk M.J., Prendecki M., et al. Mutations in the Exon 7 of Trp53 Gene and the Level of P53 Protein in Double Transgenic Mouse Model of Alzheimer’s Disease. Folia Neuropathol. 2014;52:30–40. doi: 10.5114/fn.2014.41742. PubMed DOI
Conti P., Ronconi G., Lauritano D., Mastrangelo F., Caraffa A., Gallenga C.E., Frydas I., Kritas S.K., Carinci F., Gaudelli F., et al. Impact of TNF and IL-33 Cytokines on Mast Cells in Neuroinflammation. Int. J. Mol. Sci. 2024;25:3248. doi: 10.3390/ijms25063248. PubMed DOI PMC
Hassamal S. Chronic Stress, Neuroinflammation, and Depression: An Overview of Pathophysiological Mechanisms and Emerging Anti-Inflammatories. Front. Psychiatry. 2023;14:1130989. doi: 10.3389/fpsyt.2023.1130989. PubMed DOI PMC
Lozano-Vicario L., García-Hermoso A., Cedeno-Veloz B.A., Fernández-Irigoyen J., Santamaría E., Romero-Ortuno R., Zambom-Ferraresi F., Sáez de Asteasu M.L., Muñoz-Vázquez Á.J., Izquierdo M., et al. Biomarkers of Delirium Risk in Older Adults: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2023;15:1174644. doi: 10.3389/fnagi.2023.1174644. PubMed DOI PMC
Dhapola R., Beura S.K., Sharma P., Singh S.K., HariKrishnaReddy D. Oxidative Stress in Alzheimer’s Disease: Current Knowledge of Signaling Pathways and Therapeutics. Mol. Biol. Rep. 2024;51:48. doi: 10.1007/s11033-023-09021-z. PubMed DOI
Porcher L., Bruckmeier S., Burbano S.D., Finnell J.E., Gorny N., Klett J., Wood S.K., Kelly M.P. Aging Triggers an Upregulation of a Multitude of Cytokines in the Male and Especially the Female Rodent Hippocampus but More Discrete Changes in Other Brain Regions. J. Neuroinflammation. 2021;18:219. doi: 10.1186/s12974-021-02252-6. PubMed DOI PMC
Kozubski W., Ong K., Waleszczyk W., Zabel M., Dorszewska J. Molecular Factors Mediating Neural Cell Plasticity Changes in Dementia Brain Diseases. Neural Plast. 2021;2021:8834645. doi: 10.1155/2021/8834645. PubMed DOI PMC
Karimi Tari P., Parsons C.G., Collingridge G.L., Rammes G. Memantine: Updating a Rare Success Story in pro-Cognitive Therapeutics. Neuropharmacology. 2024;244:109737. doi: 10.1016/j.neuropharm.2023.109737. PubMed DOI
Dąbrowska-Bouta B., Strużyńska L., Sidoryk-Węgrzynowicz M., Sulkowski G. Memantine Modulates Oxidative Stress in the Rat Brain Following Experimental Autoimmune Encephalomyelitis. Int. J. Mol. Sci. 2021;22:11330. doi: 10.3390/ijms222111330. PubMed DOI PMC
Thangwaritorn S., Lee C., Metchikoff E., Razdan V., Ghafary S., Rivera D., Pinto A., Pemminati S. A Review of Recent Advances in the Management of Alzheimer’s Disease. Cureus. 2024;16:e58416. doi: 10.7759/cureus.58416. PubMed DOI PMC
Reuben D.B., Kremen S., Maust D.T. Dementia Prevention and Treatment: A Narrative Review. JAMA Intern. Med. 2024;184:563–572. doi: 10.1001/jamainternmed.2023.8522. PubMed DOI
Buccellato F.R., D’Anca M., Tartaglia G.M., Del Fabbro M., Scarpini E., Galimberti D. Treatment of Alzheimer’s Disease: Beyond Symptomatic Therapies. Int. J. Mol. Sci. 2023;24:13900. doi: 10.3390/ijms241813900. PubMed DOI PMC
Nair A.S., Sahoo R.K. Efficacy of Memantine Hydrochloride in Neuropathic Pain. Indian J. Palliat. Care. 2019;25:161–162. PubMed PMC
Karolczak D., Sawicka E., Dorszewska J., Radel A., Bodnar M., Błaszczyk A., Jagielska J., Marszałek A. Memantine-Neuroprotective Drug in Aging Brain. Pol. J. Pathol. 2013;64:196–203. doi: 10.5114/pjp.2013.38139. PubMed DOI
Xu K., Sun G., Wang Y., Luo H., Wang Y., Liu M., Liu H., Lu X., Qin X. Mitigating Radiation-Induced Brain Injury via NLRP3/NLRC4/Caspase-1 Pyroptosis Pathway: Efficacy of Memantine and Hydrogen-Rich Water. Biomed. Pharmacother. 2024;177:116978. doi: 10.1016/j.biopha.2024.116978. PubMed DOI
Polat İ., Cilaker Mıcılı S., Çalışır M., Bayram E., Yiş U., Ayanoğlu M., Okur D., Edem P., Paketçi C., Tuğyan K., et al. Neuroprotective Effects of Lacosamide and Memantine on Hyperoxic Brain Injury in Rats. Neurochem. Res. 2020;45:1920–1929. doi: 10.1007/s11064-020-03056-5. PubMed DOI
Yıldızhan K., Nazıroğlu M. NMDA Receptor Activation Stimulates Hypoxia-Induced TRPM2 Channel Activation, Mitochondrial Oxidative Stress, and Apoptosis in Neuronal Cell Line: Modular Role of Memantine. Brain Res. 2023;1803:148232. doi: 10.1016/j.brainres.2023.148232. PubMed DOI
Chen B., Wang G., Li W., Liu W., Lin R., Tao J., Jiang M., Chen L., Wang Y. Memantine Attenuates Cell Apoptosis by Suppressing the Calpain-Caspase-3 Pathway in an Experimental Model of Ischemic Stroke. Exp. Cell Res. 2017;351:163–172. doi: 10.1016/j.yexcr.2016.12.028. PubMed DOI
Hasanagic S., Serdarevic F. Potential Role of Memantine in the Prevention and Treatment of COVID-19: Its Antagonism of Nicotinic Acetylcholine Receptors and Beyond. Eur. Respir. J. 2020;56:2001610. doi: 10.1183/13993003.01610-2020. PubMed DOI PMC
Bali Z.K., Bruszt N., Tadepalli S.A., Csurgyók R., Nagy L.V., Tompa M., Hernádi I. Cognitive Enhancer Effects of Low Memantine Doses Are Facilitated by an Alpha7 Nicotinic Acetylcholine Receptor Agonist in Scopolamine-Induced Amnesia in Rats. Front. Pharmacol. 2019;10:73. doi: 10.3389/fphar.2019.00073. PubMed DOI PMC
Ferrer-Acosta Y., Rodriguez-Massó S., Pérez D., Eterovic V.A., Ferchmin P.A., Martins A.H. Memantine Has a Nicotinic Neuroprotective Pathway in Acute Hippocampal Slices After an NMDA Insult. Toxicol. Vitr. 2022;84:105453. doi: 10.1016/j.tiv.2022.105453. PubMed DOI PMC
Rosa A.O., Egea J., Gandía L., López M.G., García A.G. Neuroprotection by Nicotine in Hippocampal Slices Subjected to Oxygen-Glucose Deprivation: Involvement of the Alpha7 nAChR Subtype. J. Mol. Neurosci. 2006;30:61–62. doi: 10.1385/JMN:30:1:61. PubMed DOI
Filley C.M., Fields R.D. White Matter and Cognition: Making the Connection. J. Neurophysiol. 2016;116:2093–2104. doi: 10.1152/jn.00221.2016. PubMed DOI PMC
Arrondo P., Elía-Zudaire Ó., Martí-Andrés G., Fernández-Seara M.A., Riverol M. Grey Matter Changes on Brain MRI in Subjective Cognitive Decline: A Systematic Review. Alzheimers Res. Ther. 2022;14:98. doi: 10.1186/s13195-022-01031-6. PubMed DOI PMC
Navakkode S., Kennedy B.K. Neural Ageing and Synaptic Plasticity: Prioritizing Brain Health in Healthy Longevity. Front. Aging Neurosci. 2024;16:1428244. doi: 10.3389/fnagi.2024.1428244. PubMed DOI PMC
Wang M., Zhang C., Lin S., Xie R. Dendritic Degeneration and Altered Synaptic Innervation of a Central Auditory Neuron During Age-Related Hearing Loss. Neuroscience. 2023;514:25–37. doi: 10.1016/j.neuroscience.2023.01.037. PubMed DOI PMC
Muñoz P., Ardiles Á.O., Pérez-Espinosa B., Núñez-Espinosa C., Paula-Lima A., González-Billault C., Espinosa-Parrilla Y. Redox Modifications in Synaptic Components as Biomarkers of Cognitive Status, in Brain Aging and Disease. Mech. Ageing Dev. 2020;189:111250. doi: 10.1016/j.mad.2020.111250. PubMed DOI
Loreto A., Antoniou C., Merlini E., Gilley J., Coleman M.P. NMN: The NAD Precursor at the Intersection Between Axon Degeneration and Anti-Ageing Therapies. Neurosci. Res. 2023;197:18–24. doi: 10.1016/j.neures.2023.01.004. PubMed DOI
Kirshenbaum G.S., Chang C.-Y., Bompolaki M., Bradford V.R., Bell J., Kosmidis S., Shansky R.M., Orlandi J., Savage L.M., Harris A.Z., et al. Adult-Born Neurons Maintain Hippocampal Cholinergic Inputs and Support Working Memory During Aging. Mol. Psychiatry. 2023;28:5337–5349. doi: 10.1038/s41380-023-02167-z. PubMed DOI
Boisvert M.M., Erikson G.A., Shokhirev M.N., Allen N.J. The Aging Astrocyte Transcriptome from Multiple Regions of the Mouse Brain. Cell Rep. 2018;22:269–285. doi: 10.1016/j.celrep.2017.12.039. PubMed DOI PMC
Kedmi M., Orr-Urtreger A. The Effects of Aging vs. A7 nAChR Subunit Deficiency on the Mouse Brain Transcriptome: Aging Beats the Deficiency. Age. 2011;33:1–13. doi: 10.1007/s11357-010-9155-7. PubMed DOI PMC
Charpantier E., Besnard F., Graham D., Sgard F. Diminution of Nicotinic Receptor Alpha 3 Subunit mRNA Expression in Aged Rat Brain. Brain Res. Dev. Brain Res. 1999;118:153–158. doi: 10.1016/S0165-3806(99)00157-1. PubMed DOI
Tohgi H., Utsugisawa K., Yoshimura M., Nagane Y., Mihara M. Age-Related Changes in Nicotinic Acetylcholine Receptor Subunits Alpha4 and Beta2 Messenger RNA Expression in Postmortem Human Frontal Cortex and Hippocampus. Neurosci. Lett. 1998;245:139–142. doi: 10.1016/S0304-3940(98)00205-5. PubMed DOI
Ferrari R., Pedrazzi P., Algeri S., Agnati L.F., Zoli M. Subunit and Region-Specific Decreases in Nicotinic Acetylcholine Receptor mRNA in the Aged Rat Brain. Neurobiol. Aging. 1999;20:37–46. doi: 10.1016/S0197-4580(99)00015-9. PubMed DOI
Marvanová M., Lakso M., Wong G. Identification of Genes Regulated by Memantine and MK-801 in Adult Rat Brain by cDNA Microarray Analysis. Neuropsychopharmacology. 2004;29:1070–1079. doi: 10.1038/sj.npp.1300398. PubMed DOI
Motawaj M., Burban A., Davenas E., Arrang J.-M. Activation of Brain Histaminergic Neurotransmission: A Mechanism for Cognitive Effects of Memantine in Alzheimer’s Disease. J. Pharmacol. Exp. Ther. 2011;336:479–487. doi: 10.1124/jpet.110.174458. PubMed DOI
Yu W.-F., Nordberg A., Ravid R., Guan Z.-Z. Correlation of Oxidative Stress and the Loss of the Nicotinic Receptor Alpha 4 Subunit in the Temporal Cortex of Patients with Alzheimer’s Disease. Neurosci. Lett. 2003;338:13–16. doi: 10.1016/S0304-3940(02)01361-7. PubMed DOI
Guan Z.-Z., Yu W.-F., Shan K.-R., Nordman T., Olsson J., Nordberg A. Loss of Nicotinic Receptors Induced by Beta-Amyloid Peptides in PC12 Cells: Possible Mechanism Involving Lipid Peroxidation. J. Neurosci. Res. 2003;71:397–406. doi: 10.1002/jnr.10496. PubMed DOI
Yu W.-F., Guan Z.-Z., Bogdanovic N., Nordberg A. High Selective Expression of Alpha7 Nicotinic Receptors on Astrocytes in the Brains of Patients with Sporadic Alzheimer’s Disease and Patients Carrying Swedish APP 670/671 Mutation: A Possible Association with Neuritic Plaques. Exp. Neurol. 2005;192:215–225. doi: 10.1016/j.expneurol.2004.12.015. PubMed DOI
Agulhon C., Sun M.-Y., Murphy T., Myers T., Lauderdale K., Fiacco T.A. Calcium Signaling and Gliotransmission in Normal vs. Reactive Astrocytes. Front. Pharmacol. 2012;3:139. doi: 10.3389/fphar.2012.00139. PubMed DOI PMC
Benz B., Grima G., Do K.Q. Glutamate-Induced Homocysteic Acid Release from Astrocytes: Possible Implication in Glia-Neuron Signaling. Neuroscience. 2004;124:377–386. doi: 10.1016/j.neuroscience.2003.08.067. PubMed DOI
Poddar R., Chen A., Winter L., Rajagopal S., Paul S. Role of AMPA Receptors in Homocysteine-NMDA Receptor-Induced Crosstalk Between ERK and P38 MAPK. J. Neurochem. 2017;142:560–573. doi: 10.1111/jnc.14078. PubMed DOI PMC
Jara-Prado A., Ortega-Vazquez A., Martinez-Ruano L., Rios C., Santamaria A. Homocysteine-Induced Brain Lipid Peroxidation: Effects of NMDA Receptor Blockade, Antioxidant Treatment, and Nitric Oxide Synthase Inhibition. Neurotox. Res. 2003;5:237–243. doi: 10.1007/BF03033381. PubMed DOI
Smith A.D., Refsum H. Homocysteine-from Disease Biomarker to Disease Prevention. J. Intern. Med. 2021;290:826–854. doi: 10.1111/joim.13279. PubMed DOI
Tawfik A., Elsherbiny N.M., Zaidi Y., Rajpurohit P. Homocysteine and Age-Related Central Nervous System Diseases: Role of Inflammation. Int. J. Mol. Sci. 2021;22:6259. doi: 10.3390/ijms22126259. PubMed DOI PMC
Jakubowski H. Homocysteine Thiolactone Detoxifying Enzymes and Alzheimer’s Disease. Int. J. Mol. Sci. 2024;25:8095. doi: 10.3390/ijms25158095. PubMed DOI PMC
Ting C.-P., Ma M.-C., Chang H.-I., Huang C.-W., Chou M.-C., Chang C.-C. Diet Pattern Analysis in Alzheimer’s Disease Implicates Gender Differences in Folate-B12-Homocysteine Axis on Cognitive Outcomes. Nutrients. 2024;16:733. doi: 10.3390/nu16050733. PubMed DOI PMC
Joshi S.M., Jadavji N.M. Deficiencies in One-Carbon Metabolism Led to Increased Neurological Disease Risk and Worse Outcome: Homocysteine Is a Marker of Disease State. Front. Nutr. 2024;11:1285502. doi: 10.3389/fnut.2024.1285502. PubMed DOI PMC
Tudek B., Zdżalik-Bielecka D., Tudek A., Kosicki K., Fabisiewicz A., Speina E. Lipid Peroxidation in Face of DNA Damage, DNA Repair and Other Cellular Processes. Free Radic. Biol. Med. 2017;107:77–89. doi: 10.1016/j.freeradbiomed.2016.11.043. PubMed DOI
Nunomura A., Tamaoki T., Motohashi N., Nakamura M., McKeel D.W., Tabaton M., Lee H.-G., Smith M.A., Perry G., Zhu X. The Earliest Stage of Cognitive Impairment in Transition from Normal Aging to Alzheimer Disease Is Marked by Prominent RNA Oxidation in Vulnerable Neurons. J. Neuropathol. Exp. Neurol. 2012;71:233–241. doi: 10.1097/NEN.0b013e318248e614. PubMed DOI PMC
Gredilla R., Garm C., Stevnsner T. Nuclear and Mitochondrial DNA Repair in Selected Eukaryotic Aging Model Systems. Oxid. Med. Cell. Longev. 2012;2012:282438. doi: 10.1155/2012/282438. PubMed DOI PMC
Chaudhary M.R., Chaudhary S., Sharma Y., Singh T.A., Mishra A.K., Sharma S., Mehdi M.M. Aging, Oxidative Stress and Degenerative Diseases: Mechanisms, Complications and Emerging Therapeutic Strategies. Biogerontology. 2023;24:609–662. doi: 10.1007/s10522-023-10050-1. PubMed DOI
Pao P.-C., Patnaik D., Watson L.A., Gao F., Pan L., Wang J., Adaikkan C., Penney J., Cam H.P., Huang W.-C., et al. HDAC1 Modulates OGG1-Initiated Oxidative DNA Damage Repair in the Aging Brain and Alzheimer’s Disease. Nat. Commun. 2020;11:2484. doi: 10.1038/s41467-020-16361-y. PubMed DOI PMC
Ames B.N., Shigenaga M.K., Hagen T.M. Oxidants, Antioxidants, and the Degenerative Diseases of Aging. Proc. Natl. Acad. Sci. USA. 1993;90:7915–7922. doi: 10.1073/pnas.90.17.7915. PubMed DOI PMC
Fraga C.G., Shigenaga M.K., Park J.W., Degan P., Ames B.N. Oxidative Damage to DNA During Aging: 8-Hydroxy-2’-Deoxyguanosine in Rat Organ DNA and Urine. Proc. Natl. Acad. Sci. USA. 1990;87:4533–4537. doi: 10.1073/pnas.87.12.4533. PubMed DOI PMC
Dorszewska J., Adamczewska-Goncerzewicz Z. Oxidative Damage to DNA, P53 Gene Expression and P53 Protein Level in the Process of Aging in Rat Brain. Respir. Physiol. Neurobiol. 2004;139:227–236. doi: 10.1016/j.resp.2003.10.005. PubMed DOI
Cooper C.P., Cheng L.H., Bhatti J.A., Rivera E.L., Huell D., Banuelos C., Perez E.J., Long J.M., Rapp P.R. Cerebellum Purkinje Cell Vulnerability in Aged Rats with Memory Impairment. J. Comp. Neurol. 2024;532:e25610. doi: 10.1002/cne.25610. PubMed DOI PMC
Castejón O.J. Ultrastructural Pathology of Human Peritumoural Oedematous Cerebellar Cortex. Folia Neuropathol. 2016;54:127–136. doi: 10.5114/fn.2016.60057. PubMed DOI
Kakizawa S., Shibazaki M., Mori N. Protein Oxidation Inhibits NO-Mediated Signaling Pathway for Synaptic Plasticity. Neurobiol. Aging. 2012;33:535–545. doi: 10.1016/j.neurobiolaging.2010.04.016. PubMed DOI
Fornasari E., Marinelli L., Di Stefano A., Eusepi P., Turkez H., Fulle S., Di Filippo E.S., Scarabeo A., Di Nicola S., Cacciatore I. Synthesis and Antioxidant Properties of Novel Memantine Derivatives. Cent. Nerv. Syst. Agents Med. Chem. 2017;17:123–128. doi: 10.2174/1871524916666160625123621. PubMed DOI
Koola M.M., Praharaj S.K., Pillai A. Galantamine-Memantine Combination as an Antioxidant Treatment for Schizophrenia. Curr. Behav. Neurosci. Rep. 2019;6:37–50. doi: 10.1007/s40473-019-00174-5. PubMed DOI PMC
Sozio P., Cerasa L.S., Laserra S., Cacciatore I., Cornacchia C., Di Filippo E.S., Fulle S., Fontana A., Di Crescenzo A., Grilli M., et al. Memantine-Sulfur Containing Antioxidant Conjugates as Potential Prodrugs to Improve the Treatment of Alzheimer’s Disease. Eur. J. Pharm. Sci. 2013;49:187–198. doi: 10.1016/j.ejps.2013.02.013. PubMed DOI
Liu W., Xu Z., Yang T., Xu B., Deng Y., Feng S. Memantine, a Low-Affinity NMDA Receptor Antagonist, Protects against Methylmercury-Induced Cytotoxicity of Rat Primary Cultured Cortical Neurons, Involvement of Ca2+ Dyshomeostasis Antagonism, and Indirect Antioxidation Effects. Mol. Neurobiol. 2017;54:5034–5050. doi: 10.1007/s12035-016-0020-2. PubMed DOI
Hussain M., Chu X., Duan Sahbaz B., Gray S., Pekhale K., Park J.-H., Croteau D.L., Bohr V.A. Mitochondrial OGG1 Expression Reduces Age-Associated Neuroinflammation by Regulating Cytosolic Mitochondrial DNA. Free Radic. Biol. Med. 2023;203:34–44. doi: 10.1016/j.freeradbiomed.2023.03.262. PubMed DOI PMC
Iida T., Furuta A., Nishioka K., Nakabeppu Y., Iwaki T. Expression of 8-Oxoguanine DNA Glycosylase Is Reduced and Associated with Neurofibrillary Tangles in Alzheimer’s Disease Brain. Acta Neuropathol. 2002;103:20–25. doi: 10.1007/s004010100418. PubMed DOI
Mehta S., Campbell H., Drummond C.J., Li K., Murray K., Slatter T., Bourdon J.-C., Braithwaite A.W. Adaptive Homeostasis and the P53 Isoform Network. EMBO Rep. 2021;22:e53085. doi: 10.15252/embr.202153085. PubMed DOI PMC
Achanta G., Huang P. Role of P53 in Sensing Oxidative DNA Damage in Response to Reactive Oxygen Species-Generating Agents. Cancer Res. 2004;64:6233–6239. doi: 10.1158/0008-5472.CAN-04-0494. PubMed DOI
Chatterjee A., Mambo E., Osada M., Upadhyay S., Sidransky D. The Effect of P53-RNAi and P53 Knockout on Human 8-Oxoguanine DNA Glycosylase (hOgg1) Activity. FASEB J. 2006;20:112–114. doi: 10.1096/fj.04-3423fje. PubMed DOI
Zhang Y., McLaughlin R., Goodyer C., LeBlanc A. Selective Cytotoxicity of Intracellular Amyloid Beta Peptide1-42 Through P53 and Bax in Cultured Primary Human Neurons. J. Cell Biol. 2002;156:519–529. doi: 10.1083/jcb.200110119. PubMed DOI PMC
Ioudina M., Uemura E. A Three Amino Acid Peptide, Gly-Pro-Arg, Protects and Rescues Cell Death Induced by Amyloid Beta-Peptide. Exp. Neurol. 2003;184:923–929. doi: 10.1016/S0014-4886(03)00314-5. PubMed DOI
de la Monte S.M., Wands J.R. Molecular Indices of Oxidative Stress and Mitochondrial Dysfunction Occur Early and Often Progress with Severity of Alzheimer’s Disease. J. Alzheimers Dis. 2006;9:167–181. doi: 10.3233/JAD-2006-9209. PubMed DOI
Liu X., Buffington J.A., Tjalkens R.B. NF-kappaB-Dependent Production of Nitric Oxide by Astrocytes Mediates Apoptosis in Differentiated PC12 Neurons Following Exposure to Manganese and Cytokines. Brain Res. Mol. Brain Res. 2005;141:39–47. doi: 10.1016/j.molbrainres.2005.07.017. PubMed DOI
Kumawat K.L., Kaushik D.K., Goswami P., Basu A. Acute Exposure to Lead Acetate Activates Microglia and Induces Subsequent Bystander Neuronal Death via Caspase-3 Activation. Neurotoxicology. 2014;41:143–153. doi: 10.1016/j.neuro.2014.02.002. PubMed DOI
Zhang L., Dong L.-Y., Li Y.-J., Hong Z., Wei W.-S. The microRNA miR-181c Controls Microglia-Mediated Neuronal Apoptosis by Suppressing Tumor Necrosis Factor. J. Neuroinflamm. 2012;9:211. doi: 10.1186/1742-2094-9-211. PubMed DOI PMC
Maccioni R.B., Rojo L.E., Fernández J.A., Kuljis R.O. The Role of Neuroimmunomodulation in Alzheimer’s Disease. Ann. N. Y. Acad. Sci. 2009;1153:240–246. doi: 10.1111/j.1749-6632.2008.03972.x. PubMed DOI
Morales I., Farías G., Maccioni R.B. Neuroimmunomodulation in the Pathogenesis of Alzheimer’s Disease. Neuroimmunomodulation. 2010;17:202–204. doi: 10.1159/000258724. PubMed DOI
Shen J., Lai W., Li Z., Zhu W., Bai X., Yang Z., Wang Q., Ji J. SDS3 Regulates Microglial Inflammation by Modulating the Expression of the Upstream Kinase ASK1 in the P38 MAPK Signaling Pathway. Inflamm. Res. 2024;73:1547–1564. doi: 10.1007/s00011-024-01913-5. PubMed DOI PMC
Agostinho P., Cunha R.A., Oliveira C. Neuroinflammation, Oxidative Stress and the Pathogenesis of Alzheimer’s Disease. Curr. Pharm. Des. 2010;16:2766–2778. doi: 10.2174/138161210793176572. PubMed DOI
Andrade-Guerrero J., Santiago-Balmaseda A., Jeronimo-Aguilar P., Vargas-Rodríguez I., Cadena-Suárez A.R., Sánchez-Garibay C., Pozo-Molina G., Méndez-Catalá C.F., Cardenas-Aguayo M.-D.-C., Diaz-Cintra S., et al. Alzheimer’s Disease: An Updated Overview of Its Genetics. Int. J. Mol. Sci. 2023;24:3754. doi: 10.3390/ijms24043754. PubMed DOI PMC
Harold D., Abraham R., Hollingworth P., Sims R., Gerrish A., Hamshere M.L., Pahwa J.S., Moskvina V., Dowzell K., Williams A., et al. Genome-Wide Association Study Identifies Variants at CLU and PICALM Associated with Alzheimer’s Disease. Nat. Genet. 2009;41:1088–1093. doi: 10.1038/ng.440. PubMed DOI PMC
Lambert J.-C., Heath S., Even G., Campion D., Sleegers K., Hiltunen M., Combarros O., Zelenika D., Bullido M.J., Tavernier B., et al. Genome-Wide Association Study Identifies Variants at CLU and CR1 Associated with Alzheimer’s Disease. Nat. Genet. 2009;41:1094–1099. doi: 10.1038/ng.439. PubMed DOI
Puerta R., de Rojas I., García-González P., Olivé C., Sotolongo-Grau O., García-Sánchez A., García-Gutiérrez F., Montrreal L., Pablo Tartari J., Sanabria Á., et al. Connecting Genomic and Proteomic Signatures of Amyloid Burden in the Brain. medRxiv. 2024 doi: 10.1101/2024.09.06.24313124. DOI
Verma V., Singh D., Kh R. Sinapic Acid Alleviates Oxidative Stress and Neuro-Inflammatory Changes in Sporadic Model of Alzheimer’s Disease in Rats. Brain Sci. 2020;10:923. doi: 10.3390/brainsci10120923. PubMed DOI PMC
Zeb Z., Sharif A., Akhtar B., Shahnaz 3-Acetyl Coumarin Alleviate Neuroinflammatory Responses and Oxidative Stress in Aluminum Chloride-Induced Alzheimer’s Disease Rat Model. Inflammopharmacology. 2024;32:1371–1386. doi: 10.1007/s10787-024-01434-x. PubMed DOI
Che H., Li Q., Zhang T., Ding L., Zhang L., Shi H., Yanagita T., Xue C., Chang Y., Wang Y. A Comparative Study of EPA-Enriched Ethanolamine Plasmalogen and EPA-Enriched Phosphatidylethanolamine on Aβ42 Induced Cognitive Deficiency in a Rat Model of Alzheimer’s Disease. Food Funct. 2018;9:3008–3017. doi: 10.1039/C8FO00643A. PubMed DOI
Yuan C., Dai C., Li Z., Zheng L., Zhao M., Dong S. Bexarotene Improve Depression-Like Behaviour in Mice by Protecting Against Neuro-Inflammation and Synaptic Damage. Neurochem. Res. 2020;45:1500–1509. doi: 10.1007/s11064-020-03012-3. PubMed DOI
Mabley J.G., Pacher P., Deb A., Wallace R., Elder R.H., Szabó C. Potential Role for 8-Oxoguanine DNA Glycosylase in Regulating Inflammation. FASEB J. 2005;19:290–292. doi: 10.1096/fj.04-2278fje. PubMed DOI
Touati E., Michel V., Thiberge J.-M., Avé P., Huerre M., Bourgade F., Klungland A., Labigne A. Deficiency in OGG1 Protects Against Inflammation and Mutagenic Effects Associated with H. Pylori Infection in Mouse. Helicobacter. 2006;11:494–505. doi: 10.1111/j.1523-5378.2006.00442.x. PubMed DOI
Pan L., Vlahopoulos S., Tanner L., Bergwik J., Bacsi A., Radak Z., Egesten A., Ba X., Brasier A.R., Boldogh I. Substrate-Specific Binding of 8-Oxoguanine DNA Glycosylase 1 (OGG1) Reprograms Mucosal Adaptations to Chronic Airway Injury. Front. Immunol. 2023;14:1186369. doi: 10.3389/fimmu.2023.1186369. PubMed DOI PMC
Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI
Dorszewska J., Adamczewska-Goncerzewicz Z., Szczech J. Apoptotic Proteins in the Course of Aging of Central Nervous System in the Rat. Respir. Physiol. Neurobiol. 2004;139:145–155. doi: 10.1016/j.resp.2003.10.009. PubMed DOI
Chomczynski P., Sacchi N. Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI
Shimoyama M., De Pons J., Hayman G.T., Laulederkind S.J.F., Liu W., Nigam R., Petri V., Smith J.R., Tutaj M., Wang S.-J., et al. The Rat Genome Database 2015: Genomic, Phenotypic and Environmental Variations and Disease. Nucleic Acids Res. 2015;43:D743–D750. doi: 10.1093/nar/gku1026. PubMed DOI PMC
Kwon N., Lee K.E., Singh M., Kang S.G. Suitable Primers for GAPDH Reference Gene Amplification in Quantitative RT-PCR Analysis of Human Gene Expression. Gene Rep. 2021;24:101272. doi: 10.1016/j.genrep.2021.101272. DOI
Leadon S.A., Cerutti P.A. A rapid and mild procedure for the isolation of DNA from mammalian cells. Anal. Biochem. 1982;120:282–288. doi: 10.1016/0003-2697(82)90349-9. PubMed DOI