Comparison of Metabolic Profiles of Fruits of Arctium lappa, Arctium minus, and Arctium tomentosum

. 2024 Jun ; 79 (2) : 497-502. [epub] 20240408

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid38589624
Odkazy

PubMed 38589624
PubMed Central PMC11178601
DOI 10.1007/s11130-024-01175-w
PII: 10.1007/s11130-024-01175-w
Knihovny.cz E-zdroje

Metabolites of the edible and medicinal plant Arctium have been shown to possess beneficial activities. The phytochemical profile of Arctium lappa is well-explored and its fruits are known to contain mainly lignans, fatty acids, and sterols. But the fruits of other Arctium species have not been thoroughly investigated. Therefore, this study compares the metabolic profiles of the fruits of A. lappa, Arctium tomentosum, and Arctium minus. Targeted metabolomics led to the putative identification of 53 metabolites in the fruit extracts, the majority of these being lignans and fatty acids. Quantification of the major lignans showed that the year of collection had a significant effect on the lignan content. Furthermore, A. lappa fruits contained lesser amounts of arctigenin but greater amounts of arctigenin glycoside than A. minus fruits. Regarding the profile of fatty acids, A. minus fruits differed from the others in the presence of linolelaidic acid.

Zobrazit více v PubMed

Štěpánek J, et al. Arctium L. - lopuch. In: Kaplan Z, Danihelka J, Chrtek J, et al., editors. Klíč ke květeně České republiky [key to the flora of the Czech Republic] Praha: Academia; 2019.

Štěpánek J. Arctium L. - lopuch. In: Slavík B, Štěpánková J, Štěpánek J, editors. Květena České republiky 7 [Flora of the Czech Republic 7] Praha: Academia; 2004.

Wang D, Bădărau AS, Swamy MK, et al. Arctium species secondary metabolites Chemodiversity and bioactivities. Front Plant Sci. 2019;10:834. doi: 10.3389/fpls.2019.00834. PubMed DOI PMC

Tousch D, Bidel LPR, Cazals G, et al. Chemical analysis and Antihyperglycemic activity of an original extract from burdock root ( Arctium lappa ) J Agric Food Chem. 2014;62:7738–7745. doi: 10.1021/jf500926v. PubMed DOI

Liu J, Cai Y-Z, Wong RNS, et al. Comparative analysis of Caffeoylquinic acids and Lignans in roots and seeds among various burdock ( Arctium lappa ) genotypes with high antioxidant activity. J Agric Food Chem. 2012;60:4067–4075. doi: 10.1021/jf2050697. PubMed DOI

Skowrońska W, Granica S, Dziedzic M, et al. Arctium lappa and Arctium tomentosum, sources of Arctii radix: comparison of anti-lipoxygenase and antioxidant activity as well as the chemical composition of extracts from aerial parts and from roots. Plants. 2021;10:78. doi: 10.3390/plants10010078. PubMed DOI PMC

Strawa J, Wajs-Bonikowska A, Jakimiuk K, et al. Phytochemical examination of woolly burdock Arctium tomentosum leaves and flower heads. Chem Nat Compd. 2020;56:345–347. doi: 10.1007/s10600-020-03027-w. DOI

Xia J, Guo Z, Fang S, et al. Effect of drying methods on volatile compounds of burdock (Arctium lappa L.) root tea as revealed by gas chromatography mass spectrometry-based metabolomics. Foods. 2021;10:868. doi: 10.3390/foods10040868. PubMed DOI PMC

Annunziata G, Barrea L, Ciampaglia R et al (2019) Arctium lappa contributes to the management of type 2 diabetes mellitus by regulating glucose homeostasis and improving oxidative stress: a critical review of in vitro and in vivo animal-based studies. Phytother Res 33:2213–2220. 10.1002/ptr.6416 PubMed

Ferracane R, Graziani G, Gallo M, et al. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J Pharm Biomed Anal. 2010;51:399–404. doi: 10.1016/j.jpba.2009.03.018. PubMed DOI

Bhatt NF, Gupta RC, Bansal Y. Secondary metabolites in Arctium lappa L.: variation among plant parts and Phenological stages. JPC – J Planar Chromatogr – Mod TLC. 2019;32:461–465. doi: 10.1556/1006.2019.32.6.3. DOI

Kang T, Dou D, Xu L. Establishment of a quality marker (Q-marker) system for Chinese herbal medicines using burdock as an example. Phytomedicine. 2019;54:339–346. doi: 10.1016/j.phymed.2018.04.005. PubMed DOI

Czech Hydrometeorological Institute (2023) https://intranet.chmi.cz/historicka-data/pocasi/mesicni-data/mesicni-data-dle-z.-123-1998-Sb

Bazina N, He J. Analysis of fatty acid profiles of free fatty acids generated in deep-frying process. J Food Sci Technol. 2018;55:3085–3092. doi: 10.1007/s13197-018-3232-9. PubMed DOI PMC

Mundim FM, Pringle EG. Whole-plant metabolic allocation under water stress. Front Plant Sci. 2018;9:852. doi: 10.3389/fpls.2018.00852. PubMed DOI PMC

Lacerda RDD, Almeida LC, Guerra HOC, Silva JEBD. Effects of soil water availability and organic matter content on fruit yield and seed oil content of castor bean1. Eng Agríc. 2020;40:703–710. doi: 10.1590/1809-4430-eng.agric.v40n6p703-710/2020. DOI

Lü H, Sun Z, Shan H, Song J (2015) Microwave-assisted extraction and purification of Arctiin and Arctigenin from Fructus Arctii by high-speed countercurrent chromatography. J Chromatogr Sci bmv168. 10.1093/chromsci/bmv168 PubMed

Wang X, Li F, Sun Q, et al. Application of preparative high-speed counter-current chromatography for separation and purification of arctiin from Fructus Arctii. J Chromatogr A. 2005;1063:247–251. doi: 10.1016/j.chroma.2004.11.077. PubMed DOI

Zhang J, Mei J, Wang H, Xu Z. Chromatographic fingerprint combined with quantitative analysis of multi-components by single-marker for quality control of total lignans from Fructus arctii by high-performance liquid chromatography. Phytochem Anal. 2022;33:1214–1224. doi: 10.1002/pca.3172. PubMed DOI

Li J, Rao H, Bin Q, et al. Linolelaidic acid induces apoptosis, cell cycle arrest and inflammation stronger than elaidic acid in human umbilical vein endothelial cells through lipid rafts. Eur J Lipid Sci Technol. 2017;119:1600374. doi: 10.1002/ejlt.201600374. DOI

Li X-P, Luo T, Li J, et al. Linolelaidic acid induces a stronger proliferative effect on human umbilical vein smooth muscle cells compared to Elaidic acid. Lipids. 2013;48:395–403. doi: 10.1007/s11745-012-3754-2. PubMed DOI

Kravtsova SS, Khasanov VV. Lignans and fatty-acid composition of Arctium lappa seeds. Chem Nat Compd. 2011;47:800–801. doi: 10.1007/s10600-011-0064-5. DOI

Morris LJ, Marshall MO, Hammond EW. Therans-3-enoic acids of Aster alpinus and Arctium minus seed oils. Lipids. 1968;3:91–95. doi: 10.1007/BF02530976. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...