Anticholinesterase Activity of Methanolic Extract of Amorpha fruticosa Flowers and Isolation of Rotenoids and Putrescine and Spermidine Derivatives
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2023042
Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/18_046/0015974
European Regional Development Fund
PubMed
38732396
PubMed Central
PMC11085544
DOI
10.3390/plants13091181
PII: plants13091181
Knihovny.cz E-zdroje
- Klíčová slova
- AChE, Amorpha fruticosa, BuChE, molecular docking, putrescine, spermidine,
- Publikační typ
- časopisecké články MeSH
Five putrescine and spermidine derivatives (1-5) together with five rotenoids (6-10) were isolated from a methanolic extract of the flowers of A. fruticosa that displayed promising inhibition of 76.0 ± 1.9% for AChE and 90.0 ± 4.0% for BuChE at a concentration of 1 mg/mL. Although the anticholinesterase activities of the isolated compounds did not reach that of galantamine, molecular docking revealed that all-trans-tri-p-coumaroylspermidine and trans-trans-cis-tri-p-coumaroylspermidine showed binding poses mimicking the known inhibitor galantamine and thus could serve as model molecules in future searches for new AChE and BuChE inhibitors.
Central European Institute of Technology Masaryk University Kamenice 5 C04 62500 Brno Czech Republic
Zobrazit více v PubMed
Kozuharova E., Benbassat N., Ionkova I. The invasive alien species Amorpha fruticosa in Bulgaria and its potential as economically prospective source of valuable essential oil. Pharmacia. 2020;67:357–362. doi: 10.3897/pharmacia.67.e51334. DOI
Kozuharova E., Matkowski A., Woźniak D., Simeonova R., Naychov Z., Malainer C., Mocan A., Nabavi S.M., Atanasov A.G. Amorpha fruticosa—A Noxious Invasive Alien Plant in Europe or a Medicinal Plant against Metabolic Disease? Front. Pharmacol. 2017;8:333. doi: 10.3389/fphar.2017.00333. PubMed DOI PMC
Lis A., Góra J. Essential Oil of Amorpha fruticosa L. J. Essent. Oil Res. 2001;13:340–342. doi: 10.1080/10412905.2001.9712227. DOI
Konoshima T., Terada H., Kokumai M., Kozuka M., Tokuda H., Estes J.R., Li L., Wang H.-K., Lee K.-H. Studies on Inhibitors of Skin Tumor Promotion, XII. Rotenoids from Amorpha fruticosa. J. Nat. Prod. 1993;56:843–848. doi: 10.1021/np50096a006. PubMed DOI
Muharini R., Díaz A., Ebrahim W., Mándi A., Kurtán T., Rehberg N., Kalscheuer R., Hartmann R., Orfali R.S., Lin W., et al. Antibacterial and Cytotoxic Phenolic Metabolites from the Fruits of Amorpha fruticosa. J. Nat. Prod. 2017;80:169–180. doi: 10.1021/acs.jnatprod.6b00809. PubMed DOI
Zheleva-Dimitrova D. Antioxidant and acetylcholinesterase inhibition properties of Amorpha fruticosa L. and Phytolacca americana L. Pharmacogn. Mag. 2013;9:109. doi: 10.4103/0973-1296.111251. PubMed DOI PMC
Cho J.Y., Kim P.S., Park J., Yoo E.S., Baik K.U., Kim Y.-K., Park M.H. Inhibitor of tumor necrosis factor-α production in lipopolysaccharide-stimulated RAW264.7 cells from Amorpha fruticosa. J. Ethnopharmacol. 2000;70:127–133. doi: 10.1016/S0378-8741(99)00154-3. PubMed DOI
Dat N.T., Lee J.-H., Lee K., Hong Y.-S., Kim Y.H., Lee J.J. Phenolic Constituents of Amorpha fruticosa That Inhibit NF-κB Activation and Related Gene Expression. J. Nat. Prod. 2008;71:1696–1700. doi: 10.1021/np800383q. PubMed DOI
Moon S.W., Kim J.Y., Lee S.H., Im S.Y., Lee G., Park K.H. New Class of Tyrosinase Inhibitors, Rotenoids, from Amorpha fruticosa. ACS Omega. 2023;8:31870–31879. doi: 10.1021/acsomega.3c03396. PubMed DOI PMC
Weidner C., De Groot J.C., Prasad A., Freiwald A., Quedenau C., Kliem M., Witzke A., Kodelja V., Han C.-T., Giegold S., et al. Amorfrutins are potent antidiabetic dietary natural products. Proc. Natl. Acad. Sci. USA. 2012;109:7257–7262. doi: 10.1073/pnas.1116971109. PubMed DOI PMC
Bassard J.-E., Ullmann P., Bernier F., Werck-Reichhart D. Phenolamides: Bridging polyamines to the phenolic metabolism. Phytochemistry. 2010;71:1808–1824. doi: 10.1016/j.phytochem.2010.08.003. PubMed DOI
Kyselka J., Bleha R., Dragoun M., Bialasová K., Horáčková Š., Schätz M., Sluková M., Filip V., Synytsya A. Antifungal Polyamides of Hydroxycinnamic Acids from Sunflower Bee Pollen. J. Agric. Food Chem. 2018;66:11018–11026. doi: 10.1021/acs.jafc.8b03976. PubMed DOI
Roumani M., Duval R.E., Ropars A., Risler A., Robin C., Larbat R. Phenolamides: Plant specialized metabolites with a wide range of promising pharmacological and health-promoting interests. Biomed. Pharmacother. 2020;131:110762. doi: 10.1016/j.biopha.2020.110762. PubMed DOI
Zhang L., Gu C., Liu J. Nature spermidine and spermine alkaloids: Occurrence and pharmacological effects. Arab. J. Chem. 2022;15:104367. doi: 10.1016/j.arabjc.2022.104367. DOI
Nugroho A., Choi J.S., Hong J.-P., Park H.-J. Anti-acetylcholinesterase activity of the aglycones of phenolic glycosides isolated from Leonurus japonicus. Asian Pac. Trop. Biomed. 2017;7:849–854. doi: 10.1016/j.apjtb.2017.08.013. DOI
Greig N.H., Lahiri D.K., Sambamurti K. Butyrylcholinesterase: An Important New Target in Alzheimer’s Disease Therapy. Int. Psychogeriatr. 2002;14:77–91. doi: 10.1017/S1041610203008676. PubMed DOI
Kim S.B., Liu Q., Ahn J.H., Jo Y.H., Turk A., Hong I.P., Han S.M., Hwang B.Y., Lee M.K. Polyamine derivatives from the bee pollen of Quercus mongolica with tyrosinase inhibitory activity. Bioorg. Chem. 2018;81:127–133. doi: 10.1016/j.bioorg.2018.08.014. PubMed DOI
Choi S.W., Lee S.K., Kim E.O., Oh J.H., Yoon K.S., Parris N., Hicks K.B., Moreau R.A. Antioxidant and Antimelanogenic Activities of Polyamine Conjugates from Corn Bran and Related Hydroxycinnamic Acids. J. Agric. Food Chem. 2007;55:3920–3925. doi: 10.1021/jf0635154. PubMed DOI
Jiang J.-S., Lü L., Yang Y.-J., Zhang J.-L., Zhang P.-C. New spermidines from the florets of Carthamus tinctorius. J. Asian Nat. Prod. Res. 2008;10:447–451. doi: 10.1080/10286020801948540. PubMed DOI
Zhao G., Qin G.-W., Gai Y., Guo L.-H. Structural Identification of a New Tri-p-coumaroylspermidine with Serotonin Transporter Inhibition from Safflower. Chem. Pharm. Bull. 2010;58:950–952. doi: 10.1248/cpb.58.950. PubMed DOI
Ma C.-M., Nakamura N., Hattori M. Inhibitory Effects on HIV-1 Protease of Tri-p-coumaroylspermidine from Artemisia caruifolia and Related Amides. Chem. Pharm. Bull. 2001;49:915–917. doi: 10.1248/cpb.49.915. PubMed DOI
Dagne E., Yenesew A., Waterman P.G. Flavonoids and isoflavonoids from Tephrosia fulvinervis and Tephrosia pentaphylla. Phytochemistry. 1989;28:3207–3210. doi: 10.1016/0031-9422(89)80308-5. DOI
Lin L.-J., Ruangrungsi N., Cordell G.A., Shieh H.-L., You M., Pezzuto J.M. 6-Deoxyclitoriacetal from Clitoria macrophylla. Phytochemistry. 1992;31:4329–4331. doi: 10.1016/0031-9422(92)80468-T. DOI
Terada H., Kokumai M., Konoshima T., Kozuka M., Haruna M., Ito K., Estes J.R., Li L., Wang H.-K., Lee K.-H. Structural Elucidation and Chemical Conversion of Amorphispironone, a Novel Spironone from Amorpha fruticosa, to Rotenoids. Chem. Pharm. Bull. 1993;41:187–190. doi: 10.1248/cpb.41.187. DOI
Andrei C.C., Vieira P.C., Fernandes J.B., Da Silva M.F.D.G.F., Rodrigues^Fo E. Dimethylchromene rotenoids from Tephrosia candida. Phytochemistry. 1997;46:1081–1085. doi: 10.1016/S0031-9422(97)00405-6. DOI
Colletier J.-P., Royant A., Specht A., Sanson B., Nachon F., Masson P., Zaccai G., Sussman J.L., Goeldner M., Silman I., et al. Use of a “caged” analogue to study the traffic of choline within acetylcholinesterase by kinetic crystallography. Acta Cryst. D. 2007;63:1115–1128. doi: 10.1107/S0907444907044472. PubMed DOI
Bajda M., Więckowska A., Hebda M., Guzior N., Sotriffer C.A., Malawska B. Structure-Based Search for New Inhibitors of Cholinesterases. Int. J. Mol. Sci. 2013;14:5608–5632. doi: 10.3390/ijms14035608. PubMed DOI PMC
Khongkarat P., Ramadhan R., Phuwapraisirisan P., Chanchao C. Safflospermidines from the bee pollen of Helianthus annuus L. exhibit a higher in vitro antityrosinase activity than kojic acid. Heliyon. 2020;6:e03638. doi: 10.1016/j.heliyon.2020.e03638. PubMed DOI PMC
Vukašinović E.L., Kebert M., Radišić P., Đorđievski S., Čelić T.V., Pihler I., Kojić D., Purać J. Polyamine profiling in honey bee products: A contribution to functional nutrition. J. Food Compos. Anal. 2024;125:105856. doi: 10.1016/j.jfca.2023.105856. DOI
Zhou Z.-Q., Fan H.-X., He R.-R., Xiao J., Tsoi B., Lan K.-H., Kurihara H., So K.-F., Yao X.-S., Gao H. Lycibarbarspermidines A–O, New Dicaffeoylspermidine Derivatives from Wolfberry, with Activities against Alzheimer’s Disease and Oxidation. J. Agric. Food Chem. 2016;64:2223–2237. doi: 10.1021/acs.jafc.5b05274. PubMed DOI
Kim E.O., Min K.J., Kwon T.K., Um B.H., Moreau R.A., Choi S.W. Anti-inflammatory activity of hydroxycinnamic acid derivatives isolated from corn bran in lipopolysaccharide-stimulated Raw 264.7 macrophages. Food Chem. Toxicol. 2012;50:1309–1316. doi: 10.1016/j.fct.2012.02.011. PubMed DOI
Szwajgier D., Borowiec K. Phenolic acids from malt are efficient acetylcholinesterase and butyrylcholinesterase inhibitors: Phenolic acids as efficient AChE and BChE inhibitors. J. Inst. Brew. 2012;118:40–48. doi: 10.1002/jib.5. DOI
Tu Y., Wu C., Kang Y., Li Q., Zhu C., Li Y. Bioactivity-guided identification of flavonoids with cholinesterase and β-amyloid peptide aggregation inhibitory effects from the seeds of Millettia pachycarpa. Bioorg. Med. Chem. Lett. 2019;29:1194–1198. doi: 10.1016/j.bmcl.2019.03.024. PubMed DOI
Malaník M., Farková V., Křížová J., Kresová A., Šmejkal K., Kašparovský T., Dadáková K. Comparison of Metabolic Profiles of Fruits of Arctium lappa, Arctium minus, and Arctium tomentosum. Plant Foods Hum. Nutr. 2024 doi: 10.1007/s11130-024-01175-w. PubMed DOI PMC
Fan P., Terrier L., Hay A.-E., Marston A., Hostettmann K. Antioxidant and enzyme inhibition activities and chemical profiles of Polygonum sachalinensis F.Schmidt ex Maxim (Polygonaceae) Fitoterapia. 2010;81:124–131. doi: 10.1016/j.fitote.2009.08.019. PubMed DOI
Kubínová R., Švajdlenka E., Jankovská D. Anticholinesterase, antioxidant activity and phytochemical investigation into aqueous extracts from five species of Agrimonia genus. Nat. Prod. Res. 2016;30:1174–1177. doi: 10.1080/14786419.2015.1043552. PubMed DOI
Dallakyan S., Olson A.J. Small-Molecule Library Screening by Docking with PyRx. In: Hempel J.E., Williams C.H., Hong C.C., editors. Chemical Biology: Methods and Protocols. Springer; New York, NY, USA: 2015. pp. 243–250. Methods in Molecular Biology. PubMed
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Schrodinger L. The PyMOL Molecular Graphics System. DeLano Scientific LLC; San Francisco, CA, USA: 2010. Version 2.5.