Spliceosome malfunction causes neurodevelopmental disorders with overlapping features
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
K02 NS112600
NINDS NIH HHS - United States
P50 HD105354
NICHD NIH HHS - United States
R01 NS107392
NINDS NIH HHS - United States
U01 HG007672
NHGRI NIH HHS - United States
Wellcome Trust - United Kingdom
R01 NS131512
NINDS NIH HHS - United States
U01 HG007301
NHGRI NIH HHS - United States
U01 HG009610
NHGRI NIH HHS - United States
PubMed
37962958
PubMed Central
PMC10760965
DOI
10.1172/jci171235
PII: 171235
Knihovny.cz E-zdroje
- Klíčová slova
- Development, Genetic diseases, Genetics, Neurodevelopment, iPS cells,
- MeSH
- enzymy opravy DNA genetika MeSH
- genové regulační sítě MeSH
- jaderné proteiny genetika MeSH
- lidé MeSH
- missense mutace MeSH
- neurovývojové poruchy * genetika MeSH
- sestřih RNA MeSH
- sestřihové faktory genetika MeSH
- spliceozomy * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- enzymy opravy DNA MeSH
- jaderné proteiny MeSH
- PRPF19 protein, human MeSH Prohlížeč
- sestřihové faktory MeSH
Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50-deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function.
Aix Marseille University Inserm U1251 MMG Marseille Medical Genetics Marseille France
Ambry Genetics Aliso Viejo California USA
Center for Applied Genomics and
Center for Development Behavior and Genetics SUNY Upstate Medical University Syracuse New York USA
Central Michigan University College of Medicine Discipline of Pediatrics Mount Pleasant Michigan USA
Centro de Investigación Biomédica en Red de Enfermedades Raras ISCIII Madrid Spain
Children's Hospital of Eastern Ontario Research Institute University of Ottawa Ottawa Ontario Canada
Department for Epilepsy Genetics and Personalized Medicine Danish Epilepsy Centre Dianalund Denmark
Department of Clinical Genetics Cook Children's Hospital Fort Worth Texas USA
Department of Clinical Genetics Erasmus Medical Center Rotterdam The Netherlands
Department of Clinical Genetics Sheffield Children's Hospital Sheffield United Kingdom
Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
Department of Drug Design and Pharmacology University of Copenhagen Copenhagen Denmark
Department of Epilepsy Genetics and Personalized Medicine Danish Epilepsy Centre Dianalund Denmark
Department of General Medicine Women's and Children's Hospital Adelaide South Australia Australia
Department of Genetics Albert Einstein College of Medicine Bronx New York USA
Department of Genetics Hospital Pitié Salpêtrière Paris France
Department of Genetics Kaiser Permanente Los Angeles California USA
Department of Genetics University of Alabama at Birmingham Birmingham Alabama USA
Department of Human Genetics Academic Medical Center and
Department of Human Genetics Yokohama City University Graduate School of Medicine Yokohama Japan
Department of Medical Genetics Timone Hospital APHM Marseille France
Department of Molecular Genetics University of Toronto Toronto Ontario Canada
Department of Neurology University of Pennsylvania Philadelphia Pennsylvania USA
Department of Obstetrics and Gynecology Juntendo University Tokyo Japan
Department of Pathology Columbia University Irving Medical Center New York New York USA
Department of Pediatrics Cincinnati Children's Hospital Medical Center Cincinnati Ohio USA
Department of Pediatrics Graduate School of Medical Sciences Kyushu University Fukuoka Japan
Department of Pediatrics Karatsu Red Cross Hospital Saga Japan
Department of Precision Medicine University of Campania Luigi Vanvitelli Naples Italy
Department of Rare Disease Genomics Yokohama City University Hospital Yokohama Japan
Department of Regional Health Research University of Southern Denmark Odense Denmark
Division of Clinical and Metabolic Genetics The Hospital for Sick Children Toronto Ontario Canada
Division of Genetics and Genomics Boston Children's Hospital Boston Massachusetts USA
Division of Genetics and Metabolism Mass General Hospital for Children Boston Massachusetts USA
Division of Genetics Department of Paediatrics London Health Sciences Centre London Ontario Canada
Division of Genetics Department of Paediatrics McMaster University Hamilton Ontario Canada
Division of Human Genetics The Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
Division of Medical Genetics Children's Hospital Los Angeles California USA
Division of Medical Genetics Department of Pediatrics UCLA Los Angeles California USA
Division of Pediatric Pulmonary and Sleep Medicine University of Utah Salt Lake City Utah USA
DZHK partner site Göttingen Göttingen Germany
eCODE genetics Amgen Inc Reykjavik Iceland
Faculty of Medicine School of Health Sciences University of Iceland Reykjavik Iceland
Genetic Service Hospital del Mar Research Institute Barcelona Spain
Genetic Services Kaiser Permenante of Washington Seattle Washington USA
Genetics and Molecular Pathology SA Pathology Adelaide South Australia Australia
Genetics and Rare Diseases Research Division Ospedale Pediatrico Bambino Gesù IRCCS Rome Italy
Genome Diagnostics Department of Paediatric Laboratory Medicine and
Greenwood Genetic Center Greenwood South Carolina USA
HudsonAlpha Institute for Biotechnology Huntsville Alabama USA
Institute of Human Genetics Friedrich Alexander Universität Erlangen Nürnberg Erlangen Germany
Institute of Human Genetics University Medical Center Göttingen Göttingen Germany
Institute of Medical and Molecular Genetics Hospital Universitario La Paz Madrid Spain
Invitae San Francisco California USA
Keck School of Medicine of the University of Southern California Los Angeles California USA
Kinderzentrum Oldenburg Sozialpädiatrisches Zentrum Diakonisches Werk Oldenburg Oldenburg Germany
Laboratoire de Biologie Médicale Multi Sites SeqOIA Paris France
Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
Mitochondrial Medicine Frontier Program Division of Human Genetics Department of Pediatrics
Nantes Université CHU Nantes Medical Genetics Department Nantes France
Nantes Université CNRS INSERM l'Institut du Thorax Nantes France
New York Genome Center New York New York USA
Oasi Research Institute IRCCS Troina Italy
Pediatric Neurology and Muscular Diseases Unit and
Pediatric Neurology Hospital del Mar Research Institute Barcelona Spain
Rady Children's Institute for Genomic Medicine San Diego California USA
Rare Disease Genetics Department APHP Hôpital Necker Paris France
Reference Center for Hereditary Metabolic Diseases CHU Dijon Bourgogne Dijon France
South Australian Health and Medical Research Institute Adelaide South Australia Australia
Telethon Institute of Genetics and Medicine Pozzuoli Naples Italy
UF Innovation en Diagnostic Génomique des Maladies Rares CHU Dijon Bourgogne Dijon France
Universitat Pompeu Fabra Barcelona Spain
University Health Network Toronto Ontario Canada
University of Illinois College of Medicine Mercy Health Systems Rockford Illinois USA
Zobrazit více v PubMed
Vissers LE, et al. Genetic studies in intellectual disability and related disorders. Nat Rev Genet. 2016;17(1):9–18. doi: 10.1038/nrg3999. PubMed DOI
Vissers LE, et al. A de novo paradigm for mental retardation. Nat Genet. 2010;42(12):1109–1112. doi: 10.1038/ng.712. PubMed DOI
Ropers HH. Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet. 2010;11:161–187. doi: 10.1146/annurev-genom-082509-141640. PubMed DOI
Leblond CS, et al. Operative list of genes associated with autism and neurodevelopmental disorders based on database review. Mol Cell Neurosci. 2021;113:103623. doi: 10.1016/j.mcn.2021.103623. PubMed DOI
Bryant L, et al. Histone H3.3 beyond cancer: germline mutations in Histone 3 Family 3A and 3B cause a previously unidentified neurodegenerative disorder in 46 patients. Sci Adv. 2020;6(49):eabc9207. doi: 10.1126/sciadv.abc9207. PubMed DOI PMC
Sheppard SE, et al. Expanding the genotypic and phenotypic spectrum in a diverse cohort of 104 individuals with Wiedemann-Steiner syndrome. Am J Med Genet A. 2021;185(6):1649–1665. doi: 10.1002/ajmg.a.62124. PubMed DOI PMC
Sobering AK, et al. Variants in PHF8 cause a spectrum of X-linked neurodevelopmental disorders and facial dysmorphology. HGG Adv. 2022;3(3):100102. doi: 10.1016/j.xhgg.2022.100102. PubMed DOI PMC
Li D, et al. Further supporting SMARCC2-related neurodevelopmental disorder through exome analysis and reanalysis in two patients. Am J Med Genet A. 2022;188(3):878–882. doi: 10.1002/ajmg.a.62597. PubMed DOI
Li D, et al. Pathogenic variants in SMARCA5, a chromatin remodeler, cause a range of syndromic neurodevelopmental features. Sci Adv. 2021;7(20):eabf2066. doi: 10.1126/sciadv.abf2066. PubMed DOI PMC
Drivas TG, et al. A second cohort of CHD3 patients expands the molecular mechanisms known to cause Snijders Blok-Campeau syndrome. Eur J Hum Genet. 2020;28(10):1422–1431. doi: 10.1038/s41431-020-0654-4. PubMed DOI PMC
Li D, et al. The variability of SMARCA4-related Coffin-Siris syndrome: Do nonsense candidate variants add to milder phenotypes? Am J Med Genet A. 2020;182(9):2058–2067. doi: 10.1002/ajmg.a.61732. PubMed DOI
Thiffault I, et al. On the verge of diagnosis: detection, reporting, and investigation of de novo variants in novel genes identified by clinical sequencing. Hum Mutat. 2018;39(11):1505–1516. doi: 10.1002/humu.23646. PubMed DOI
Gebauer F, et al. RNA-binding proteins in human genetic disease. Nat Rev Genet. 2021;22(3):185–198. doi: 10.1038/s41576-020-00302-y. PubMed DOI
Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol. 2014;15(2):108–121. doi: 10.1038/nrm3742. PubMed DOI PMC
Shi Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol. 2017;18(11):655–670. doi: 10.1038/nrm.2017.86. PubMed DOI
Lalli MA, et al. High-throughput single-cell functional elucidation of neurodevelopmental disease-associated genes reveals convergent mechanisms altering neuronal differentiation. Genome Res. 2020;30(9):1317–1331. doi: 10.1101/gr.262295.120. PubMed DOI PMC
Marchetto MC, et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010;143(4):527–539. doi: 10.1016/j.cell.2010.10.016. PubMed DOI PMC
Van Bokhoven H. Genetic and epigenetic networks in intellectual disabilities. Annu Rev Genet. 2011;45:81–104. doi: 10.1146/annurev-genet-110410-132512. PubMed DOI
Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet. 2016;17(1):19–32. doi: 10.1038/nrg.2015.3. PubMed DOI PMC
Wang T, et al. Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nat Commun. 2020;11(1):4932. doi: 10.1038/s41467-020-18723-y. PubMed DOI PMC
Kalscheuer VM, et al. Mutations in the polyglutamine binding protein 1 gene cause X-linked mental retardation. Nat Genet. 2003;35(4):313–315. doi: 10.1038/ng1264. PubMed DOI
Lee YR, et al. Mutations in FAM50A suggest that Armfield XLID syndrome is a spliceosomopathy. Nat Commun. 2020;11(1):3698. doi: 10.1038/s41467-020-17452-6. PubMed DOI PMC
Von Elsner L, et al. Biallelic FRA10AC1 variants cause a neurodevelopmental disorder with growth retardation. Brain. 2022;145(4):1551–1563. doi: 10.1093/brain/awab403. PubMed DOI PMC
Modafferi EF, Black DL. A complex intronic splicing enhancer from the c-src pre-mRNA activates inclusion of a heterologous exon. Mol Cell Biol. 1997;17(11):6537–6545. doi: 10.1128/MCB.17.11.6537. PubMed DOI PMC
Jin Y, et al. A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J. 2003;22(4):905–912. doi: 10.1093/emboj/cdg089. PubMed DOI PMC
Sobreira N, et al. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36(10):928–930. doi: 10.1002/humu.22844. PubMed DOI PMC
Philippakis AA, et al. The Matchmaker Exchange: a platform for rare disease gene discovery. Hum Mutat. 2015;36(10):915–921. doi: 10.1002/humu.22858. PubMed DOI PMC
Bowling KM, et al. Genome sequencing as a first-line diagnostic test for hospitalized infants. Genet Med. 2022;24(4):851–861. doi: 10.1016/j.gim.2021.11.020. PubMed DOI PMC
Hsieh TC, et al. GestaltMatcher facilitates rare disease matching using facial phenotype descriptors. Nat Genet. 2022;54(3):349–357. doi: 10.1038/s41588-021-01010-x. PubMed DOI PMC
Zamore PD, Green MR. Identification, purification, and biochemical characterization of U2 small nuclear ribonucleoprotein auxiliary factor. Proc Natl Acad Sci U S A. 1989;86(23):9243–9247. doi: 10.1073/pnas.86.23.9243. PubMed DOI PMC
Singh R, et al. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science. 1995;268(5214):1173–1176. doi: 10.1126/science.7761834. PubMed DOI
Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542(7642):433–438. doi: 10.1038/nature21062. PubMed DOI PMC
Miller JA, et al. Transcriptional landscape of the prenatal human brain. Nature. 2014;508(7495):199–206. doi: 10.1038/nature13185. PubMed DOI PMC
Schlegelmilch K, et al. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell. 2011;144(5):782–795. doi: 10.1016/j.cell.2011.02.031. PubMed DOI PMC
King I, et al. Drosophila tao controls mushroom body development and ethanol-stimulated behavior through par-1. J Neurosci. 2011;31(3):1139–1148. doi: 10.1523/JNEUROSCI.4416-10.2011. PubMed DOI PMC
Simon AF, et al. A simple assay to study social behavior in Drosophila: measurement of social space within a group. Genes Brain Behav. 2012;11(2):243–252. doi: 10.1111/j.1601-183X.2011.00740.x. PubMed DOI PMC
Parkes TL, et al. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet. 1998;19(2):171–174. doi: 10.1038/534. PubMed DOI
Han C, et al. Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron-glia interactions in Drosophila. Proc Natl Acad Sci U S A. 2011;108(23):9673–9678. doi: 10.1073/pnas.1106386108. PubMed DOI PMC
Zhang Y, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 2013;78(5):785–798. doi: 10.1016/j.neuron.2013.05.029. PubMed DOI PMC
Cvitkovic I, Jurica MS. Spliceosome database: a tool for tracking components of the spliceosome. Nucleic Acids Res. 2013;41(database issue):D132–D141. doi: 10.1093/nar/gks999. PubMed DOI PMC
Tarn WY, et al. Yeast precursor mRNA processing protein PRP19 associates with the spliceosome concomitant with or just after dissociation of U4 small nuclear RNA. Proc Natl Acad Sci U S A. 1993;90(22):10821–10825. doi: 10.1073/pnas.90.22.10821. PubMed DOI PMC
Tarn WY, et al. Functional association of essential splicing factor(s) with PRP19 in a protein complex. EMBO J. 1994;13(10):2421–2431. doi: 10.1002/j.1460-2075.1994.tb06527.x. PubMed DOI PMC
Chan SP, et al. The Prp19p-associated complex in spliceosome activation. Science. 2003;302(5643):279–282. doi: 10.1126/science.1086602. PubMed DOI
Ohi MD, Gould KL. Characterization of interactions among the Cef1p-Prp19p-associated splicing complex. RNA. 2002;8(6):798–815. doi: 10.1017/S1355838202025050. PubMed DOI PMC
Chanarat S, Strasser K. Splicing and beyond: the many faces of the Prp19 complex. Biochim Biophys Acta. 2013;1833(10):2126–2134. doi: 10.1016/j.bbamcr.2013.05.023. PubMed DOI
Rasche N, et al. Cwc2 and its human homologue RBM22 promote an active conformation of the spliceosome catalytic centre. EMBO J. 2012;31(6):1591–1604. doi: 10.1038/emboj.2011.502. PubMed DOI PMC
De Moura TR, et al. Prp19/Pso4 is an autoinhibited ubiquitin ligase activated by stepwise assembly of three splicing factors. Mol Cell. 2018;69(6):979–992. doi: 10.1016/j.molcel.2018.02.022. PubMed DOI
David CJ, et al. The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex. Genes Dev. 2011;25(9):972–983. doi: 10.1101/gad.2038011. PubMed DOI PMC
Venselaar H, et al. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics. 2010;11:548. doi: 10.1186/1471-2105-11-548. PubMed DOI PMC
Anders S, et al. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012;22(10):2008–2017. doi: 10.1101/gr.133744.111. PubMed DOI PMC
Ritchie ME, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
Hartley SW, Mullikin JC. Detection and visualization of differential splicing in RNA-Seq data with JunctionSeq. Nucleic Acids Res. 2016;44(15):e127. doi: 10.1093/nar/gkw501. PubMed DOI PMC
Hogg R, et al. The function of the NineTeen Complex (NTC) in regulating spliceosome conformations and fidelity during pre-mRNA splicing. Biochem Soc Trans. 2010;38(4):1110–1115. doi: 10.1042/BST0381110. PubMed DOI PMC
Underwood JG, et al. Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol Cell Biol. 2005;25(22):10005–10016. doi: 10.1128/MCB.25.22.10005-10016.2005. PubMed DOI PMC
Tomassoni-Ardori F, et al. Rbfox1 up-regulation impairs BDNF-dependent hippocampal LTP by dysregulating TrkB isoform expression levels. Elife. 2019;8:e49673. doi: 10.7554/eLife.49673. PubMed DOI PMC
El Chehadeh S, et al. Dominant variants in the splicing factor PUF60 cause a recognizable syndrome with intellectual disability, heart defects and short stature. Eur J Hum Genet. 2016;25(1):43–51. doi: 10.1038/ejhg.2016.133. PubMed DOI PMC
Yoshida K, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–69. doi: 10.1038/nature10496. PubMed DOI
Kaplanis J, et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature. 2020;586(7831):757–762. doi: 10.1038/s41586-020-2832-5. PubMed DOI PMC
Hiraide T, et al. Global developmental delay, systemic dysmorphism and epilepsy in a patient with a de novo U2AF2 variant. J Hum Genet. 2021;66(12):1185–1187. doi: 10.1038/s10038-021-00948-4. PubMed DOI
Kittock CM, et al. U2AF2 variant in a patient with developmental delay, dysmorphic features, and epilepsy. Am J Med Genet A. 2023;191(7):1968–1972. doi: 10.1002/ajmg.a.63221. PubMed DOI
Wang X, et al. A presumed missense variant in the U2AF2 gene causes exon skipping in neurodevelopmental diseases. J Hum Genet. 2023;68(6):375–382. doi: 10.1038/s10038-023-01128-2. PubMed DOI
Neumuller RA, et al. Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell. 2011;8(5):580–593. doi: 10.1016/j.stem.2011.02.022. PubMed DOI PMC
Fortschegger K, et al. Early embryonic lethality of mice lacking the essential protein SNEV. Mol Cell Biol. 2007;27(8):3123–3130. doi: 10.1128/MCB.01188-06. PubMed DOI PMC
Gong NN, et al. The chromatin remodeler ISWI acts during Drosophila development to regulate adult sleep. Sci Adv. 2021;7(8):eabe2597. doi: 10.1126/sciadv.abe2597. PubMed DOI PMC
Corthals K, et al. Neuroligins Nlg2 and Nlg4 affect social behavior in Drosophila melanogaster. Front Psychiatry. 2017;8:113. doi: 10.3389/fpsyt.2017.00113. PubMed DOI PMC
Merkin J, et al. Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science. 2012;338(6114):1593–1599. doi: 10.1126/science.1228186. PubMed DOI PMC
Li Q, et al. Neuronal regulation of alternative pre-mRNA splicing. Nat Rev Neurosci. 2007;8(11):819–831. doi: 10.1038/nrn2237. PubMed DOI
Raj B, Blencowe BJ. Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles. Neuron. 2015;87(1):14–27. doi: 10.1016/j.neuron.2015.05.004. PubMed DOI
Staley JP, Guthrie C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell. 1998;92(3):315–326. doi: 10.1016/S0092-8674(00)80925-3. PubMed DOI