Quantitative imaging of lipid transport in mammalian cells
Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40836094
DOI
10.1038/s41586-025-09432-x
PII: 10.1038/s41586-025-09432-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Eukaryotic cells produce over 1,000 different lipid species that tune organelle membrane properties, control signalling and store energy1,2. How lipid species are selectively sorted between organelles to maintain specific membrane identities is largely unclear, owing to the difficulty of imaging lipid transport in cells3. Here we measured the retrograde transport and metabolism of individual lipid species in mammalian cells using time-resolved fluorescence imaging of bifunctional lipid probes in combination with ultra-high-resolution mass spectrometry and mathematical modelling. Quantification of lipid flux between organelles revealed that directional, non-vesicular lipid transport is responsible for fast, species-selective lipid sorting, in contrast to the slow, unspecific vesicular membrane trafficking. Using genetic perturbations, we found that coupling between energy-dependent lipid flipping and non-vesicular transport is a mechanism for directional lipid transport. Comparison of metabolic conversion and transport rates showed that non-vesicular transport dominates the organelle distribution of lipids, while species-specific phospholipid metabolism controls neutral lipid accumulation. Our results provide the first quantitative map of retrograde lipid flux in cells4. We anticipate that our pipeline for mapping of lipid flux through physical and chemical space in cells will boost our understanding of lipids in cell biology and disease.
Cluster of Excellence Physics of Life TU Dresden Dresden Germany
École polytechnique fédérale de Lausanne Lausanne Switzerland
Helmholtz Zentrum Dresden Rossendorf Institute of Resource Ecology Dresden Germany
Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
Zobrazit více v PubMed
Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018). PubMed
van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008). PubMed PMC
Kim, Y. & Burd, C. G. Lipid Sorting and organelle identity. Cold Spring Harb. Perspect. Biol. 15, a041397 (2023). PubMed
Moon, H., Iglesias-Artola, J. M., Hersemann, L. & Nadler, A. Lipid imaging: quantitative imaging of species-specific lipid transport in mammalian cells. https://doi.org/21.11101/0000-0007-FCE5-B (Max Planck Institute of Molecular Cell Biology and Genetics, 2025).
Klose, C., Surma, M. A. & Simons, K. Organellar lipidomics—background and perspectives. Curr. Opin. Cell Biol. 25, 406–413 (2013). PubMed
Sampaio, J. L. et al. Membrane lipidome of an epithelial cell line. Proc. Natl Acad. Sci. USA 108, 1903–1907 (2011). PubMed PMC
Holthuis, J. C. M. & Menon, A. K. Lipid landscapes and pipelines in membrane homeostasis. Nature 510, 48–57 (2014). PubMed
Reinisch, K. M. & Prinz, W. A. Mechanisms of nonvesicular lipid transport. J. Cell Biol. 220, e202012058 (2021). PubMed PMC
Koivusalo, M., Jansen, M., Somerharju, P. & Ikonen, E. Endocytic trafficking of sphingomyelin depends on its acyl chain length. MBoC 18, 5113–5123 (2007). PubMed PMC
Haberkant, P. & Holthuis, J. C. M. Fat & fabulous: bifunctional lipids in the spotlight. Biochim. Biophys. Acta 1841, 1022–1030 (2014). PubMed
Höglinger, D. et al. Trifunctional lipid probes for comprehensive studies of single lipid species in living cells. Proc. Natl Acad. Sci. USA 114, 1566–1571 (2017). PubMed PMC
Haberkant, P. et al. In vivo profiling and visualization of cellular protein-lipid interactions using bifunctional fatty acids. Angew. Chem. Int. Ed. 52, 4033–4038 (2013).
Höglinger, D. in Intracellular Lipid Transport. Methods in Molecular Biology Vol. 1949 (ed. Drin, G.) 95–103 (Humana Press, 2019); https://doi.org/10.1007/978-1-4939-9136-5_8 .
Altuzar, J. et al. Lysosome-targeted multifunctional lipid probes reveal the sterol transporter NPC1 as a sphingosine interactor. Proc. Natl Acad. Sci. USA 120, e2213886120 (2023). PubMed PMC
Farley, S., Stein, F., Haberkant, P., Tafesse, F. G. & Schultz, C. Trifunctional sphinganine: a new tool to dissect sphingolipid function. ACS Chem. Biol. 19, 336–347 (2024). PubMed PMC
Schuhmacher, M. et al. Live-cell lipid biochemistry reveals a role of diacylglycerol side-chain composition for cellular lipid dynamics and protein affinities. Proc. Natl Acad. Sci. USA 117, 7729–7738 (2020). PubMed PMC
Höglinger, D., Nadler, A. & Schultz, C. Caged lipids as tools for investigating cellular signaling. Biochim. Biophys. Acta 1841, 1085–1096 (2014). PubMed
Jiménez-López, C. & Nadler, A. Caged lipid probes for controlling lipid levels on subcellular scales. Curr. Opin. Chem. Biol. 72, 102234 (2023). PubMed
Frank, J. A. et al. Photoswitchable diacylglycerols enable optical control of protein kinase C. Nat. Chem. Biol. 12, 755 (2016). PubMed PMC
Morstein, J., Impastato, A. C. & Trauner, D. Photoswitchable lipids. ChemBioChem 22, 73–83 (2021). PubMed
Haldar, S. & Chattopadhyay, A. in Fluorescent Methods to Study Biological Membranes (eds Mély, Y. & Duportail, G.) 37–50 (Springer, 2013); https://doi.org/10.1007/4243_2012_43 .
Klymchenko, A. S. & Kreder, R. Fluorescent probes for lipid rafts: from model membranes to living cells. Chem. Biol. 21, 97–113 (2014). PubMed
Triebl, A. & Wenk, M. R. Analytical considerations of stable isotope labelling in lipidomics. Biomolecules 8, 151 (2018). PubMed PMC
Postle, A. D. & Hunt, A. N. Dynamic lipidomics with stable isotope labelling. J. Chromatogr. B 877, 2716–2721 (2009).
Thiele, C. et al. Tracing fatty acid metabolism by click chemistry. ACS Chem. Biol. 7, 2004–2011 (2012). PubMed
Thiele, C., Wunderling, K. & Leyendecker, P. Multiplexed and single cell tracing of lipid metabolism. Nat. Methods 16, 1123–1130 (2019). PubMed
Wunderling, K., Zurkovic, J., Zink, F., Kuerschner, L. & Thiele, C. Triglyceride cycling enables modification of stored fatty acids. Nat. Metab. 5, 699–709 (2023). PubMed PMC
Koukalová, A. et al. Lipid driven nanodomains in giant lipid vesicles are fluid and disordered. Sci. Rep. 7, 5460 (2017). PubMed PMC
Sarmento, M. J. et al. The impact of the glycan headgroup on the nanoscopic segregation of gangliosides. Biophys. J. 120, 5530–5543 (2021). PubMed PMC
Li, G. et al. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proc. Natl Acad. Sci. USA 113, 14025–14030 (2016). PubMed PMC
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019). PubMed
Merrill, A. H. Jr Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem. Rev. 111, 6387–6422 (2011). PubMed PMC
Titeca, K. et al. A system-wide analysis of lipid transfer proteins delineates lipid mobility in human cells. Preprint at bioRxiv https://doi.org/10.1101/2023.12.21.572821 (2023).
Chang, C.-L. & Liou, J. Phosphatidylinositol 4,5-bisphosphate homeostasis regulated by Nir2 and Nir3 proteins at endoplasmic reticulum-plasma membrane junctions. J. Biol. Chem. 290, 14289–14301 (2015). PubMed PMC
Lees, J. A. & Reinisch, K. M. Inter-organelle lipid transfer: a channel model for Vps13 and chorein-N motif proteins. Curr. Opin. Cell Biol. 65, 66–71 (2020). PubMed PMC
Hanna, M., Guillén-Samander, A. & Camilli, P. D. RBG motif bridge-like lipid transport proteins: structure, functions, and open questions. Ann. Rev. Cell Dev. Biol. 39, 409–434 (2023).
Guillén-Samander, A. et al. A partnership between the lipid scramblase XK and the lipid transfer protein VPS13A at the plasma membrane. Proc. Natl Acad. Sci. USA 119, e2205425119 (2022). PubMed PMC
Matoba, K. et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27, 1185–1193 (2020). PubMed
Li, Y. E. et al. TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine. J. Cell Biol. 220, e202103105 (2021). PubMed PMC
Lorent, J. H. et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16, 644–652 (2020). PubMed PMC
van der Velden, L. M. et al. Heteromeric interactions required for abundance and subcellular localization of human CDC50 proteins and class 1 P4-ATPases*. J. Biol. Chem. 285, 40088–40096 (2010). PubMed PMC
Bryde, S. et al. CDC50 proteins are critical components of the human class-1 P 4-ATPase transport machinery. J. Biol. Chem. 285, 40562–40572 (2010). PubMed PMC
Harayama, T. Metabolic bias: Lipid structures as determinants of their metabolic fates. Biochimie 215, 34–41 (2023). PubMed
Vance, J. E., Aasman, E. J. & Szarka, R. Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. J. Biol. Chem. 266, 8241–8247 (1991). PubMed
Kaplan, M. R. & Simoni, R. D. Intracellular transport of phosphatidylcholine to the plasma membrane. J. Cell Biol. 101, 441–445 (1985). PubMed
Wong, L. H., Čopič, A. & Levine, T. P. Advances on the transfer of lipids by lipid transfer proteins. Trends Biochem. Sci 42, 516–530 (2017). PubMed PMC
Farley, S. E. et al. Trifunctional fatty acid derivatives: the impact of diazirine placement. Chem. Commun. 60, 6651–6654 (2024).