Quantitative imaging of lipid transport in mammalian cells

. 2025 Oct ; 646 (8084) : 474-482. [epub] 20250820

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40836094
Odkazy

PubMed 40836094
PubMed Central PMC12507682
DOI 10.1038/s41586-025-09432-x
PII: 10.1038/s41586-025-09432-x
Knihovny.cz E-zdroje

Eukaryotic cells produce over 1,000 different lipid species that tune organelle membrane properties, control signalling and store energy1,2. How lipid species are selectively sorted between organelles to maintain specific membrane identities is largely unclear, owing to the difficulty of imaging lipid transport in cells3. Here we measured the retrograde transport and metabolism of individual lipid species in mammalian cells using time-resolved fluorescence imaging of bifunctional lipid probes in combination with ultra-high-resolution mass spectrometry and mathematical modelling. Quantification of lipid flux between organelles revealed that directional, non-vesicular lipid transport is responsible for fast, species-selective lipid sorting, in contrast to the slow, unspecific vesicular membrane trafficking. Using genetic perturbations, we found that coupling between energy-dependent lipid flipping and non-vesicular transport is a mechanism for directional lipid transport. Comparison of metabolic conversion and transport rates showed that non-vesicular transport dominates the organelle distribution of lipids, while species-specific phospholipid metabolism controls neutral lipid accumulation. Our results provide the first quantitative map of retrograde lipid flux in cells4. We anticipate that our pipeline for mapping of lipid flux through physical and chemical space in cells will boost our understanding of lipids in cell biology and disease.

Zobrazit více v PubMed

Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. PubMed

van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. PubMed PMC

Kim, Y. & Burd, C. G. Lipid Sorting and organelle identity. PubMed PMC

Moon, H., Iglesias-Artola, J. M., Hersemann, L. & Nadler, A. Lipid imaging: quantitative imaging of species-specific lipid transport in mammalian cells. https://doi.org/21.11101/0000-0007-FCE5-B (Max Planck Institute of Molecular Cell Biology and Genetics, 2025).

Klose, C., Surma, M. A. & Simons, K. Organellar lipidomics—background and perspectives. PubMed

Sampaio, J. L. et al. Membrane lipidome of an epithelial cell line. PubMed PMC

Holthuis, J. C. M. & Menon, A. K. Lipid landscapes and pipelines in membrane homeostasis. PubMed

Reinisch, K. M. & Prinz, W. A. Mechanisms of nonvesicular lipid transport. PubMed PMC

Koivusalo, M., Jansen, M., Somerharju, P. & Ikonen, E. Endocytic trafficking of sphingomyelin depends on its acyl chain length. PubMed PMC

Haberkant, P. & Holthuis, J. C. M. Fat & fabulous: bifunctional lipids in the spotlight. PubMed

Höglinger, D. et al. Trifunctional lipid probes for comprehensive studies of single lipid species in living cells. PubMed PMC

Haberkant, P. et al. In vivo profiling and visualization of cellular protein-lipid interactions using bifunctional fatty acids. PubMed

Höglinger, D. in

Altuzar, J. et al. Lysosome-targeted multifunctional lipid probes reveal the sterol transporter NPC1 as a sphingosine interactor. PubMed PMC

Farley, S., Stein, F., Haberkant, P., Tafesse, F. G. & Schultz, C. Trifunctional sphinganine: a new tool to dissect sphingolipid function. PubMed PMC

Schuhmacher, M. et al. Live-cell lipid biochemistry reveals a role of diacylglycerol side-chain composition for cellular lipid dynamics and protein affinities. PubMed PMC

Höglinger, D., Nadler, A. & Schultz, C. Caged lipids as tools for investigating cellular signaling. PubMed

Jiménez-López, C. & Nadler, A. Caged lipid probes for controlling lipid levels on subcellular scales. PubMed

Frank, J. A. et al. Photoswitchable diacylglycerols enable optical control of protein kinase C. PubMed PMC

Morstein, J., Impastato, A. C. & Trauner, D. Photoswitchable lipids. PubMed

Haldar, S. & Chattopadhyay, A. in

Klymchenko, A. S. & Kreder, R. Fluorescent probes for lipid rafts: from model membranes to living cells. PubMed

Triebl, A. & Wenk, M. R. Analytical considerations of stable isotope labelling in lipidomics. PubMed PMC

Postle, A. D. & Hunt, A. N. Dynamic lipidomics with stable isotope labelling. PubMed

Thiele, C. et al. Tracing fatty acid metabolism by click chemistry. PubMed

Thiele, C., Wunderling, K. & Leyendecker, P. Multiplexed and single cell tracing of lipid metabolism. PubMed

Wunderling, K., Zurkovic, J., Zink, F., Kuerschner, L. & Thiele, C. Triglyceride cycling enables modification of stored fatty acids. PubMed PMC

Koukalová, A. et al. Lipid driven nanodomains in giant lipid vesicles are fluid and disordered. PubMed PMC

Sarmento, M. J. et al. The impact of the glycan headgroup on the nanoscopic segregation of gangliosides. PubMed PMC

Li, G. et al. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. PubMed PMC

Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. PubMed

Merrill, A. H. Jr Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. PubMed PMC

Titeca, K. et al. A system-wide analysis of lipid transfer proteins delineates lipid mobility in human cells. Preprint at

Chang, C.-L. & Liou, J. Phosphatidylinositol 4,5-bisphosphate homeostasis regulated by Nir2 and Nir3 proteins at endoplasmic reticulum-plasma membrane junctions. PubMed PMC

Lees, J. A. & Reinisch, K. M. Inter-organelle lipid transfer: a channel model for Vps13 and chorein-N motif proteins. PubMed PMC

Hanna, M., Guillén-Samander, A. & Camilli, P. D. RBG motif bridge-like lipid transport proteins: structure, functions, and open questions. PubMed

Guillén-Samander, A. et al. A partnership between the lipid scramblase XK and the lipid transfer protein VPS13A at the plasma membrane. PubMed PMC

Matoba, K. et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. PubMed

Li, Y. E. et al. TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine. PubMed PMC

Lorent, J. H. et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. PubMed PMC

van der Velden, L. M. et al. Heteromeric interactions required for abundance and subcellular localization of human CDC50 proteins and class 1 P4-ATPases*. PubMed PMC

Bryde, S. et al. CDC50 proteins are critical components of the human class-1 P 4-ATPase transport machinery. PubMed PMC

Harayama, T. Metabolic bias: Lipid structures as determinants of their metabolic fates. PubMed

Vance, J. E., Aasman, E. J. & Szarka, R. Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. PubMed

Kaplan, M. R. & Simoni, R. D. Intracellular transport of phosphatidylcholine to the plasma membrane. PubMed PMC

Wong, L. H., Čopič, A. & Levine, T. P. Advances on the transfer of lipids by lipid transfer proteins. PubMed PMC

Farley, S. E. et al. Trifunctional fatty acid derivatives: the impact of diazirine placement. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...