Revised Diffusion Law Permits Quantitative Nanoscale Characterization of Membrane Organization
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40437882
PubMed Central
PMC12163893
DOI
10.1021/acs.analchem.5c00021
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána * chemie metabolismus MeSH
- difuze MeSH
- fluorescenční spektrometrie MeSH
- unilamelární lipozómy chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- unilamelární lipozómy MeSH
The formation of functional nanoscopic domains is an inherent property of plasma membranes. Stimulated emission depletion combined with fluorescence correlation spectroscopy (STED-FCS) has been previously used to identify such domains; however, the information obtained by STED-FCS has been limited to the presence of such domains while crucial parameters have not been accessible, such as size (Rd), the fraction of occupied membrane surface (f), in-membrane lipid diffusion inside (Din) and outside (Dout) the nanodomains as well as their self-diffusion (Dd). Here, we introduce a quantitative approach based on a revised interpretation of the diffusion law. By analyzing experimentally recorded STED-FCS diffusion law plots using a comprehensive library of simulated diffusion law plots, we extract these five parameters from STED-FCS data. That approach is verified on ganglioside nanodomains in giant unilamellar vesicles, validating the Saffman-Delbrück assumption for Dd. STED-FCS data in both plasma membranes of living PtK2 cells and giant plasma membrane vesicles are examined, and a quantitative framework for molecular diffusion modes in biological membranes is presented.
Zobrazit více v PubMed
Wawrezinieck L., Rigneault H., Marguet D., Lenne P. F.. Fluorescence Correlation Spectroscopy Diffusion Laws to Probe the Submicron Cell Membrane Organization. Biophys. J. 2005;89(6):4029–4042. doi: 10.1529/biophysj.105.067959. PubMed DOI PMC
Eggeling C., Ringemann C., Medda R., Schwarzmann G., Sandhoff K., Polyakova S., Belov V. N., Hein B., von Middendorff C., Schönle A., Hell S. W.. Direct Observation of the Nanoscale Dynamics of Membrane Lipids in a Living Cell. Nature. 2009;457(7233):1159–1162. doi: 10.1038/nature07596. PubMed DOI
Sezgin E., Schneider F., Galiani S., Urbančič I., Waithe D., Lagerholm B. C., Eggeling C.. Measuring Nanoscale Diffusion Dynamics in Cellular Membranes with Super-Resolution STED–FCS. Nat. Protoc. 2019;14:1054–1083. doi: 10.1038/s41596-019-0127-9. PubMed DOI
Ng X. W., Bag N., Wohland T.. Characterization of Lipid and Cell Membrane Organization by the Fluorescence Correlation Spectroscopy Diffusion Law. Chim. Int. J. Chem. 2015;69(3):112–119. doi: 10.2533/chimia.2015.112. PubMed DOI
Bag N., Ng X. W., Sankaran J., Wohland T.. Spatiotemporal Mapping of Diffusion Dynamics and Organization in Plasma Membranes. Methods Appl. Fluoresc. 2016;4(3):34003. doi: 10.1088/2050-6120/4/3/034003. PubMed DOI
Urbančič, I. ; Schneider, F. ; Galiani, S. ; Sezgin, E. ; Eggeling, C. . Spectral STED Microscopy Improves Spectral Sensitivity with Polarity- Sensitive Probes and Enables Correlative Measurements of Membrane Order and Anomalous Lipid Diffusion bioRxiv 2025, pp 1–27 10.1101/2025.02.06.636942. DOI
Vicidomini G., Bianchini P., Diaspro A.. STED Super-Resolved Microscopy. Nat. Methods. 2018;15(3):173–182. doi: 10.1038/nmeth.4593. PubMed DOI
Sarangi N. K., Roobala C., Basu J. K.. Unraveling Complex Nanoscale Lipid Dynamics in Simple Model Biomembranes: Insights from Fluorescence Correlation Spectroscopy in Super-Resolution Stimulated Emission Depletion Mode. Methods. 2018;140–141(2018):198–211. doi: 10.1016/j.ymeth.2017.11.011. PubMed DOI
Honigmann A., Mueller V., Ta H., Schoenle A., Sezgin E., Hell S. W., Eggeling C.. Scanning STED-FCS Reveals Spatiotemporal Heterogeneity of Lipid Interaction in the Plasma Membrane of Living Cells. Nat. Commun. 2014;5:5412. doi: 10.1038/ncomms6412. PubMed DOI
Šachl R., Amaro M., Aydogan G., Koukalová A., Mikhalyov I. I., Boldyrev I. A., Humpolíčková J., Hof M.. On Multivalent Receptor Activity of GM1 in Cholesterol Containing Membranes. Biochim. Biophys. Acta. 2015;1853(4):850–857. doi: 10.1016/j.bbamcr.2014.07.016. PubMed DOI
Schneider F., Waithe D., Galiani S., Bernardino de la Serna J., Sezgin E., Eggeling C.. Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging. Nano Lett. 2018;18(7):4233–4240. doi: 10.1021/acs.nanolett.8b01190. PubMed DOI PMC
Vicidomini G., Ta H., Honigmann A., Mueller V., Clausen M. P., Waithe D., Galiani S., Sezgin E., Diaspro A., Hell S. W., Eggeling C.. STED-FLCS: An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics. Nano Lett. 2015;15(9):5912–5918. doi: 10.1021/acs.nanolett.5b02001. PubMed DOI PMC
Mueller V., Ringemann C., Honigmann A., Schwarzmann G., Medda R., Leutenegger M., Polyakova S., Belov V. N., Hell S. W., Eggeling C.. STED Nanoscopy Reveals Molecular Details of Cholesterol- and Cytoskeleton-Modulated Lipid Interactions in Living Cells. Biophys. J. 2011;101(7):1651–1660. doi: 10.1016/j.bpj.2011.09.006. PubMed DOI PMC
He H.-T., Marguet D.. Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy. Annu. Rev. Phys. Chem. 2011;62(1):417–436. doi: 10.1146/annurev-physchem-032210-103402. PubMed DOI
Eggeling, C. STED-FCS Nanoscopy of Membrane Dynamics. 2012, August 2012, pp 291–309 10.1007/4243_2012_50. DOI
Sezgin E.. Super-Resolution Optical Microscopy for Studying Membrane Structure and Dynamics. J. Phys.: Condens. Matter. 2017;29(27):273001. doi: 10.1088/1361-648X/aa7185. PubMed DOI PMC
Gupta A., Phang I. Y., Wohland T.. To Hop or Not to Hop: Exceptions in the FCS Diffusion Law. Biophys. J. 2020;118(10):2434–2447. doi: 10.1016/j.bpj.2020.04.004. PubMed DOI PMC
Veerapathiran S., Wohland T.. The Imaging FCS Diffusion Law in the Presence of Multiple Diffusive Modes. Methods. 2018;140–141(2018):140–150. doi: 10.1016/j.ymeth.2017.11.016. PubMed DOI
Schneider F., Waithe D., Clausen M. P., Galiani S., Koller T., Ozhan G., Eggeling C., Sezgin E.. Diffusion of Lipids and GPI-Anchored Proteins in Actin-Free Plasma Membrane Vesicles Measured by STED-FCS. Mol. Biol. Cell. 2017;28(11):1507–1518. doi: 10.1091/mbc.e16-07-0536. PubMed DOI PMC
Šachl R., Bergstrand J., Widengren J., Hof M.. Fluorescence Correlation Spectroscopy Diffusion Laws in the Presence of Moving Nanodomains (2016 J. Phys. D: Appl. Phys. 49 114002) J. Phys. D. Appl. Phys. 2016;49(18):189601. doi: 10.1088/0022-3727/49/18/189601. DOI
Koukalová A., Amaro M., Aydogan G., Gröbner G., Williamson P. T. F., Mikhalyov I., Hof M., Šachl R.. Lipid Driven Nanodomains in Giant Lipid Vesicles Are Fluid and Disordered. Sci. Rep. 2017;7(1):5460. doi: 10.1038/s41598-017-05539-y. PubMed DOI PMC
Waithe D., Clausen M. P., Sezgin E., Eggeling C.. FoCuS-Point: Software for STED Fluorescence Correlation and Time-Gated Single Photon Counting. Bioinformatics. 2016;32(6):958–960. doi: 10.1093/bioinformatics/btv687. PubMed DOI PMC
Saffman P. G., Delbrück M.. Brownian Motion in Biological Membranes. Proc. Natl. Acad. Sci. U. S. A. 1975;72(8):3111–3113. doi: 10.1073/pnas.72.8.3111. PubMed DOI PMC
Schneider, F. ; Sezgin, E. . Diffusion Measurements at the Nanoscale with STED-FCS. In Fluorescence Spectroscopy and Microscopy in Biology; Šachl, R. ; Amaro, M. , Eds.; Springer, 2022; pp 323–336 10.1007/4243_2022_27. DOI
Amaro M., Šachl R., Aydogan G., Mikhalyov I. I., Vácha R., Hof M.. GM1Ganglioside Inhibits β-Amyloid Oligomerization Induced by Sphingomyelin. Angew. Chem., Int. Ed. 2016;55(32):9411–9415. doi: 10.1002/anie.201603178. PubMed DOI PMC
Sarmento M. J., Owen M. C., Ricardo J. C., Chmelová B., Davidović D., Mikhalyov I., Gretskaya N., Hof M., Amaro M., Vácha R., Šachl R.. The Impact of the Glycan Headgroup on the Nanoscopic Segregation of Gangliosides. Biophys. J. 2021;120(24):5530–5543. doi: 10.1016/j.bpj.2021.11.017. PubMed DOI PMC
Davidovic D., Kukulka M., Sarmento M. J., Mikhalyov I., Gretskaya N., Chmelov B., Ricardo J. C., Hof M., Cwiklik L., Radek Š.. Which Moiety Drives Gangliosides to Form Nanodomains? J. Phys. Chem. Lett. 2023;14:5791–5797. doi: 10.1021/acs.jpclett.3c00761. PubMed DOI PMC
Sarmento M. J., Ricardo J. C., Amaro M., Šachl R.. Organisation of Gangliosides into Membrane Nanodomains. FEBS Lett. 2020;594:3668–3697. doi: 10.1002/1873-3468.13871. PubMed DOI
Sezgin E., Levental I., Mayor S., Eggeling C.. The Mystery of Membrane Organization: Composition, Regulation and Roles of Lipid Rafts. Nat. Rev. Mol. Cell Biol. 2017;18(6):361–374. doi: 10.1038/nrm.2017.16. PubMed DOI PMC
Schnaar R. L., Gerardy-Schahn R., Hildebrandt H.. Sialic Acids in the Brain: Gangliosides and Polysialic Acid in Nervous System Development, Stability, Disease, and Regeneration. Physiol. Rev. 2014;94(2):461–518. doi: 10.1152/physrev.00033.2013. PubMed DOI PMC
Posse de Chaves E., Sipione S.. Sphingolipids and Gangliosides of the Nervous System in Membrane Function and Dysfunction. FEBS Lett. 2010;584(9):1748–1759. doi: 10.1016/j.febslet.2009.12.010. PubMed DOI
CANTÙ L., CORTI M., ACQUOTTI D., SONNINO S.. Aggregation Properties of Gangliosides: Influence of the Primary and Secondary Structure of the Headgroup. Le J. Phys. IV. 1993;03(C1):C1–57–C1–64. doi: 10.1051/jp4:1993106. DOI
Shi J., Yang T., Kataoka S., Zhang Y., Diaz A. J., Cremer P. S.. GM1 Clustering Inhibits Cholera Toxin Binding in Supported Phospholipid Membranes. J. Am. Chem. Soc. 2007;129(18):5954–5961. doi: 10.1021/ja069375w. PubMed DOI PMC
Arumugam S., Schmieder S., Pezeshkian W., Becken U., Wunder C., Chinnapen D., Ipsen J. H., Kenworthy A. K., Lencer W., Mayor S., Johannes L.. Ceramide Structure Dictates Glycosphingolipid Nanodomain Assembly and Function. Nat. Commun. 2021;12(1):3675. doi: 10.1038/s41467-021-23961-9. PubMed DOI PMC
Vinklárek I. S., Vel’as L., Riegerová P., Skála K., Mikhalyov I., Gretskaya N., Hof M., Šachl R.. Experimental Evidence of the Existence of Interleaflet Coupled Nanodomains: An MC-FRET Study. J. Phys. Chem. Lett. 2019;10:2024–2030. doi: 10.1021/acs.jpclett.9b00390. PubMed DOI
Šachl R., Johansson L. B.-Å., Hof M.. Förster Resonance Energy Transfer (FRET) between Heterogeneously Distributed Probes: Application to Lipid Nanodomains and Pores. Int. J. Mol. Sci. 2012;13(12):16141–16156. doi: 10.3390/ijms131216141. PubMed DOI PMC
Šachl R., Humpolíčková J., Štefl M., Johansson L. B.-Å., Hof M.. Limitations of Electronic Energy Transfer in the Determination of Lipid Nanodomain Sizes. Biophys. J. 2011;101(11):L60–L62. doi: 10.1016/j.bpj.2011.11.001. PubMed DOI PMC
Chmelová, B. ; Humpolíčková, J. ; Stříšovský, K. ; Šachl, R. . The Analysis of In-Membrane Nanoscopic Aggregation of Lipids and Proteins by MC-FRET. In Fluorescence Spectroscopy and Microscopy in Biology; Šachl, R. ; Amaro, M. , Eds.; Springer, 2023; pp 375–400 10.1007/4243_2022_29. DOI
Spillane K. M., Ortega-Arroyo J., De Wit G., Eggeling C., Ewers H., Wallace M. I., Kukura P.. High-Speed Single-Particle Tracking of Gm1 in Model Membranes Reveals Anomalous Diffusion Due to Interleaflet Coupling and Molecular Pinning. Nano Lett. 2014;14(9):5390–5397. doi: 10.1021/nl502536u. PubMed DOI PMC
Cebecauer M., Amaro M., Jurkiewicz P., Sarmento M. J., Šachl R., Cwiklik L., Hof M.. Membrane Lipid Nanodomains. Chem. Rev. 2018;118:11259–11297. doi: 10.1021/acs.chemrev.8b00322. PubMed DOI
Sonnino S., Chiricozzi E., Grassi S., Mauri L., Prioni S., Prinetti A.. Chapter Three - Gangliosides in Membrane Organization. Prog. Mol. Biol. Transl. Sci. 2018;156:83–120. doi: 10.1016/bs.pmbts.2017.12.007. PubMed DOI
Fujiwara T., Ritchie K., Murakoshi H., Jacobson K., Kusumi A.. Phospholipids Undergo Hop Diffusion in Compartmentalized Cell Membrane. J. Cell Biol. 2002;157(6):1071–1081. doi: 10.1083/jcb.200202050. PubMed DOI PMC
Andrade D. M., Clausen M. P., Keller J., Mueller V., Wu C., Bear J. E., Hell S. W., Lagerholm B. C., Eggeling C.. Cortical Actin Networks Induce Spatio-Temporal Confinement of Phospholipids in the Plasma Membrane – a Minimally Invasive Investigation by STED-FCS. Sci. Rep. 2015;5(1):11454. doi: 10.1038/srep11454. PubMed DOI PMC