Organization of gangliosides into membrane nanodomains
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
32592178
DOI
10.1002/1873-3468.13871
Knihovny.cz E-zdroje
- Klíčová slova
- AFM, GM1, MC-FRET, diffusion, diffusion laws, gangliosides, lipid bilayers, membrane model systems, nanodomains, phase separation,
- MeSH
- buněčná membrána chemie MeSH
- gangliosidy chemie MeSH
- hydrofobní a hydrofilní interakce MeSH
- lidé MeSH
- ligandy MeSH
- lipidové dvojvrstvy chemie MeSH
- mikroskopie atomárních sil MeSH
- rezonanční přenos fluorescenční energie MeSH
- sacharidové sekvence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- gangliosidy MeSH
- ligandy MeSH
- lipidové dvojvrstvy MeSH
Gangliosides are glycosphingolipids consisting of a ceramide base and a bulky sugar chain that contains one or more sialic acids. This unique structure endows gangliosides with a strong tendency to self-aggregate in solution, as well as in cellular membranes, where they can form nanoscopic assemblies called ganglioside nanodomains. As gangliosides are important biological molecules involved in a number of physiological processes, characterization of their lateral organization in membranes is essential. This review aims at providing comprehensive information about the nanoscale organization of gangliosides in various synthetic models. To this end, the impact of the hydrophobic backbone and the headgroup on the segregation of gangliosides into nanodomains are discussed in detail, as well as the way in which the properties of nanodomains are affected by ligand binding. Small size makes the characterization of ganglioside nanodomains challenging, and we thus highlight the biophysical methods that have advanced this research, such as Monte Carlo Förster resonance energy transfer, atomic force microscopy and approaches based on molecular diffusion.
J Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
Zobrazit více v PubMed
Sonnino S, Prinetti A, Mauri L, Chigorno V and Tettamanti G (2006) Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev 106, 2111-2125.
Schnaar RL (2019) The biology of gangliosides. In Advances in carbohydrate chemistry and biochemistry (Baker DC, eds), pp. 113-148. Amsterdam, The Netherlands: Elsevier Inc.
Posse de Chaves E and Sipione S (2010) Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett 584, 1748-1759.
Ando S, Chang NC and Yu RK (1978) High-performance thin-layer chromatography and densitometric determination of brain ganglioside compositions of several species. Anal Biochem 89, 437-450.
Tettamanti G, Bonali F, Marchesini S and Zambotti V (1973) A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta 296, 160-170.
Inokuchi J, Inamori K, Kabayama K, Nagafuku M, Uemura S, Go S, Suzuki A, Ohno I, Kanoh H and Shishido F (2018) Biology of GM3 ganglioside. In Progress in Molecular Biology and Translational Science (Lopez PHH and Schnaar RL, eds), pp. 151-195. Amsterdam, The Netherlands: Elsevier Inc.
Prokazova NV, Samovilova NN, Gracheva EV and Golovanova NK (2009) Ganglioside GM3 and its biological functions. Biochemistry 74, 235-249.
Mlinac K and Bognar S (2010) Role of gangliosides in brain aging and neurodegeneration. Transl Neurosci 1, 300-307.
Yu RK, Nakatani Y and Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50, S440-S445.
Sonnino S and Chigorno V (2000) Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochim Biophys Acta 1469, 63-77.
Segler-Stahl K, Webster JC and Brunngraber EG (1983) Changes in the concentration and composition of human brain gangliosides with aging. Gerontology 29, 161-168.
Miller-Podraza H, Bradley RM and Fishman PH (1982) Biosynthesis and localization of gangliosides in cultured cells. Biochemistry 21, 3260-3265.
Garofalo T, Tinari A, Matarrese P, Giammarioli AM, Manganelli V, Ciarlo L, Misasi R, Sorice M and Malorni W (2007) Do mitochondria act as “cargo boats” in the journey of GD3 to the nucleus during apoptosis? FEBS Lett 581, 3899-3903.
Ledeen RW and Wu G (2011) New findings on nuclear gangliosides: overview on metabolism and function. J Neurochem 116, 714-720.
Lucki NC and Sewer MB (2012) Nuclear sphingolipid metabolism. Annu Rev Physiol 74, 131-151.
Suzuki Y, Matsunaga M, Nagao Y, Taki T, Hirabayashi Y and Matsumoto M (1985) Ganglioside GM1b as an influenza virus receptor. Vaccine 3, 201-203.
Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL and Rapoport TA (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22, 4346-4355.
Markwell MAK, Svennerholm L and Paulson JC (1981) Specific gangliosides function as host cell receptors for Sendai virus. Proc Natl Acad Sci USA 78, 5406-5410.
Low JA, Magnuson B, Tsai B and Imperiale MJ (2006) Identification of gangliosides GD1b and GT1b as receptors for BK virus. J Virol 80, 1361-1366.
Campanero-Rhodes MA, Smith A, Chai W, Sonnino S, Mauri L, Childs RA, Zhang Y, Ewers H, Helenius A, Imberty A and et al. (2007) N-Glycolyl GM1 ganglioside as a receptor for Simian Virus 40. J Virol 81, 12846-12858.
Nilsson EC, Storm RJ, Bauer J, Johansson SMC, Lookene A, Ångström J, Hedenström M, Eriksson TL, Frängsmyr L, Rinaldi S et al. (2011) The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis. Nat Med 17, 105-109.
Han L, Tan M, Xia M, Kitova EN, Jiang X and Klassen JS (2014) Gangliosides are ligands for human noroviruses. J Am Chem Soc 136, 12631-12637.
Kim D, Son K, Koo K, Kim J, Alfajaro M, Park J, Hosmillo M, Soliman M, Baek Y, Cho E et al. (2016) Porcine Sapelovirus uses α2,3-linked sialic acid on GD1a ganglioside as a receptor. J Virol 90, 4067-4077.
Hammache D, Piéroni G, Yahi N, Delézay O, Koch N, Lafont H, Tamalet C and Fantini J (1998) Specific interaction of HIV-1 and HIV-2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3. J Biol Chem 273, 7967-7971.
Fukuta S, Magnani JL, Twiddy EM, Holmes RK and Ginsburg V (1988) Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect Immun 56, 1748-1753.
Berntsson RP-A, Peng L, Dong M and Stenmark P (2013) Structure of dual receptor binding to botulinum neurotoxin B. Nat Commun 4, 2058.
Caron M, Joubert-Caron R, Cartier JR, Chadli A and Bladier D (1993) Study of lectin-ganglioside interactions by high-performance liquid affinity chromatography. J Chromatogr A 646, 327-333.
Mahanthappa NK, Cooper DN, Barondes SH and Schwarting GA (1994) Rat olfactory neurons can utilize the endogenous lectin, L-14, in a novel adhesion mechanism. Development 120, 1373-1384.
Kaltner H, Lips KS, Reuter G, Lippert S, Sinowatz F and Gabius H-J (1997) Quantitation and histochemical localization of galectin-1 and galectin-1-reactive glycoconjugates in fetal development of bovine organs. Histol Histopathol 12, 945-960.
Kopitz J, von Reitzenstein C, Burchert M, Cantz M and Gabius H-J (1998) Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J Biol Chem 273, 11205-11211.
Ideo H, Seko A and Yamashita K (2005) Galectin-4 binds to sulfated glycosphingolipids and carcinoembryonic antigen in patches on the cell surface of human colon adenocarcinoma cells. J Biol Chem 280, 4730-4737.
Ideo H, Seko A and Yamashita K (2007) Recognition mechanism of galectin-4 for cholesterol 3-sulfate. J Biol Chem 282, 21081-21089.
Ideo H, Seko A, Ishizuka I and Yamashita K (2003) The N-terminal carbohydrate recognition domain of galectin-8 recognizes specific glycosphingolipids with high affinity. Glycobiology 13, 713-723.
Carlsson S, Öberg CT, Carlsson MC, Sundin A, Nilsson UJ, Smith D, Cummings RD, Almkvist J, Karlsson A and Leffler H (2007) Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17, 663-676.
Ohkawa Y, Miyazaki S, Hamamura K, Kambe M, Miyata M, Tajima O, Ohmi Y, Yamauchi Y, Furukawa K and Furukawa K (2010) Ganglioside GD3 enhances adhesion signals and augments malignant properties of melanoma cells by recruiting integrins to glycolipid-enriched microdomains. J Biol Chem 285, 27213-27223.
Fukuda Y, Fukui T, Hikichi C, Ishikawa T, Murate K, Adachi T, Imai H, Fukuhara K, Ueda A, Kaplan AP and et al. (2015) Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res 1596, 13-21.
Jung WR, Kim HG, Shin MK, Park DI and Kim KL (2010) The effect of ganglioside GQ1b on the NMDA receptor signaling pathway in H19-7 cells and rat hippocampus. Neuroscience 165, 159-167.
Yoon S-J, Nakayama K, Hikita T, Handa K and Hakomori S (2006) Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci USA 103, 18987-18991.
Coskun Ü, Grzybek M, Drechsel D and Simons K (2011) Regulation of human EGF receptor by lipids. Proc Natl Acad Sci USA 108, 9044-9048.
Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, Norton A, Kono M, Tsuji S, Daniotti JL, Werth N et al. (2003) Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci USA 100, 3445-3449.
Dam DHM, Wang X-Q, Sheu S, Vijay M, Shipp D, Miller L and Paller AS (2017) Ganglioside GM3 mediates glucose-induced suppression of IGF-1 receptor-Rac1 activation to inhibit keratinocyte motility. J Invest Dermatol 137, 440-448.
Wu G, Xie X, Lu Z-H and Ledeen RW (2009) Sodium-calcium exchanger complexed with GM1 ganglioside in nuclear membrane transfers calcium from nucleoplasm to endoplasmic reticulum. Proc Natl Acad Sci USA 106, 10829-10834.
Wang Y, Tsui Z and Yang F (1999) Mechanistic study of modulation of SR Ca2+-ATPase activity by gangliosides GM1 and GM3 through some biophysical measurements. Glycoconj J 16, 781-786.
Jiang L, Bechtel MD, Bean JL, Winefield R, Williams TD, Zaidi A, Michaelis EK and Michaelis ML (2014) Effects of gangliosides on the activity of the plasma membrane Ca2+-ATPase. Biochim Biophys Acta 1838, 1255-1265.
Duan J, Zhang J, Zhao Y, Yang F and Zhang X (2006) Ganglioside GM2 modulates the erythrocyte Ca2+-ATPase through its binding to the calmodulin-binding domain and its ‘receptor’. Arch Biochem Biophys 454, 155-159.
Lopez PH and Schnaar RL (2009) Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 19, 549-557.
Julien S, Bobowski M, Steenackers A, Le Bourhis X and Delannoy P (2013) How do gangliosides regulate RTKs signaling? Cells 2, 751-767.
Ngamukote S, Yanagisawa M, Ariga T, Ando S and Yu RK (2007) Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem 103, 2327-2341.
Yu RK, Macala LJ, Taki T, Weinfeld HM and Yu FS (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50, 1825-1829.
Wang J and Yu RK (2013) Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro. Proc Natl Acad Sci USA 110, 19137-19142.
Yanagisawa M and Yu RK (2007) The expression and functions of glycoconjugates in neural stem cells. Glycobiology 17, 57R-74R.
Ledeen RW, Wu G, André S, Bleich D, Huet G, Kaltner H, Kopitz J and Gabius H-J (2012) Beyond glycoproteins as galectin counterreceptors: effector T cell growth control of tumors via ganglioside GM1. Ann N Y Acad Sci 1253, 206-221.
Sandhoff R, Schulze H and Sandhoff K (2018) Ganglioside metabolism in health and disease. In Progress in Molecular Biology and Translational Science (Lopez PHH and Schnaar RL, eds), pp. 1-62. Amsterdam, The Netherlands: Elsevier Inc.
Takamura A, Higaki K, Kajimaki K, Otsuka S, Ninomiya H, Matsuda J, Ohno K, Suzuki Y and Nanba E (2008) Enhanced autophagy and mitochondrial aberrations in murine GM1-gangliosidosis. Biochem Biophys Res Commun 367, 616-622.
Di Pardo A, Maglione V, Alpaugh M, Horkey M, Atwal RS, Sassone J, Ciammola A, Steffan JS, Fouad K, Truant R and et al. (2012) Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci USA 109, 3528-3533.
Desplats PA, Denny CA, Kass KE, Gilmartin T, Head SR, Sutcliffe JG, Seyfried TN and Thomas EA (2007) Glycolipid and ganglioside metabolism imbalances in Huntington’s disease. Neurobiol Dis 27, 265-277.
Maglione V, Marchi P, Di Pardo A, Lingrell S, Horkey M, Tidmarsh E and Sipione S (2010) Impaired ganglioside metabolism in Huntington’s disease and neuroprotective role of GM1. J Neurosci 30, 4072-4080.
Martinez Z, Zhu M, Han S and Fink AL (2007) GM1 specifically interacts with α-synuclein and inhibits fibrillation. Biochemistry 46, 1868-1877.
Ledeen RW and Wu G (2018) Gangliosides, α-synuclein, and Parkinson’s disease. In Progress in molecular biology and translational science (Lopez PHH and Schnaar RL, eds), pp. 435-454. Amsterdam, The Netherlands: Elsevier Inc.
Wei J, Fujita M, Nakai M, Waragai M, Sekigawa A, Sugama S, Takenouchi T, Masliah E and Hashimoto M (2009) Protective role of endogenous gangliosides for lysosomal pathology in a cellular model of synucleinopathies. Am J Pathol 174, 1891-1909.
Zha Q, Ruan Y, Hartmann T, Beyreuther K and Zhang D (2004) GM1 ganglioside regulates the proteolysis of amyloid precursor protein. Mol Psychiatry 9, 946-952.
Ariga T, McDonald MP and Yu RK (2008) Thematic review series: sphingolipids. Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease-a review. J Lipid Res 49, 1157-1175.
Matsuzaki K, Kato K and Yanagisawa K (2018) Ganglioside-mediated assembly of amyloid β-protein: roles in Alzheimer’s disease. In Progress in Molecular Biology and Translational Science (Lopez PHH and Schnaar RL, eds), pp. 413-434. Amsterdam, The Netherlands: Elsevier Inc.
Michno W, Wehrli PM, Zetterberg H, Blennow K and Hanrieder J (2019) GM1 locates to mature amyloid structures implicating a prominent role for glycolipid-protein interactions in Alzheimer pathology. Biochim Biophys Acta Proteins Proteom 1867, 458-467.
Goodfellow JA and Willison HJ (2018) Gangliosides and autoimmune peripheral nerve diseases. In Progress in Molecular Biology and Translational Science (Lopez PHH and Schnaar RL, eds), pp. 355-382. Amsterdam, The Netherlands: Elsevier Inc.
Hakomori S (2001) Tumor-associated carbohydrate antigens defining tumor malignancy: Basis for development of anti-cancer vaccines. In The Molecular Immunology of Complex Carbohydrates-2. Advances in Experimental Medicine and Biology (Wu AM, ed.), pp. 369-402. Springer, Boston, MA.
Groux-Degroote S, Rodríguez-Walker M, Dewald JH, Daniotti JL and Delannoy P (2018) Gangliosides in cancer cell signaling. In Progress in Molecular Biology and Translational Science (Lopez PHH and Schnaar RL, eds), pp. 197-227. Amsterdam, The Netherlands: Elsevier Inc.
Tagami S, Inokuchi J, Kabayama K, Yoshimura H, Kitamura F, Uemura S, Ogawa C, Ishii A, Saito M, Ohtsuka Y et al. (2002) Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 277, 3085-3092.
Dam DHM and Paller AS (2018) Gangliosides in diabetic wound healing. In Progress in Molecular Biology and Translational Science (Lopez PHH and Schnaar RL, eds), pp. 229-239. Amsterdam, The Netherlands: Elsevier Inc.
Li TA and Schnaar RL (2018) Congenital disorders of ganglioside biosynthesis. In Progress in Molecular Biology and Translational Science (Lopez PHH and Schnaar RL, eds), pp. 63-82. Amsterdam, The Netherlands: Elsevier Inc.
Zuverink M and Barbieri JT (2018) Protein toxins that utilize gangliosides as host receptors. In Progress in Molecular Biology and Translational Science (Lopez PHH and Schnaar RL, eds), pp. 325-354. Amsterdam, The Netherlands: Elsevier Inc.
Aureli M, Mauri L, Ciampa MG, Prinetti A, Toffano G, Secchieri C and Sonnino S (2016) GM1 ganglioside: past studies and future potential. Mol Neurobiol 53, 1824-1842.
Schnaar RL and Lopez PHH (2018) Gangliosides in health and disease. Prog Mol Biol Transl Sci 156, 1-462.
Kolter T (2012) Ganglioside biochemistry. ISRN Biochem 2012, 1-36.
Simons K and Van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27, 6197-6202.
Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Šachl R, Cwiklik L and Hof M (2018) Membrane lipid nanodomains. Chem Rev 118, 11259-11297.
Simons K and Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11, 688-699.
Levental I and Veatch SL (2016) The continuing mystery of lipid rafts. J Mol Biol 428, 4749-4764.
Sezgin E, Levental I, Mayor S and Eggeling C (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18, 361-374.
Lu SM and Fairn GD (2018) Mesoscale organization of domains in the plasma membrane - beyond the lipid raft. Crit Rev Biochem Mol Biol 53, 192-207.
Hichem DG and Konrad S (2008) Principles of microdomain formation in biological membranes- Are there lipid liquid ordered domains in living cellular membranes? Trends Glycosci Glycotechnol 20, 277-295.
Sonnino S and Prinetti A (2013) Membrane domains and the “lipid raft” concept. Curr Med Chem 20, 4-21.
Lenne PF, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo XJ, Rigneault H, He HT and Marguet D (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25, 3245-3256.
Schneider F, Waithe D, Clausen MP, Galiani S, Koller T, Ozhan G, Eggeling C and Sezgin E (2017) Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS. Mol Biol Cell 28, 1507-1518.
Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schönle A et al. (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159-1162.
Sezgin E, Levental I, Grzybek M, Schwarzmann G, Mueller V, Honigmann A, Belov VN, Eggeling C, Coskun Ü, Simons K and et al. (2012) Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim Biophys Acta 1818, 1777-1784.
Chinnapen DJ-F, Hsieh W-T, te Welscher YM, Saslowsky DE, Kaoutzani L, Brandsma E, D’Auria L, Park H, Wagner JS, Drake KR et al. (2012) Lipid sorting by ceramide structure from plasma membrane to ER for the Cholera Toxin receptor ganglioside GM1. Dev Cell 23, 573-586.
Suzuki KGN, Ando H, Komura N, Fujiwara TK, Kiso M and Kusumi A (2018) Unraveling of lipid raft organization in cell plasma membranes by single-molecule imaging of ganglioside probes. In Glycobiophysics, Advances in Experimental Medicine (Biology Yamaguchi Y and Kato Koichi, eds), pp. 41-58. Springer, Singapore.
Komura N, Suzuki KGN, Ando H, Konishi M, Koikeda M, Imamura A, Chadda R, Fujiwara TK, Tsuboi H, Sheng R et al. (2016) Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat Chem Biol 12, 402-410.
Sevcsik E, Brameshuber M, Fölser M, Weghuber J, Honigmann A and Schütz GJ (2015) GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat Commun 6, 1-10.
Sevcsik E and Schütz GJ (2016) With or without rafts? Alternative views on cell membranes. BioEssays 38, 129-139.
Klenk E (1939) Beiträge zur Chemie der Lipidosen. Zeitschrift für Phys Chemie 262, 128-143.
Kuhn R and Wiegandt H (1963) Die konstitution der ganglio-N-tetraose und des gangliosids GI. Chem Ber 96, 866-880.
Carter HE, Glick FJ, Norris WP and Phillips GE (1947) Biochemistry of the sphingolipides. III. Structure of sphingosine. J Biol Chem 170, 285-294.
Gottschalk A (1955) Structural relationship between sialic acid, neuraminic acid and 2-carboxy-pyrrole. Nature 176, 881-882.
Carreira AC, Santos TC, Lone MA, Zupančič E, de Almeida RFM, Hornemann T and Silva LC (2019) Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 75, 100988.
Yu RK, Tsai Y-T, Ariga T and Yanagisawa M (2011) Structures, biosynthesis, and functions of gangliosides-an overview. J Oleo Sci 60, 537-544.
Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, Liotta DC and Merrill AH (2008) Thematic review series: sphingolipids. Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols. J. Lipid Res 49, 1621-1639.
Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CRH, Russell DW, Seyama Y, Shaw W et al. (2005) A comprehensive classification system for lipids. J Lipid Res 46, 839-861.
Tettamanti G and Loman A (2013) Chemistry, tissue and cellular distribution, and developmental profiles of neural sphingolipids. In Handbook of Neurochemistry and Molecular Neurobiology - Neural Lipids (Tettamanti G and Goracci G, eds), pp. 99-169. Boston, MA, USA: Springer Science.
Sud M, Fahy E, Cotter D, Dennis EA and Subramaniam S (2012) LIPID MAPS-Nature lipidomics gateway: an online resource for students and educators interested in lipids. J Chem Educ 89, 291-292.
Schnaar RL and Lopez PHH (2018) Preface and ganglioside nomenclature. In Progress in Molecular Biology and Translational Science, pp. xvii-xxi. Amsterdam, The Netherlands: Elsevier Inc.
Sarbu M, Robu AC, Ghiulai RM, Vukelić Ž, Clemmer DE and Zamfir AD (2016) Electrospray ionization ion mobility mass spectrometry of human brain gangliosides. Anal Chem 88, 5166-5178.
Svennerholm L (1963) Chromatographic separation of human brain gangliosides. J Neurochem 10, 613-623.
Shi J, Yang T, Kataoka S, Zhang Y, Diaz AJ and Cremer PS (2007) GM 1 Clustering inhibits cholera toxin binding in supported phospholipid membranes. J Am Chem Soc 129, 5954-5961.
Štefl M, Šachl R, Humpolíčková J, Cebecauer M, MacHáň R, Kolářová M, Johansson LB-ÅB and Hof M (2012) Dynamics and size of cross-linking-induced lipid nanodomains in model membranes. Biophys J 102, 2104-2113.
Šachl R, Amaro M, Aydogan G, Koukalová A, Mikhalyov II, Boldyrev IA, Humpolíčková J and Hof M (2015) On multivalent receptor activity of GM1 in cholesterol containing membranes. Biochim Biophys Acta 1853, 850-857.
Acquotti D, Poppe L, Dabrowski J, von der Lieth CW, Sonnino S and Tettamanti G (1990) Three-dimensional structure of the oligosaccharide chain of GM1 ganglioside revealed by a distance-mapping procedure: a rotating and laboratory frame nuclear Overhauser enhancement investigation of native glycolipid in dimethyl sulfoxide and in water-dode. J Am Chem Soc 112, 7772-7778.
Siebert HC, Dabrowski J, Reuter G, Schauer R and Von der Lieth CW (1992) Solution conformations of GM3 gangliosides containing different sialic acid residues as revealed by NOE-based distance mapping, molecular mechanics, and molecular dynamics calculations. Biochemistry 31, 6962-6971.
Skarjune R and Oldfield E (1982) Physical studies of cell surface and cell membrane structure. Deuterium nuclear magnetic resonance studies of N-Palmitoylglucosylceramide (cerebroside) head group structure. Biochemistry 21, 3154-3160.
Brocca P, Berthault P and Sonnino S (1998) Conformation of the oligosaccharide chain of GM1 ganglioside in a carbohydrate-enriched surface. Biophys J 74, 309-318.
Poppe L, van Halbeek H, Acquotti D and Sonnino S (1994) Carbohydrate dynamics at a micellar surface: GD1a headgroup transformations revealed by NMR spectroscopy. Biophys J 66, 1642-1652.
Acquotti D, Cantu L, Ragg E and Sonnino S (1994) Geometrical and conformational properties of ganglioside GalNAc-GD1a, IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer. Eur J Biochem 225, 271-288.
Sonnino S, Brocca P, Acquotti D, Bernardi A, Raimondi L, Kiso M, Ishida H, Li SC and Li YT (1999) The structural basis for the susceptibility of gangliosides to enzymatic degradation. Biosci Rep 19, 163-168.
Li YT, Li SC, Hasegawa A, Ishida H, Kiso M, Bernardi A, Brocca P, Raimondi L and Sonnino S (1999) Structural basis for the resistance of Tay-Sachs ganglioside GM2 to enzymatic degradation. J Biol Chem 274, 10014-10018.
Mauri L, Sonnino S and Prinetti A (2018) Chemical and physicochemical properties of gangliosides. In Gangliosides: Methods and Protocols, Methods in Molecular Biology (Sonnino S and Prinetti A, eds), pp. 1-17, Vol. 1804. Humana Press, New York, NY.
Acquotti D, Fronza G, Ragg E and Sonnino S (1991) Three dimensional structure of GD1b and GD1b-monolactone gangliosides in dimethylsulphoxide: a nuclear Overhauser effect investigation supported by molecular dynamics calculations. Chem Phys Lipids 59, 107-125.
Sonnino S, Chiricozzi E, Grassi S, Mauri L, Prioni S and Prinetti A (2018) Gangliosides in membrane organization. In Progress in Molecular Biology and Translational Science (Lopez PHH and Schnaar RL, eds), pp. 83-120. Amterdam, The Netherlands: Elsevier Inc.
Ernst AM and Brügger B (2014) Sphingolipids as modulators of membrane proteins. Biochim Biophys Acta Mol Cell Biol Lipids 1841, 665-670.
Maulik PR and Shipley GG (1996) N-palmitoyl sphingomyelin bilayers: Structure and interactions with cholesterol and dipalmitoylphosphatidylcholine. Biochemistry 35, 8025-8034.
Li XM, Smaby JM, Momsen MM, Brockman HL and Brown RE (2000) Sphingomyelin interfacial behavior: the impact of changing acyl chain composition. Biophys J 78, 1921-1931.
Nagle JF and Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469, 159-195.
Neuringer LJ, Sears B, Jungalwala FB and Shriver EK (1979) Difference in orientational order in phospholipid and sphingomyelin bilayers. FEBS Lett 104, 173-175.
Mehnert T, Jacob K, Bittman R and Beyer K (2006) Structure and lipid interaction of N-palmitoylsphingomyelin in bilayer membranes as revealed by 2H-NMR spectroscopy. Biophys J 90, 939-946.
Siminovitch DJ and Jeffrey KR (1981) Orientational order in the choline headgroup of sphingomyelin: a 14N-NMR study. BBA Biomembr 645, 270-278.
Harayama T and Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 19, 281-296.
Cantù L, Corti M, Brocca P and Del Favero E (2009) Structural aspects of ganglioside-containing membranes. Biochim Biophys Acta Biomembr 1788, 202-208.
Sharom FJ and Grant CWM (1978) A model for ganglioside behaviour in cell membranes. Biochim Biophys Acta 507, 280-293.
Bertoli E, Masserini M, Sonnino S, Ghidoni R, Benvenuto C and Tettamanti G (1981) Electron paramagnetic resonance studies on the fluidity and surface dynamics of egg phosphatidylcholine vesicles containing gangliosides. Biochimi 467, 196-202.
Owen MC, Karner A, Šachl R, Preiner J, Amaro M and Vácha R (2019) Force field comparison of GM1 in a DOPC bilayer validated with AFM and FRET experiments. J Phys Chem B 123, 7504-7517.
Iijima K, Soga N, Matsubara T and Sato T (2009) Observations of the distribution of GM3 in membrane microdomains by atomic force microscopy. J Colloid Interface Sci 337, 369-374.
Reed RA and Shipley GG (1996) Properties of ganglioside GM1 in phosphatidylcholine bilayer membranes. Biophys J 70, 1363-1372.
Pincelli MM, Levstein PR, Fidelio GD and Gennaro AM (2000) Cholesterol-induced alterations of the packing properties of gangliosides: an EPR study. Chem Phys Lipids 104, 193-206.
Vyas KA, Patel HV, Vyas AA and Schnaar RL (2001) Segregation of gangliosides GM1 and GD3 on cell membranes, isolated membrane rafts, and defined supported lipid monolayers. Biol Chem 382, 241-250.
Amaro M, Šachl R, Aydogan G, Mikhalyov II, Vácha R and Hof M (2016) GM1 ganglioside inhibits β-amyloid oligomerization induced by sphingomyelin. Angew Chem Int Ed Engl 55, 9411-9415.
van Gorkom LCM, Cheetham JJ and Epand RM (1995) Ganglioside GD1a generates domains of high curvature in phosphatidylethanolamine liposomes as determined by solid state 31P-NMR spectroscopy. Chem Phys Lipids 76, 103-108.
Frey SL, Chi EY, Arratia C, Majewski J, Kjaer K and Lee KYC (2008) Condensing and fluidizing effects of ganglioside GM1 on phospholipid films. Biophys J 94, 3047-3064.
Majewski J, Kuhl TL, Kjaer K and Smith GS (2001) Packing of ganglioside-phospholipid monolayers: an x-ray diffraction and reflectivity study. Biophys J 81, 2707-2715.
Ohta Y, Yokoyama S, Sakai H and Abe M (2004) Membrane properties of binary and ternary systems of ganglioside G M1/dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine. Colloids Surf B Biointerfaces 34, 147-153.
Ohta Y, Yokoyama S, Sakai H and Abe M (2004) Membrane properties of mixed ganglioside GM1/ phosphatidylcholine monolayers. Colloids Surf B Biointerfaces 33, 191-197.
Vié V, Van Mau N, Lesniewska E, Goudonnet JP, Heitz F and Le Grimellec C (1998) Distribution of ganglioside GM1 between two-component, two-phase phosphatidylcholine monolayers. Langmuir 14, 4574-4583.
Delmelle M, Dufrane SP, Brasseur R and Ruysschaert JM (1980) Clustering of gangliosides in phospholipid bilayers. FEBS Lett 121, 11-14.
Masserini M, Palestini P and Freire E (1989) Influence of glycolipid oligosaccharide and long-chain base composition on the thermotropic properties of dipalmitoylphosphatidylcholine large unilamellar vesicles containing gangliosides. Biochemistry 28, 5029-5034.
Koukalová A, Amaro M, Aydogan G, Gröbner G, Williamson PTF, Mikhalyov II, Hof M and Šachl R (2017) Lipid driven nanodomains in giant lipid vesicles are fluid and disordered. Sci Rep 7, 5460.
Menke M, Künneke S and Janshoff A (2002) Lateral organization of GM1 in phase-separated monolayers visualized by scanning force microscopy. Eur Biophys J 31, 317-322.
Przybylo M, Sýkora J, Humpolíčková J, Benda A, Zan A and Hof M (2006) Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. Langmuir 22, 9096-9099.
Yuan C, Furlong J, Burgos P and Johnston LJ (2002) The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys J 82, 2526-2535.
Masserini M and Freire E (1986) Thermotropic characterization of phosphatidylcholine vesicles containing ganglioside GM1 with homogeneous ceramide chain length. Biochemistry 25, 1043-1049.
Masserini M, Palestini P, Venerando B, Fiorilli A, Acquotti D and Tettamanti G (1988) Interactions of proteins with ganglioside-enriched microdomains on the membrane: the lateral phase separation of molecular species of GD1a ganglioside, having homogeneous long-chain base composition, is recognized by Vibrio cholerae sialidase. Biochemistry 27, 7973-7978.
Sonnino S and Prinetti A (2013) Membrane domains and the "lipid raft" concept. Curr Med Chem 20, 4-21.
Sonnino S, Mauri L, Chigorno V and Prinetti A (2006) Gangliosides as components of lipid membrane domains. Glicobiology 17, 1-13.
Prinetti A, Chigorno V, Prioni S, Loberto N, Marano N, Tettamanti G and Sonnino S (2001) Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 276, 21136-21145.
Quinn PJ (2010) A lipid matrix model of membrane raft structure. Prog Lipid Res 49, 390-406.
Kahya N, Scherfeld D and Schwille P (2005) Differential lipid packing abilities and dynamics in giant unilamellar vesicles composed of short-chain saturated glycerol-phospholipids, sphingomyelin and cholesterol. Chem Phys Lipids 135, 169-180.
Manna M, Javanainen M, Monne HMS, Gabius H-J, Rog T and Vattulainen I (2017) Long-chain GM1 gangliosides alter transmembrane domain registration through interdigitation. Biochim Biophys Acta Biomembr 1859, 870-878.
Kiarash A, Boyd B and Lingwood CA (1994) Glycosphingolipid receptor function is modified by fatty acid content. J Biol Chem 269, 11138-11146.
Delacour D, Gouyer V, Zanetta JP, Drobecq H, Leteurtre E, Grard G, Moreau-Hannedouche O, Maes E, Pons A, André S et al. (2005) Galectin-4 and sulfatides in apical membrane trafficking in enterocyte-like cells. J Cell Biol 169, 491-501.
Dasgupta S, Levery SB and Hogan EL (2002) 3-O-acetyl-sphingosine-series myelin glycolipids: characterization of novel 3-O-acetyl-sphingosine galactosylceramide. J Lipid Res 43, 751-761.
Windschiegl B and Steinem C (2006) Influence of α-hydroxylation of glycolipids on domain formation in lipid monolayers. Langmuir 22, 7454-7457.
Singh D, Jarrell HC, Florio E, Fenske DB and Grant CWM (1992) Effects of fatty acid alpha-hydroxylation on glycosphingolipid properties in phosphatidylcholine bilayers. Biochim Biophys Acta Biomembr 1103, 268-274.
Merrill AH (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111, 6387-6422.
Hama H (2010) Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim Biophys Acta 1801, 405-414.
Ladisch S, Sweeley CC, Becker H and Gage D (1989) Aberrant fatty acyl α-hydroxylation in human neuroblastoma tumor gangliosides. J Biol Chem 264, 12097-12105.
Ira and Johnston LJ (2008) Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes. Biochim Biophys Acta 1778, 185-197.
Silva LC, de Almeida RFM, Castro BM, Fedorov A and Prieto M (2007) Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys J 92, 502-516.
Pascher I (1976) Molecular arrangements in sphingolipids Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455, 433-451.
Westerlund B and Slotte JP (2009) How the molecular features of glycosphingolipids affect domain formation in fluid membranes. Biochim Biophys Acta Biomembr 1788, 194-201.
Sonnino S, Cantù L, Corti M, Acquotti D and Venerando B (1994) Aggregative properties of gangliosides in solution. Chem Phys Lipids 71, 21-45.
Sonnino S, Cantù L, Acquotti D, Corti M and Tettamanti G (1990) Aggregation properties of GM3 ganglioside (II3Neu5AcLacCer) in aqueous solutions. Chem Phys Lipids 52, 231-241.
Šachl R, Mikhalyov II, Hof M and Johansson LB-Å (2009) A comparative study on ganglioside micelles using electronic energy transfer, fluorescence correlation spectroscopy and light scattering techniques. Phys Chem Chem Phys 11, 4335-4343.
Frey SL and Lee KYC (2013) Number of sialic acid residues in ganglioside headgroup affects interactions with neighboring lipids. Biophys J 105, 1421-1431.
Maggio B, Cumar FA and Caputto R (1978) Interactions of gangliosides with phospholipids and glycosphingolipids in mixed monolayers. Biochem J 175, 1113-1118.
Fujita A, Cheng J and Fujimoto T (2009) Segregation of GM1 and GM3 clusters in the cell membrane depends on the intact actin cytoskeleton. Biochim Biophys Acta 1791, 388-396.
Del Favero E, Brocca P, Motta S, Rondelli V, Sonnino S and Cantù L (2011) Nanoscale structural response of ganglioside-containing aggregates to the interaction with sialidase. J Neurochem 116, 833-839.
Maggio B (2004) Favorable and unfavorable lateral interactions of ceramide, neutral glycosphingolipids and gangliosides in mixed monolayers. Chem Phys Lipids 132, 209-224.
Johannes L, Parton RG, Bassereau P and Mayor S (2015) Building endocytic pits without clathrin. Nat Rev Mol Cell Biol 16, 311-321.
van Zanten TS, Gomez J, Manzo C, Cambi A, Buceta J, Reigada R and Garcia-Parajo MF (2010) Direct mapping of nanoscale compositional connectivity on intact cell membranes. Proc Natl Acad Sci USA 107, 15437-15442.
Hammond AT, Heberle FA, Baumgart T, Holowka D, Baird B and Feigenson GW (2005) Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc Natl Acad Sci USA 102, 6320-6325.
Lingwood D, Ries J, Schwille P and Simons K (2008) Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc Natl Acad Sci USA 105, 10005-10010.
Yuan C and Johnston LJ (2001) Atomic force microscopy studies of ganglioside GM1 domains in phosphatidylcholine and phosphatidylcholine/cholesterol bilayers. Biophys J 81, 1059-1069.
Kabbani AM and Kelly CV (2017) Nanoscale membrane budding induced by CTxB and detected via polarized localization microscopy. Biophys J 113, 1795-1806.
Spillane KM, Ortega-Arroyo J, De Wit G, Eggeling C, Ewers H, Wallace MI and Kukura P (2014) High-speed single-particle tracking of GM1 in model membranes reveals anomalous diffusion due to interleaflet coupling and molecular pinning. Nano Lett 14, 5390-5397.
Calamai M and Pavone FS (2013) Partitioning and confinement of GM1 ganglioside induced by amyloid aggregates. FEBS Lett 587, 1385-1391.
Nickels JD, Cheng X, Mostofian B, Stanley C, Lindner B, Heberle FA, Perticaroli S, Feygenson M, Egami T, Standaert RF et al. (2015) Mechanical properties of nanoscopic lipid domains. J Am Chem Soc 137, 15772-15780.
Vinklárek IS, Vel’as L, Riegerová P, Skála K, Mikhalyov I, Gretskaya N, Hof M and Šachl R (2019) Experimental evidence of the existence of interleaflet coupled nanodomains: an MC-FRET study. J Phys Chem Lett 10, 2024-2030.
Šachl R, Johansson LB-Å and Hof M (2012) Förster resonance energy transfer (FRET) between heterogeneously distributed probes: Application to lipid nanodomains and pores. Int J Mol Sci 13, 16141-16156.
Loura LMS, de Almeida RFM, Silva LC and Prieto M (2009) FRET analysis of domain formation and properties in complex membrane systems. Biochim Biophys Acta Biomembr 1788, 209-224.
de Almeida RFM, Loura LMS and Prieto M (2009) Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging. Chem Phys Lipids 157, 61-77.
de Almeida RFM, Loura LMS, Fedorov A and Prieto M (2005) Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J Mol Biol 346, 1109-1120.
Sarmento MJ, Coutinho A, Fedorov A, Prieto M and Fernandes F (2014) Ca2+ induces PI(4,5)P2 clusters on lipid bilayers at physiological PI(4,5)P2 and Ca2+ concentrations. Biochim Biophys Acta Biomembr 1838, 822-830.
Sarmento MJ, Coutinho A, Fedorov A, Prieto M and Fernandes F (2017) Membrane order is a key regulator of divalent cation-induced clustering of PI(3,5)P2 and PI(4,5)P2. Langmuir 33, 12463-12477.
Heberle FA, Wu J, Goh SL, Petruzielo RS and Feigenson GW (2010) Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys J 99, 3309-3318.
Feigenson GW and Buboltz JT (2001) Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys J 80, 2775-2788.
Šachl R, Humpolíčková J, Štefl M, Johansson LB-Å and Hof M (2011) Limitations of electronic energy transfer in the determination of lipid nanodomain sizes. Biophys J 101, L60-L62.
Mikhalyov II and Molotkovsky JG (2003) Synthesis and characteristics of fluorescent BODIPY-labeled gangliosides. Russ J Bioorganic Chem 29, 168-174.
Marushchak D, Gretskaya N, Mikhalyov I and Johansson LB-Å (2007) Self-aggregation - an intrinsic property of GM1 in lipid bilayers. Mol Membr Biol 24, 102-112.
Blosser MC, Honerkamp-Smith AR, Han T, Haataja M and Keller SL (2015) Transbilayer colocalization of lipid domains explained via measurement of strong coupling parameters. Biophys J 109, 2317-2327.
May S (2009) Trans-monolayer coupling of fluid domains in lipid bilayers. Soft Matter 5, 3148.
Galimzyanov TR, Kuzmin PI, Pohl P and Akimov SA (2017) Undulations drive domain registration from the two membrane leaflets. Biophys J 112, 339-345.
Galimzyanov TR, Molotkovsky RJ, Bozdaganyan ME, Cohen FS, Pohl P and Akimov SA (2015) Elastic membrane deformations govern interleaflet coupling of lipid-ordered domains. Phys Rev Lett 115, 1-5.
Sarmento MJ, Hof M and Šachl R (2020) Interleaflet coupling of lipid nanodomains - insights from in vitro systems. Front Cell Dev Biol 8, 284.
Picas L, Milhiet PE and Hernández-Borrell J (2012) Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Chem Phys Lipids 165, 845-860.
Yuan C and Johnston LJ (2000) Distribution of ganglioside GM1 in L-α-dipalmitoylphosphatidylcholine/cholesterol monolayers: a model for lipid rafts. Biophys J 79, 2768-2781.
Uchihashi T and Ganser C (2020) Recent advances in bioimaging with high-speed atomic force microscopy. Biophys Rev 12, 363-369.
Ando T, Kodera N, Naito Y, Kinoshita T, Furuta K and Toyoshima YY (2003) A high-speed atomic force microscope for studying biological macromolecules in action. ChemPhysChem 4, 1196-1202.
Whited AM and Park PS-H (2014) Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. Biochim Biophys Acta 1838, 56-68.
Connell SD and Smith DA (2006) The atomic force microscope as a tool for studying phase separation in lipid membranes (review). Mol Membr Biol 23, 17-28.
Hada N, Jin Y, Takeda T, Ohtsuka I and Yokoyama S (2006) Syntheses of new model compounds related to an antigenic epitope from Bupleurum falcatum L. and their distributions in various ganglioside- phospholipid monolayers. Chem Pharm Bull 54, 1281-1284.
Yokoyama S, Ohta Y, Takeda T, Imura T, Sakai H and Abe M (2004) Effect of matrix on surface pressure-responsive morphological change of ganglioside GM1 (GM1), related to the individual role of GM1 in each organ? J Oleo Sci 53, 97-100.
Seeger HM, Marino G, Alessandrini A and Facci P (2009) Effect of physical parameters on the main phase transition of supported lipid bilayers. Biophys J 97, 1067-1076.
Seeger HM, Di Cerbo A, Alessandrini A and Facci P (2010) Supported lipid bilayers on mica and silicon oxide: comparison of the main phase transition behavior. J Phys Chem B 114, 8926-8933.
Lin WC, Blanchette CD, Ratto TV and Longo ML (2006) Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study. Biophys J 90, 228-237.
Garg S, Rühe J, Lüdtke K, Jordan R and Naumann CA (2007) Domain registration in raft-mimicking lipid mixtures studied using polymer-tethered lipid bilayers. Biophys J 92, 1263-1270.
Coban O, Burger M, Laliberte M, Ianoul A and Johnston LJ (2007) Ganglioside partitioning and aggregation in phase-separated monolayers characterized by bodipy GM1 monomer/dimer emission. Langmuir 23, 6704-6711.
Moertelmaier M, Brameshuber M, Linimeier M, Schütz GJ and Stockinger H (2005) Thinning out clusters while conserving stoichiometry of labeling. Appl Phys Lett 87, 1-3.
Wenger J, Conchonaud F, Dintinger J, Wawrezinieck L, Ebbesen TW, Rigneault H, Marguet D and Lenne P-F (2007) Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys J 92, 913-919.
Benda A, Beneš M, Mareček V, Lhotský A, Hermens WT and Hof M (2003) How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir 19, 4120-4126.
Humpolíčková J, Gielen E, Benda A, Fagulova V, Vercammen J, VandeVen M, Hof M, Ameloot M and Engelborghs Y (2006) Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys J 91, L23-L25.
Sahl SJ, Hell SW and Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18, 685-701.
Šachl R, Bergstrand J, Widengren J and Hof M (2016) Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains. J Phys D Appl Phys 49, 114002.
Wawrezinieck L, Rigneault H, Marguet D and Lenne P-F (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89, 4029-4042.
Favard C, Wenger J, Lenne P-F and Rigneault H (2011) FCS diffusion laws in two-phase lipid membranes: determination of domain mean size by experiments and Monte Carlo simulations. Biophys J 100, 1242-1251.
Hsieh C-L, Spindler S, Ehrig J and Sandoghdar V (2014) Tracking single particles on supported lipid membranes: multimobility diffusion and nanoscopic confinement. J Phys Chem B 118, 1545-1554.
Sezgin E and Schwille P (2011) Fluorescence Techniques to Study Lipid Dynamics. Cold Spring Harb Perspect Biol 3, a009803.
Šachl R, Bergstrand J, Widengren J and Hof M (2016) Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains. J Phys D Appl Phys 49, 114002 (11pp).
Weng KC, Kanter JL, Robinson WH and Frank CW (2006) Fluid supported lipid bilayers containing monosialoganglioside GM1: a QCM-D and FRAP study. Colloids Surf B Biointerfaces 50, 76-84.
Sagle LB, Ruvuna LK, Bingham JM, Liu C, Cremer PS and Van Duyne RP (2012) Single plasmonic nanoparticle tracking studies of solid supported bilayers with ganglioside lipids. J Am Chem Soc 134, 15832-15839.
Jordan LR, Blauch ME, Baxter AM, Cawley JL and Wittenberg NJ (2018) Influence of brain gangliosides on the formation and properties of supported lipid bilayers. Colloids Surf B Biointerfaces 183, 110442.
Brameshuber M, Kellner F, Rossboth BK, Ta H, Alge K, Sevcsik E, Göhring J, Axmann M, Baumgart F, Gascoigne NRJ et al. (2018) Monomeric TCRs drive T cell antigen recognition article. Nat Immunol 19, 487-496.
Brameshuber M, Sevcsik E, Rossboth BK, Manner C, Deigner H-P, Peksel B, Péter M, Török Z, Hermetter A and Schütz GJ (2016) Oxidized phospholipids inhibit the formation of cholesterol-dependent plasma membrane nanoplatforms. Biophys J 110, 205-213.
Fülöp G, Brameshuber M, Arnold AM, Schütz GJ and Sevcsik E (2018) Determination of the membrane environment of CD59 in living cells. Biomolecules 8, 28.
Gombos I, Crul T, Piotto S, Güngör B, Török Z, Balogh G, Péter M, Slotte JP, Campana F, Pilbat AM et al. (2011) Membrane-lipid therapy in operation: the HSP co-inducer BGP-15 activates stress signal transduction pathways by remodeling plasma membrane rafts. PLoS One 6, 1-10.
Brameshuber M, Weghuber J, Ruprecht V, Gombos I, Horváth I, Vigh L, Eckerstorfer P, Kiss E, Stockinger H and Schütz GJ (2010) Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane. J Biol Chem 285, 41765-41771.
Plochberger B, Stockner T, Chiantia S, Brameshuber M, Weghuber J, Hermetter A, Schwille P and Schütz GJ (2010) Cholesterol slows down the lateral mobility of an oxidized phospholipid in a supported lipid bilayer. Langmuir 26, 17322-17329.
Ruprecht V, Brameshuber M and Schütz GJ (2010) Two-color single molecule tracking combined with photobleaching for the detection of rare molecular interactions in fluid biomembranes. Soft Matter 6, 568-581.
Yokoyama S, Ohta Y, Sakai H and Abe M (2004) Effect of membrane composition on surface states of ganglioside G M1/dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine monolayers. Colloids Surf B Biointerfaces 34, 65-68.
Burgos P, Yuan C, Viriot ML and Johnston LJ (2003) Two-color near-field fluorescence microscopy studies of microdomains (“rafts”) in model membranes. Langmuir 19, 8002-8009.
Bao R, Li L, Qiu F and Yang Y (2011) Atomic force microscopy study of ganglioside GM1 concentration effect on lateral phase separation of sphingomyelin/dioleoylphosphatidylcholine/ cholesterol bilayers. J Phys Chem B 115, 5923-5929.
Galimzyanov TR, Lyushnyak AS, Aleksandrova VV, Shilova LA, Mikhalyov II, Molotkovskaya IM, Akimov SA and Batishchev OV (2017) Line activity of ganglioside GM1 regulates the raft size distribution in a cholesterol-dependent manner. Langmuir 33, 3517-3524.
Baumann J and Fayer MD (1986) Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: effects of spatial geometry on time-resolved observables. J Chem Phys 85, 4087.
Which Moiety Drives Gangliosides to Form Nanodomains?
Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?
The impact of the glycan headgroup on the nanoscopic segregation of gangliosides