Effect of Quarantine Strategies in a Compartmental Model with Asymptomatic Groups
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34456533
PubMed Central
PMC8385487
DOI
10.1007/s10884-021-10059-5
PII: 10059
Knihovny.cz E-zdroje
- Klíčová slova
- Asymptomatic individuals, Epidemic model dynamics, Quarantining, Testing rate,
- Publikační typ
- časopisecké články MeSH
We present an epidemiological model, which extend the classical SEIR model by accounting for the presence of asymptomatic individuals and the effect of isolation of infected individuals based on testing. Moreover, we introduce two types of home quarantine, namely gradual and abrupt one. We compute the equilibria of the new model and derive its reproduction number. Using numerical simulations we analyze the effect of quarantine and testing on the epidemic dynamic. Given a constraint that limits the maximal number of simultaneous active cases, we demonstrate that the isolation rate, which enforces this constraint, decreases with the increasing testing rate. Our simulations show that massive testing allows to control the infection spread using a much lower isolation rate than in the case of indiscriminate quarantining. Finally, based on the effective reproduction number we suggest a strategy to manage the epidemic. It consists in introducing abrupt quarantine as well as relaxing the quarantine in such a way that the epidemic remains under control and further waves do not occur. We analyze the sensitivity of the model dynamic to the quarantine size, timing and strength of the restrictions.
Faculty of Medicine Masaryk University Kamenice 753 5 625 00 Brno Czech Republic
Mathematical Institute of the Silesian University Na Rybníčku 1 746 01 Opava Czech Republic
University of Texas at Dallas 800 W Campbell Richardson TX 75080 USA
Zobrazit více v PubMed
Aleta A, Martín-Corral D, Pastore Y, Piontti A, et al. Modelling the impact of testing, contact tracing and household quarantine on second waves of Covid-19. Nat. Hum. Behav. 2020;4:964–971. doi: 10.1038/s41562-020-0931-9. PubMed DOI PMC
Amaku M, Covas DT, Coutinho FAB, Neto RSA, Struchiner C, Wilder-Smith A, Massad E. Modelling the test, trace and quarantine strategy to control the Covid-19 epidemic in the state of São Paulo, Brazil. Infect. Dis. Model. 2021;6:46–55. PubMed PMC
Aronna MS, Guglielmi R, Moschen LM. A model for COVID-19 with isolation, quarantine and testing as control measures. Epidemics. 2021;34:100437. doi: 10.1016/j.epidem.2021.100437. PubMed DOI PMC
Berger, D.W., Herkenhoff, K.F., Mongey, S.: An seir infectious disease model with testing and conditional quarantine (No. w26901). National Bureau of Economic Research (2020)
Challen R, Tsaneva-Atanasova K, Pitt M, Edwards T, Gompels L, Lacasa L, Brooks-Pollock E, Danon L. Estimates of regional infectivity of COVID-19 in the United Kingdom following imposition of social distancing measures. Philos. Trans. R. Soc. B. 2021;376(1829):20200280. doi: 10.1098/rstb.2020.0280. PubMed DOI PMC
Chladna Z, Moltchanova E. Incentive to vaccinate: a synthesis of two approaches. Acta Mathematica Universitatis Comenianae. 2005;84(2):283–296.
Chladná Z, Kopfová J, Rachinskii D, Rouf SC. Global dynamics of SIR model with switched transmission rate. J. Math. Biol. 2020;80(4):1209–1233. doi: 10.1007/s00285-019-01460-2. PubMed DOI
Day M. Covid-19: four fifths of cases are asymptomatic, China figures indicate. BMJ (Clin. Res. Ed.) 2020;369:m1375. PubMed
Davies, N.G., Kucharski, A.J., Eggo, R.M., Gimma, A., Edmunds, W.J., Jombart, T., O’Reilly, K., Endo, A., Hellewell, J., Nightingale, E.S., Quilty, B.J.: Effects of non-pharmaceutical interventions on Covid-19 cases, deaths, and demand for hospital services in the UK: a modelling study. The Lancet Public Health 5(7), e375–e385 (2020) PubMed PMC
European Centre for Disease Prevention and Control, Systematic review on the incubation and infectiousness/shedding period of communicable diseases in children (2016)
Feng Z. Final and peak epidemic sizes for SEIR models with quarantine and isolation. Math. Biosci. Eng. 2007;4(4):675. doi: 10.3934/mbe.2007.4.675. PubMed DOI
Haug N, Geyrhofer L, Londei A, Dervic E, Desvars-Larrive A, Loreto V, Pinior B, Thurner S, Klimek P. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat. Hum. Behav. 2020;4(12):1303–1312. doi: 10.1038/s41562-020-01009-0. PubMed DOI
Hou C, Chen J, Zhou Y, Hua L, Yuan J, He S, Guo Y, Zhang S, Jia Q, Zhao C, Zhang J. The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID-19): a well-mixed SEIR model analysis. J. Med. Virol. 2020;92(7):841–848. doi: 10.1002/jmv.25827. PubMed DOI
John Hopkins Coronavirus Resource Center. (n.d.). United States cases by county. Johns HopkinsUniversity & Medicine. Retrieved June 11, (2021), from https://coronalevel.com/Slovakia/
Mina MJ, Parker R, Larremore DB. Rethinking Covid-19 test sensitivity-a strategy for containment. N. Engl. J. Med. 2020;383(22):e120. doi: 10.1056/NEJMp2025631. PubMed DOI
Siordia JA., Jr Epidemiology and clinical features of Covid-19: a review of current literature. J. Clin. Virol. 2020;127:104357. doi: 10.1016/j.jcv.2020.104357. PubMed DOI PMC
Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann. Intern. Med. 2020;173(5):362–367. doi: 10.7326/M20-3012. PubMed DOI PMC
Quilty BJ, Clifford S, Hellewell J, Russell TW, Kucharski AJ, Flasche S, Edmunds WJ, Atkins KE, Foss AM, Waterlow NR, Abbas K. Quarantine and testing strategies in contact tracing for SARS-CoV-2: a modelling study. Lancet Public Health. 2021;6:e175. doi: 10.1016/S2468-2667(20)30308-X. PubMed DOI PMC
Volpert V, Banerjee M, Petrovskii S. On a quarantine model of coronavirus infection and data analysis. Math. Model. Nat. Phenom. 2020;15:24. doi: 10.1051/mmnp/2020006. DOI
WHO Coronavirus Disease (Covid-19) Dashboard, available at https://covid19.who.int/
WHO Q&A: Influenza and Covid-19: similarities and differences available at https://www.who.int/emergencies/diseases/novel-coronavirus-2019/
World Bank, World Development Indicators. Birth rate, crude, https://data.worldbank.org/indicator/SP.DYN.CBRT.IN?locations=SK (2021)
Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, Lou Y, Gao D, Yang L, He D, Wang MH. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis. 2020;92:214–217. doi: 10.1016/j.ijid.2020.01.050. PubMed DOI PMC