Dissecting the mechanisms of environment sensitivity of smart probes for quantitative assessment of membrane properties
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36099931
PubMed Central
PMC9470265
DOI
10.1098/rsob.220175
Knihovny.cz E-zdroje
- Klíčová slova
- MD simulation, environment-sensitive probes, lipid saturation, model membranes, spectral imaging, time-resolved emission shift,
- MeSH
- buněčná membrána chemie MeSH
- cholesterol MeSH
- fluorescenční barviva * analýza chemie MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholesterol MeSH
- fluorescenční barviva * MeSH
The plasma membrane, as a highly complex cell organelle, serves as a crucial platform for a multitude of cellular processes. Its collective biophysical properties are largely determined by the structural diversity of the different lipid species it accommodates. Therefore, a detailed investigation of biophysical properties of the plasma membrane is of utmost importance for a comprehensive understanding of biological processes occurring therein. During the past two decades, several environment-sensitive probes have been developed and become popular tools to investigate membrane properties. Although these probes are assumed to report on membrane order in similar ways, their individual mechanisms remain to be elucidated. In this study, using model membrane systems, we characterized the probes Pro12A, NR12S and NR12A in depth and examined their sensitivity to parameters with potential biological implications, such as the degree of lipid saturation, double bond position and configuration (cis versus trans), phospholipid headgroup and cholesterol content. Applying spectral imaging together with atomistic molecular dynamics simulations and time-dependent fluorescent shift analyses, we unravelled individual sensitivities of these probes to different biophysical properties, their distinct localizations and specific relaxation processes in membranes. Overall, Pro12A, NR12S and NR12A serve together as a toolbox with a wide range of applications allowing to select the most appropriate probe for each specific research question.
Zobrazit více v PubMed
van Meer G, Voelker DR, Feigenson GW. 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112-124. (10.1038/nrm2330) PubMed DOI PMC
Céspedes PF, Beckers D, Dustin ML, Sezgin E. 2021. Model membrane systems to reconstitute immune cell signaling. FEBS J. 288, 1070-1090. (10.1111/febs.15488) PubMed DOI
Ingólfsson HI, et al. . 2014. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14 554-14 559. (10.1021/ja507832e) PubMed DOI
Lorent JH, Levental KR, Ganesan L, Rivera-Longsworth G, Sezgin E, Doktorova M, Lyman E, Levental I. 2020. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16, 644-652. (10.1038/s41589-020-0529-6) PubMed DOI PMC
Sezgin E, Levental I, Mayor S, Eggeling C. 2017. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18, 361-374. (10.1038/nrm.2017.16) PubMed DOI PMC
Harayama T, Riezman H. 2018. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281-296. (10.1038/nrm.2017.138) PubMed DOI
Niko Y, Klymchenko AS. 2021. Emerging solvatochromic push–pull dyes for monitoring the lipid order of biomembranes in live cells. J. Biochem. 170, 163-174. (10.1093/jb/mvab078) PubMed DOI
Klymchenko AS, Kreder R. 2014. Fluorescent probes for lipid rafts: from model membranes to living cells. Chem. Biol. 21, 97-113. (10.1016/j.chembiol.2013.11.009) PubMed DOI
Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E. 2001. Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417-1428. (10.1016/S0006-3495(01)76114-0) PubMed DOI PMC
Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E.. 1991. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys. J. 60, 179-189. (10.1016/S0006-3495(91)82041-0) PubMed DOI PMC
Jin L, Millard AC, Wuskell JP, Dong X, Wu D, Clark HA, Loew LM. 2006. Characterization and application of a new optical probe for membrane lipid domains. Biophys. J. 90, 2563-2575. (10.1529/biophysj.105.072884) PubMed DOI PMC
Amaro M, Reina F, Hof M, Eggeling C, Sezgin E. 2017. Laurdan and Di-4-ANEPPDHQ probe different properties of the membrane. J. Phys. D: Appl. Phys. 50, 134004. (10.1088/1361-6463/aa5dbc) PubMed DOI PMC
Sezgin E, Sadowski T, Simons K. 2014. Measuring lipid packing of model and cellular membranes with environment sensitive probes. Langmuir 30, 8160-8166. (10.1021/la501226v) PubMed DOI
Danylchuk DI, Sezgin E, Chabert P, Klymchenko AS. 2020. Redesigning solvatochromic probe laurdan for imaging lipid order selectively in cell plasma membranes. Anal. Chem. 92, 14 798-14 805. (10.1021/acs.analchem.0c03559) PubMed DOI
Danylchuk DI, Moon S, Xu K, Klymchenko AS. 2019. Switchable solvatochromic probes for live-cell super-resolution imaging of plasma membrane organization. Angew. Chem. 131, 15 062-15 066. (10.1002/ange.201907690) PubMed DOI
Kucherak OA, Oncul S, Darwich Z, Yushchenko DA, Arntz Y, Didier P, Mély Y, Klymchenko AS. 2010. Switchable nile red-based probe for cholesterol and lipid order at the outer leaflet of biomembranes. J. Am. Chem. Soc. 132, 4907-4916. (10.1021/ja100351w) PubMed DOI
Parasassi T, De Stasio G, d'Ubaldo A, Gratton E. 1990. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys. J. 57, 1179-1186. (10.1016/S0006-3495(90)82637-0) PubMed DOI PMC
Sezgin E, Waithe D, Bernardino de la Serna J, Eggeling C.. 2015. Spectral imaging to measure heterogeneity in membrane lipid packing. ChemPhysChem 16, 1387-1394. (10.1002/cphc.201402794) PubMed DOI PMC
Franová M, Repáková J, Capková P, Holopainen JM, Vattulainen I. 2010. Effects of DPH on DPPC-cholesterol membranes with varying concentrations of cholesterol: from local perturbations to limitations in fluorescence anisotropy experiments. J. Phys. Chem. B 114, 2704-2711. (10.1021/jp908533x) PubMed DOI
Hölttä-Vuori M, Uronen R-L, Repakova J, Salonen E, Vattulainen I, Panula P, Li Z, Bittman R, Ikonen E. 2008. BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic Cph. Den. 9, 1839-1849. (10.1111/j.1600-0854.2008.00801.x) PubMed DOI
Mobarak E, Javanainen M, Kulig W, Honigmann A, Sezgin E, Aho N, Eggeling C, Rog T, Vattulainen I. 2018. How to minimize dye-induced perturbations while studying biomembrane structure and dynamics: PEG linkers as a rational alternative. Biochim. Biophys. Acta Biomembr. 1860, 2436-2445. (10.1016/j.bbamem.2018.07.003) PubMed DOI
Repáková J, Holopainen JM, Morrow MR, McDonald MC, Capková P, Vattulainen I. 2005. Influence of DPH on the structure and dynamics of a DPPC bilayer. Biophys. J. 88, 3398-3410. (10.1529/biophysj.104.055533) PubMed DOI PMC
Sezgin E, Kaiser H-J, Baumgart T, Schwille P, Simons K, Levental I. 2012. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 7, 1042-1051. (10.1038/nprot.2012.059) PubMed DOI
Sezgin E, et al. 2012. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim. Biophys. Acta BBA - Biomembr. 1818, 1777-1784. (10.1016/j.bbamem.2012.03.007) PubMed DOI
Fee RS, Maroncelli M. 1994. Estimating the time-zero spectrum in time-resolved emmsion measurements of solvation dynamics. Chem. Phys. 183, 235-247. (10.1016/0301-0104(94)00019-0) DOI
Ghose A, Amaro M, Kovaricek P, Hof M, Sykora J. 2018. 6,7-dimethoxy-coumarin as a probe of hydration dynamics in biologically relevant systems. Methods Appl. Fluoresc. 6, 025005. (10.1088/2050-6120/aaaa05) PubMed DOI
Horng ML, Gardecki JA, Papazyan A, Maroncelli M. 1995. Subpicosecond measurements of polar solvation dynamics: coumarin 153 revisited. J. Phys. Chem. 99, 17 311-17 337. (10.1021/j100048a004) DOI
Jesenská A, Sýkora J, Olzyńska A, Brezovský J, Zdráhal Z, Damborský J, Hof M. 2009. Nanosecond time-dependent stokes shift at the tunnel mouth of haloalkane dehalogenases. J. Am. Chem. Soc. 131, 494-501. (10.1021/ja804020q) PubMed DOI
Becke AD. 1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648-5652. (10.1063/1.464913) DOI
Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR. 1983. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21 + G basis set for first-row elements, Li–F. J. Comput. Chem. 4, 294-301. (10.1002/jcc.540040303) DOI
Ditchfield R, Hehre WJ, Pople JA. 1971. Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724-728. (10.1063/1.1674902) DOI
Hariharan PC, Pople JA. 1973. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213-222. (10.1007/BF00533485) DOI
Hehre WJ, Ditchfield R, Pople JA. 1972. Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257-2261. (10.1063/1.1677527) DOI
Frish MJ, et al. In press. Gaussian 09, revision A.02. Wallingford, UK: Gaussian.
Singh UC, Kollman PA. 1984. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 5, 129-145. (10.1002/jcc.540050204) DOI
Lee J, et al. . 2016. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 12, 405-413. (10.1021/acs.jctc.5b00935) PubMed DOI PMC
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19-25. (10.1016/j.softx.2015.06.001) DOI
Jorgensen WL, Maxwell DS, Tirado-Rives J. 1996. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11 225-11 236. (10.1021/ja9621760) DOI
Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. 2001. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474-6487. (10.1021/jp003919d) DOI
Kulig W, Pasenkiewicz-Gierula M, Róg T. 2016. Cis and trans unsaturated phosphatidylcholine bilayers: a molecular dynamics simulation study. Chem. Phys. Lipids 195, 12-20. (10.1016/j.chemphyslip.2015.07.002) PubMed DOI
Maciejewski A, Pasenkiewicz-Gierula M, Cramariuc O, Vattulainen I, Rog T. 2014. Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration. J. Phys. Chem. B 118, 4571-4581. (10.1021/jp5016627) PubMed DOI
Kulig W, Pasenkiewicz-Gierula M, Róg T. 2015. Topologies, structures and parameter files for lipid simulations in GROMACS with the OPLS-aa force field: DPPC, POPC, DOPC, PEPC, and cholesterol. Data Brief 5, 333-336. (10.1016/j.dib.2015.09.013) PubMed DOI PMC
Kulig W, et al. . 2015. Cholesterol under oxidative stress-how lipid membranes sense oxidation as cholesterol is being replaced by oxysterols. Free Radic. Biol. Med. 84, 30-41. (10.1016/j.freeradbiomed.2015.03.006) PubMed DOI
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926-935. (10.1063/1.445869) DOI
Hoover WG. 1985. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695-1697. (10.1103/PhysRevA.31.1695) PubMed DOI
Parrinello M, Rahman A. 1981. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182-7190. (10.1063/1.328693) DOI
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. 1997. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463-1472. (10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H) DOI
Pöyry S, Cramariuc O, Postila PA, Kaszuba K, Sarewicz M, Osyczka A, Vattulainen I, Róg T. 2013. Atomistic simulations indicate cardiolipin to have an integral role in the structure of the cytochrome bc1 complex. Biochim. Biophys. Acta 1827, 769-778. PubMed
Holthuis JCM, Menon AK. 2014. Lipid landscapes and pipelines in membrane homeostasis. Nature 510, 48-57. (10.1038/nature13474) PubMed DOI
Kaiser H-J, Lingwood D, Levental I, Sampaio JL, Kalvodova L, Rajendran L, Simons K. 2009. Order of lipid phases in model and plasma membranes. Proc. Natl. Acad. Sci. USA 106, 16 645-16 650. (10.1073/pnas.0908987106) PubMed DOI PMC
Sezgin E, et al. . 2015. Adaptive Lipid Packing and Bioactivity in Membrane Domains. PLoS ONE 10, e0123930. (10.1371/journal.pone.0123930) PubMed DOI PMC
Pilon M. 2016. Revisiting the membrane-centric view of diabetes. Lipids Health Dis. 15, 167. (10.1186/s12944-016-0342-0) PubMed DOI PMC
Casares D, Escribá PV, Rosselló CA. 2019. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 20, 2167. (10.3390/ijms20092167) PubMed DOI PMC
Beloribi-Djefaflia S, Vasseur S, Guillaumond F. 2016. Lipid metabolic reprogramming in cancer cells. Oncogenesis 5, e189-e189. (10.1038/oncsis.2015.49) PubMed DOI PMC
Oteng A-B, Kersten S. 2020. Mechanisms of action of trans fatty acids. Adv. Nutr. 11, 697-708. (10.1093/advances/nmz125) PubMed DOI PMC
Pipoyan D, Stepanyan S, Stepanyan S, Beglaryan M, Costantini L, Molinari R, Merendino N. 2021. The effect of trans fatty acids on human health: regulation and consumption patterns. Foods 10, 2452. (10.3390/foods10102452) PubMed DOI PMC
Simopoulos AP. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56, 365-379. (10.1016/S0753-3322(02)00253-6) PubMed DOI
Ballweg S, et al. . 2020. Regulation of lipid saturation without sensing membrane fluidity. Nat. Commun. 11, 756. (10.1038/s41467-020-14528-1) PubMed DOI PMC
Roach C, Feller SE, Ward JA, Shaikh SR, Zerouga M, Stillwell W. 2004. Comparison of Cis and Trans fatty acid containing phosphatidylcholines on membrane properties. Biochemistry 43, 6344-6351. (10.1021/bi049917r) PubMed DOI
Nagata S, Suzuki J, Segawa K, Fujii T. 2016. Exposure of phosphatidylserine on the cell surface. Cell Death Differ. 23, 952-961. (10.1038/cdd.2016.7) PubMed DOI PMC
Kay JG, Fairn GD. 2019. Distribution, dynamics and functional roles of phosphatidylserine within the cell. Cell Commun. Signal. 17, 126. (10.1186/s12964-019-0438-z) PubMed DOI PMC
Leventis PA, Grinstein S. 2010. The distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 39, 407-427. (10.1146/annurev.biophys.093008.131234) PubMed DOI
Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. 1992. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. Baltim. Md 148, 2207-2216. PubMed
Ammar M, Kassas N, Chasserot-Golaz S, Bader M-F, Vitale N. 2013. Lipids in regulated exocytosis: what are they doing? Front. Endocrinol. 4, 125. (10.3389/fendo.2013.00125) PubMed DOI PMC
Calzada E, Onguka O, Claypool SM. 2016. Phosphatidylethanolamine metabolism in health and disease. Int. Rev. Cell Mol. Biol. 321, 29-88. (10.1016/bs.ircmb.2015.10.001) PubMed DOI PMC
Irie A, Yamamoto K, Miki Y, Murakami M. 2017. Phosphatidylethanolamine dynamics are required for osteoclast fusion. Sci. Rep. 7, 46715. (10.1038/srep46715) PubMed DOI PMC
Szlasa W, Zendran I, Zalesińska A, Tarek M, Kulbacka J. 2020. Lipid composition of the cancer cell membrane. J. Bioenerg. Biomembr. 52, 321-342. (10.1007/s10863-020-09846-4) PubMed DOI PMC
Barucha-Kraszewska J, Kraszewski S, Jurkiewicz P, Ramseyer C, Hof M. 2010. Numerical studies of the membrane fluorescent dyes dynamics in ground and excited states. Biochim. Biophys. Acta BBA - Biomembr. 1798, 1724-1734. (10.1016/j.bbamem.2010.05.020) PubMed DOI
Suhaj A, Gowland D, Bonini N, Owen DM, Lorenz CD. 2020. Laurdan and Di-4-ANEPPDHQ influence the properties of lipid membranes: a classical molecular dynamics and fluorescence study. J. Phys. Chem. B 124, 11 419-11 430. (10.1021/acs.jpcb.0c09496) PubMed DOI
Moradi S, Nowroozi A, Shahlaei M. 2019. Shedding light on the structural properties of lipid bilayers using molecular dynamics simulation: a review study. RSC Adv. 9, 4644-4658. (10.1039/C8RA08441F) PubMed DOI PMC
Klymchenko AS, Duportail G, Demchenko AP, Mély Y. 2004. Bimodal distribution and fluorescence response of environment-sensitive probes in lipid bilayers. Biophys. J. 86, 2929-2941. (10.1016/S0006-3495(04)74344-1) PubMed DOI PMC
Ermilova I, Lyubartsev AP. 2018. Cholesterol in phospholipid bilayers: positions and orientations inside membranes with different unsaturation degrees. Soft Matter 15, 78-93. (10.1039/C8SM01937A) PubMed DOI
Pyrshev KA, Yesylevskyy SO, Mély Y, Demchenko AP, Klymchenko AS. 2017. Caspase-3 activation decreases lipid order in the outer plasma membrane leaflet during apoptosis: a fluorescent probe study. Biochim. Biophys. Acta Biomembr. 1859, 2123-2132. (10.1016/j.bbamem.2017.08.002) PubMed DOI
Klymchenko AS. 2017. Solvatochromic and fluorogenic dyes as environment-sensitive probes: design and biological applications. Acc. Chem. Res. 50, 366-375. (10.1021/acs.accounts.6b00517) PubMed DOI
Kučerka N, Gallová J, Uhríková D. 2019. The membrane structure and function affected by water. Chem. Phys. Lipids 221, 140-144. (10.1016/j.chemphyslip.2019.04.002) PubMed DOI
Scollo F, Evci H, Amaro M, Jurkiewicz P, Sykora J, Hof M. 2021. What does time-dependent fluorescence shift (TDFS) in biomembranes (and proteins) report on? Front. Chem. 9, 840. (10.3389/fchem.2021.738350) PubMed DOI PMC
Baral S, Phillips M, Yan H, Avenso J, Gundlach L, Baumeier B, Lyman E. 2020. Ultrafast formation of the charge transfer state of prodan reveals unique aspects of the chromophore environment. J. Phys. Chem. B 124, 2643-2651. (10.1021/acs.jpcb.0c00121) PubMed DOI PMC
Pospíšil P, Cwiklik L, Sýkora J, Hof M, Greetham GM, Towrie M, Vlček A. 2021. Solvent-dependent excited-state evolution of prodan dyes. J. Phys. Chem. B 125, 13 858-13 867. (10.1021/acs.jpcb.1c09030) PubMed DOI
Amaro M, Šachl R, Jurkiewicz P, Coutinho A, Prieto M, Hof M. 2014. Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state. Biophys. J. 107, 2751-2760. (10.1016/j.bpj.2014.10.058) PubMed DOI PMC
Ainavarapu SRK. 2003. TRANES spectra of fluorescence probes in lipid bilayer membranes: an assessment of population heterogeneity and dynamics. J. Fluoresc. 13, 95-103 (10.1023/A:1022362715903). DOI
Sarkar N, Das K, Nath D, Bhattacharyya K. 1994. Twisted charge transfer processes of nile red in homogeneous solutions and in faujasite zeolite. Langmuir 10, 326-329. (10.1021/LA00013A048) DOI
Carravilla P, Dasgupta A, Zhurgenbayeva G, Danylchuk DI, Klymchenko AS, Sezgin E, Eggeling C. 2021. Long-term STED imaging of membrane packing and dynamics by exchangeable polarity-sensitive dyes. Biophys. Rep. 1, 100023. (10.1016/j.bpr.2021.100023) PubMed DOI PMC
Danylchuk DI, Jouard P-H, Klymchenko AS. 2021. Targeted solvatochromic fluorescent probes for imaging lipid order in organelles under oxidative and mechanical stress. J. Am. Chem. Soc. 143, 912-924. (10.1021/jacs.0c10972) PubMed DOI
Ragaller F, et al. 2022. Dissecting the mechanisms of environment sensitivity of smart probes for quantitative assessment of membrane properties. Figshare. (10.6084/m9.figshare.c.6174471) PubMed DOI PMC
figshare
10.6084/m9.figshare.c.6174471