Effect of Must Hyperoxygenation on Sensory Expression and Chemical Composition of the Resulting Wines
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35011467
PubMed Central
PMC8746419
DOI
10.3390/molecules27010235
PII: molecules27010235
Knihovny.cz E-zdroje
- Klíčová slova
- hyperoxygenation, polyphenolic compounds, sensory analysis, white wine,
- MeSH
- analýza potravin * metody MeSH
- chuť * MeSH
- flavonoidy analýza chemie MeSH
- hydroxybenzoáty analýza chemie MeSH
- oxidace-redukce * MeSH
- polyfenoly analýza chemie MeSH
- těkavé organické sloučeniny analýza chemie MeSH
- víno analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- flavonoidy MeSH
- hydroxybenzoáty MeSH
- polyfenoly MeSH
- těkavé organické sloučeniny MeSH
This paper evaluates the effect of must hyperoxygenation on final wine. Lower concentrations of caftaric acid (0.29 mg·L-1), coutaric acid (1.37 mg·L-1) and Catechin (0.86 mg·L-1) were observed in hyperoxygenated must in contrast to control must (caftaric acid 32.78 mg·L-1, coutaric acid 5.01 mg·L-1 and Catechin 4.45 mg·L-1). In the final wine, hydroxybenzoic acids were found in higher concentrations in the control variant (gallic acid 2.58 mg·L-1, protocatechuic acid 1.02 mg·L-1, vanillic acid 2.05 mg·L-1, syringic acid 2.10 mg·L-1) than in the hyperoxygenated variant (2.01 mg·L-1, 0.86 mg·L-1, 0.98 mg·L-1 and 1.50 mg·L-1 respectively). Higher concentrations of total flavanols (2 mg·L-1 in hyperoxygenated must and 21 mg·L-1 in control must; 7.5 mg·L-1 in hyperoxygenated wine and 19.8 mg·L-1 in control wine) and polyphenols (97 mg·L-1 in hyperoxygenated must and 249 mg·L-1 in control must; 171 mg·L-1 in hyperoxygenated wine and 240 mg·L-1 in control wine) were found in both the must and the control wine. A total of 24 volatiles were determined using gas chromatography mass spectrometry. Statistical differences were achieved for isobutyl alcohol (26.33 mg·L-1 in control wine and 32.84 mg·L-1 in hyperoxygenated wine), or 1-propanol (7.28 mg·L-1 in control wine and 8.51 mg·L-1 in hyperoxygenated wine), while esters such as isoamyl acetate (1534.41 µg·L-1 in control wine and 698.67 µg·L-1 in hyperoxygenated wine), 1-hexyl acetate (136.32 µg·L-1 in control wine and 71.67 µg·L-1 in hyperoxygenated wine) and isobutyl acetate (73.88 µg·L-1 in control wine and 37.27 µg·L-1 in hyperoxygenated wine) had a statistically lower concentration.
Zobrazit více v PubMed
Day M., Schmidt S., Smith P., Wilkes E. Use and impact of oxygen during winemaking. Aust. J. Grape Wine Res. 2015;21:693–704. doi: 10.1111/ajgw.12199. DOI
Schneider V. Must hyperoxidation: A review. Am. J. Enol. Vitic. 1998;49:65–73.
Cheynier V., Souquet J., Samson A., Moutounet M. Hyperoxidation: Influence of various oxygen supply levels on oxidation kinetics of phenolic compounds and wine quality. Vitis. 1991;30:107–115. doi: 10.5073/vitis.1991.30.107-115. DOI
Moreno-Arribas M.V., Polo M.C. Wine Chemistry and Biochemistry. Volume 735 Springer; Berlin/Heidelberg, Germany: 2009.
Tarko T., Duda-Chodak A., Sroka P., Siuta M. The impact of oxygen at various stages of vinification on the chemical composition and the antioxidant and sensory properties of white and red wines. Int. J. Food Sci. 2020;2020 doi: 10.1155/2020/7902974. PubMed DOI PMC
Cejudo-Bastante M.J., Castro-Vázquez L., Hermosín-Gutiérrez I., Pérez-Coello M.S. Combined effects of prefermentative skin maceration and oxygen addition of must on color-related phenolics, volatile composition, and sensory characteristics of Airén white wine. J. Agric. Food Chem. 2011;59:12171–12182. doi: 10.1021/jf202679y. PubMed DOI
Antonelli A., Arfelli G., Masino F., Sartini E. Comparison of traditional and reductive winemaking: Influence on some fixed components and sensorial characteristics. Eur. Food Res. Technol. 2010;231:85–91. doi: 10.1007/s00217-010-1250-6. DOI
Cejudo-Bastante M.J., Hermosín-Gutiérrez I., Castro-Vázquez L.I., Pérez-Coello M.S. Hyperoxygenation and bottle storage of Chardonnay white wines: Effects on color-related phenolics, volatile composition, and sensory characteristics. J. Agric. Food Chem. 2011;59:4171–4182. doi: 10.1021/jf104744q. PubMed DOI
Day M., Schmidt S.A., Pearson W., Kolouchova R., Smith P.A. Effect of passive oxygen exposure during pressing and handling on the chemical and sensory attributes of Chardonnay wine. Aust. J. Grape Wine Res. 2019;25:185–200. doi: 10.1111/ajgw.12384. DOI
Coetzee C., Lisjak K., Nicolau L., Kilmartin P., du Toit W.J. Oxygen and sulfur dioxide additions to Sauvignon blanc must: Effect on must and wine composition. Flavour Fragr. J. 2013;28:155–167. doi: 10.1002/ffj.3147. DOI
Lukić I., Horvat I., Radeka S., Damijanić K., Staver M. Effect of different levels of skin disruption and contact with oxygen during grape processing on phenols, volatile aromas, and sensory characteristics of white wine. J. Food Processing Preserv. 2019;43:e13969. doi: 10.1111/jfpp.13969. DOI
Du Toit W., Marais J., Pretorius I., Du Toit M. Oxygen in must and wine: A review. South Afr. J. Enol. Vitic. 2006;27:76–94. doi: 10.21548/27-1-1610. DOI
Reynolds A.G. Managing Wine Quality: Oenology and Wine Quality. Elsevier; Amsterdam, The Netherlands: 2010.
Ribéreau-Gayon P., Dubourdieu D., Donèche B., Lonvaud A. Handbook of Enology, Volume 1: The Microbiology of Wine and Vinifications. Volume 1 John Wiley & Sons; Hoboken, New Jersey: USA. 2006.
Moio L., Ugliano M., Genovese A., Gambuti A., Pessina R., Piombino P. Effect of antioxidant protection of must on volatile compounds and aroma shelf life of Falanghina (Vitis vinifera L.) wine. J. Agric. Food Chem. 2004;52:891–897. doi: 10.1021/jf034869n. PubMed DOI
Li H., Guo A., Wang H. Mechanisms of oxidative browning of wine. Food Chem. 2008;108:1–13. doi: 10.1016/j.foodchem.2007.10.065. DOI
Castro R., Barroso C. Influence of oxygen supply on the susceptibility of cv. Palomino fino must to browning. Vitis-Geilweilerhof. 2001;40:39–42. doi: 10.5073/vitis.2001.40.39-42. DOI
Romboli Y., Mangani S., Buscioni G., Granchi L., Vincenzini M. Effect of Saccharomyces cerevisiae and Candida zemplinina on quercetin, vitisin A and hydroxytyrosol contents in Sangiovese wines. World J. Microbiol. Biotechnol. 2015;31:1137–1145. doi: 10.1007/s11274-015-1863-9. PubMed DOI
Waterhouse A.L. Wine phenolics. Ann. New York Acad. Sci. 2002;957:21–36. doi: 10.1111/j.1749-6632.2002.tb02903.x. PubMed DOI
Tian R.-R., Pan Q.-H., Zhan J.-C., Li J.-M., Wan S.-B., Zhang Q.-H., Huang W.-D. Comparison of phenolic acids and flavan-3-ols during wine fermentation of grapes with different harvest times. Molecules. 2009;14:827–838. doi: 10.3390/molecules14020827. PubMed DOI PMC
Gil-Muñoz R., Gómez-Plaza E., Martınez A., López-Roca J. Evolution of phenolic compounds during wine fermentation and post-fermentation: Influence of grape temperature. J. Food Compos. Anal. 1999;12:259–272. doi: 10.1006/jfca.1999.0834. DOI
Motta S., Guaita M., Petrozziello M., Panero L., Bosso A. Effect of reductive pressing on the concentration of reduced glutathione and phenols in the musts of four Italian cultivars. Am. J. Enol. Vitic. 2014;65:471–478. doi: 10.5344/ajev.2014.13087. DOI
Pavloušek P. Bio Odrůdy Révy Vinné. Grada Publishing; Prague, Czech Republic: 2016.
Baroň M., Fiala J. Chasing after minerality, relationship to yeasts nutritional stress and succinic acid production. Czech J. Food Sci. 2012;30:188–193. doi: 10.17221/464/2010-CJFS. DOI
Balík J. Vinařství: Návody do Laboratorních Cvičení (Winery, Instructions for Laboratory Excercises) Mendelova Zemědělská a Lesnická Univerzita; Brno, Czech Republic: 2004.
Prusova B., Baron M. Effect of controlled micro-oxygenation on white wine. Ciência Técnica Vitivinícola. 2018;33:78–89. doi: 10.1051/ctv/20183301078. DOI
Sochorova L., Prusova B., Jurikova T., Mlcek J., Adamkova A., Baron M., Sochor J. The study of antioxidant components in grape seeds. Molecules. 2020;25:3736. doi: 10.3390/molecules25163736. PubMed DOI PMC
Sochor J., Jurikova T., Pohanka M., Skutkova H., Baron M., Tomaskova L., Balla S., Klejdus B., Pokluda R., Mlcek J. Evaluation of antioxidant activity, polyphenolic compounds, amino acids and mineral elements of representative genotypes of Lonicera edulis. Molecules. 2014;19:6504–6523. doi: 10.3390/molecules19056504. PubMed DOI PMC
Li Y.G., Tanner G., Larkin P. The DMACA–HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J. Sci. Food Agric. 1996;70:89–101. doi: 10.1002/(SICI)1097-0010(199601)70:1<89::AID-JSFA470>3.0.CO;2-N. DOI