Nucleotide-Bearing Benzylidene-Tetrahydroxanthylium Near-IR Fluorophore for Sensing DNA Replication, Secondary Structures and Interactions
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
17-14791S
Grantová Agentura České Republiky
Praemium academiae
Akademie Věd České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
PubMed
32633433
PubMed Central
PMC7361531
DOI
10.1002/chem.202003192
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, fluorescence, nucleotides, real-time PCR,
- MeSH
- COVID-19 * MeSH
- DNA sondy MeSH
- lidé MeSH
- nukleotidy MeSH
- replikace DNA * MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA sondy MeSH
- nukleotidy MeSH
Thymidine triphosphate bearing benzylidene-tetrahydroxanthylium near-IR fluorophore linked to the 5-methyl group via triazole was synthesized through the CuAAC reaction and was used for polymerase synthesis of labelled DNA probes. The fluorophore lights up upon incorporation to DNA (up to 348-times) presumably due to interactions in major groove and the fluorescence further increases in the single-stranded oligonucleotide. The labelled dsDNA senses binding of small molecules and proteins by a strong decrease of fluorescence. The nucleotide was used as a light-up building block in real-time PCR for detection of SARS-CoV-2 virus.
Zobrazit více v PubMed
Xu W., Chan K. M., Kool E. T., Nat. Chem. 2017, 9, 1043–1055; PubMed PMC
Sinkeldam R. W., Greco N. J., Tor Y., Chem. Rev. 2010, 110, 2579–2619; PubMed PMC
Tanpure A. A., Pawar M. G., Srivatsan S. G., Isr. J. Chem. 2013, 53, 366–378.
Michel B. Y., Dziuba D., Benhida R., Demchenko A. P., Burger A., Front. Chem. 2020, 8, 112. PubMed PMC
Examples:
Burns D. D., Teppang K. L., Lee R. W., Lokensgard M. E., Purse B. W., J. Am. Chem. Soc. 2017, 139, 1372–1375; PubMed PMC
Saito Y., Suzuki A., Okada Y., Yamasaka Y., Nemoto N., Saito I., Chem. Commun. 2013, 49, 5684–5686; PubMed
Yanagi M., Suzuki A., Hudson R. H. E., Saito Y., Org. Biomol. Chem. 2018, 16, 1496–1507; PubMed
Okamoto A., Kanatani K., Saito I., J. Am. Chem. Soc. 2004, 126, 4820–4827; PubMed
Gardarsson H., Kale A. S., Sigurdsson S. T., ChemBioChem 2011, 12, 567–575. PubMed
Kanamori T., Takamura A., Tago N., Masaki Y., Ohkubo A., Sekine M., Seio K., Org. Biomol. Chem. 2017, 15, 1190–1197; PubMed
Kanamori T., Masaki Y., Oda Y., Ohzeki H., Ohkubo A., Sekine M., Seio K., Org. Biomol. Chem. 2019, 17, 2077–2080. PubMed
Hocek M., Acc. Chem. Res. 2019, 52, 1730–1737. PubMed
Riedl J., Ménová P., Pohl R., Orság P., Fojta M., Hocek M., J. Org. Chem. 2012, 77, 8287–8293; PubMed
Kuba M., Pohl R., Hocek M., Tetrahedron 2018, 74, 6621–6629.
Dziuba D., Pohl R., Hocek M., Chem. Commun. 2015, 51, 4880–4882. PubMed
Dziuba D., Jurkiewicz P., Cebecauer M., Hof M., Hocek M., Angew. Chem. Int. Ed. 2016, 55, 174–178; PubMed
Angew. Chem. 2016, 128, 182–186;
Güixens-Gallardo P., Humpolickova J., Miclea S. P., Pohl R., Kraus T., Jurkiewicz P., Hof M., Hocek M., Org. Biomol. Chem. 2020, 18, 912–919. PubMed
Dziuba D., Pospíšil P., Matyašovský J., Brynda J., Nachtigallová D., Rulíšek L., Pohl R., Hof M., Hocek M., Chem. Sci. 2016, 7, 5775–5785. PubMed PMC
Glazer A. N., Rye H. S., Nature 1992, 359, 859–861. PubMed
Hövelmann F., Seitz O., Acc. Chem. Res. 2016, 49, 714–723; PubMed
Hövelmann F., Gaspar I., Ephrussi A., Seitz O., J. Am. Chem. Soc. 2013, 135, 19025–19032; PubMed
Knoll A., Kankowski S., Schöllkopf S., Meier J. C., Seitz O., Chem. Commun. 2019, 55, 14817–14820; PubMed
Berndl S., Dimitrov S. D., Menacher F., Fiebig T., Wagenknecht H.-A., Chem. Eur. J. 2016, 22, 2386–2395; PubMed
Holzhauser C., Liebl R., Goepferich A., Wagenknecht H.-A., Breunig M., ACS Chem. Biol. 2013, 8, 890–894; PubMed
Ikeda S., Okamoto A., Chem. Asian J. 2008, 3, 958–968; PubMed
Ikeda S., Kubota T., Yuki M., Okamoto A., Angew. Chem. Int. Ed. 2009, 48, 6480–6484; PubMed
Angew. Chem. 2009, 121, 6602–6606;
Kovaliov M., Segal M., Kafri P., Yavin E., Shav-Tal Y., Fischer B., Bioorg. Med. Chem. 2014, 22, 2613–2621. PubMed
Klimkowski P., De Ornellas S., Singleton D., El-Sagheer A. H., Brown T., Org. Biomol. Chem. 2019, 17, 5943–5950. PubMed PMC
Zhou L., Wang Q., Tan Y., Lang M. J., Sun H., Liu X., Chem. Eur. J. 2017, 23, 8736–8740. PubMed
Zhou L., Lu D., Wang Q., Liu S., Lin Q., Sun H., Biosens. Bioelectron. 2017, 91, 699–705. PubMed
Hottin A., Marx A., Acc. Chem. Res. 2016, 49, 418–427; PubMed
Hollenstein M., Molecules 2012, 17, 13569–13591. PubMed PMC
Ménová P., Cahová H., Plucnara M., Havran L., Fojta M., Hocek M., Chem. Commun. 2013, 49, 4652–4654. PubMed
Ren X., El-Sagheer A. H., Brown T., Analyst 2015, 140, 2671–2678; PubMed
Ren X., El-Sagheer A. H., Brown T., Nucleic Acids Res. 2016, 44, e79; PubMed PMC
Neef A. B., Luedtke N. W., ChemBioChem 2014, 15, 789–793; PubMed
Tera M., Glasauer S. M. K., Luedtke N. W., ChemBioChem 2018, 19, 1939–1943; PubMed
Tera M., Harati Taji Z., Luedtke N. W., Angew. Chem. Int. Ed. 2018, 57, 15405–15409; PubMed
Angew. Chem. 2018, 130, 15631–15635. PubMed
Zawada Z., Tatar A., Mocilac P., Buděšínský M., Kraus T., Angew. Chem. Int. Ed. 2018, 57, 9891–9895; PubMed
Angew. Chem. 2018, 130, 10039–10043;
Güixens-Gallardo P., Zawada Z., Matyašovský J., Dziuba D., Pohl R., Kraus T., Hocek M., Bioconjugate Chem. 2018, 29, 3906–3912. PubMed
Fojta M., Kostecka P., Trefulka M., Havran L., Palecek E., Anal. Chem. 2007, 79, 1022–1029. PubMed
Litte J. W., J. Biol. Chem. 1967, 242, 679–686. PubMed
Boger D. L., Tse W. C., Bioorg. Med. Chem. 2001, 9, 2511–2518. PubMed
Kapuscinski J., Biotechnic Histochem. 1995, 70, 220–233. PubMed
Kim S. K., Nordén B., FEBS Lett. 1993, 315, 61–64. PubMed
Kabir A., Suresh Kumar G., PLoS One 2013, 8, e70510. PubMed PMC
Gupta S., Tiwari N., Munde M., Sci. Rep. 2019, 9, 5891. PubMed PMC
Pang S., Liu S., Su X., RSC Adv. 2014, 4, 25857.
Wong M. L., Medrano J. F., BioTechniques 2005, 39, 75–85. PubMed
Karlsson H. J., Eriksson M., Perzon E., Akerman B., Lincoln P., Westman G., Nucleic Acids Res. 2003, 31, 6227–6234; PubMed PMC
Nam H.-M., Srinivasan V., Gillespie B. E., Murinda S. E., Oliver S. P., Int. J. Food Microbiol. 2005, 102, 161–171. PubMed
Thelwell N., Millington S., Solinas A., Booth J., Brown T., Nucleic Acids Res. 2000, 28, 3752–3761; PubMed PMC
Whitcombe D., Theaker J., Guy S. P., Brown T., Little S., Nat. Biotechnol. 1999, 17, 804–807. PubMed
Corman V. M., Landt O., Kaiser M., Molenkamp R., Meijer A., Chu D. K., Bleicker T., Brünink S., Schneider J., Schmidt M. L., Mulders D. G., Haagmans B. L., van der Veer B., van den Brink S., Wijsman L., Goderski G., Romette J.-L., Ellis J., Zambon M., Peiris M., Goossens H., Reusken C., Koopmans M. P., Drosten C., Eurosurveillance 2020, 25, 23–30. PubMed