Nucleotide-Bearing Benzylidene-Tetrahydroxanthylium Near-IR Fluorophore for Sensing DNA Replication, Secondary Structures and Interactions
Language English Country Germany Media print-electronic
Document type Journal Article
        Grant support
          
              17-14791S 
          
      Grantová Agentura České Republiky   
      
          
              Praemium academiae 
          
      Akademie Věd České Republiky   
      
          
              CZ.02.1.01/0.0/0.0/16_019/0000729 
          
      European Regional Development Fund   
      
      
    PubMed
          
           32633433
           
          
          
    PubMed Central
          
           PMC7361531
           
          
          
    DOI
          
           10.1002/chem.202003192
           
          
          
  
    Knihovny.cz E-resources
    
  
              
      
- Keywords
- DNA, fluorescence, nucleotides, real-time PCR,
- MeSH
- COVID-19 * MeSH
- DNA Probes MeSH
- Humans MeSH
- Nucleotides MeSH
- DNA Replication * MeSH
- SARS-CoV-2 MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA Probes MeSH
- Nucleotides MeSH
Thymidine triphosphate bearing benzylidene-tetrahydroxanthylium near-IR fluorophore linked to the 5-methyl group via triazole was synthesized through the CuAAC reaction and was used for polymerase synthesis of labelled DNA probes. The fluorophore lights up upon incorporation to DNA (up to 348-times) presumably due to interactions in major groove and the fluorescence further increases in the single-stranded oligonucleotide. The labelled dsDNA senses binding of small molecules and proteins by a strong decrease of fluorescence. The nucleotide was used as a light-up building block in real-time PCR for detection of SARS-CoV-2 virus.
See more in PubMed
Xu W., Chan K. M., Kool E. T., Nat. Chem. 2017, 9, 1043–1055; PubMed PMC
Sinkeldam R. W., Greco N. J., Tor Y., Chem. Rev. 2010, 110, 2579–2619; PubMed PMC
Tanpure A. A., Pawar M. G., Srivatsan S. G., Isr. J. Chem. 2013, 53, 366–378.
Michel B. Y., Dziuba D., Benhida R., Demchenko A. P., Burger A., Front. Chem. 2020, 8, 112. PubMed PMC
Examples:
Burns D. D., Teppang K. L., Lee R. W., Lokensgard M. E., Purse B. W., J. Am. Chem. Soc. 2017, 139, 1372–1375; PubMed PMC
Saito Y., Suzuki A., Okada Y., Yamasaka Y., Nemoto N., Saito I., Chem. Commun. 2013, 49, 5684–5686; PubMed
Yanagi M., Suzuki A., Hudson R. H. E., Saito Y., Org. Biomol. Chem. 2018, 16, 1496–1507; PubMed
Okamoto A., Kanatani K., Saito I., J. Am. Chem. Soc. 2004, 126, 4820–4827; PubMed
Gardarsson H., Kale A. S., Sigurdsson S. T., ChemBioChem 2011, 12, 567–575. PubMed
Kanamori T., Takamura A., Tago N., Masaki Y., Ohkubo A., Sekine M., Seio K., Org. Biomol. Chem. 2017, 15, 1190–1197; PubMed
Kanamori T., Masaki Y., Oda Y., Ohzeki H., Ohkubo A., Sekine M., Seio K., Org. Biomol. Chem. 2019, 17, 2077–2080. PubMed
Hocek M., Acc. Chem. Res. 2019, 52, 1730–1737. PubMed
Riedl J., Ménová P., Pohl R., Orság P., Fojta M., Hocek M., J. Org. Chem. 2012, 77, 8287–8293; PubMed
Kuba M., Pohl R., Hocek M., Tetrahedron 2018, 74, 6621–6629.
Dziuba D., Pohl R., Hocek M., Chem. Commun. 2015, 51, 4880–4882. PubMed
Dziuba D., Jurkiewicz P., Cebecauer M., Hof M., Hocek M., Angew. Chem. Int. Ed. 2016, 55, 174–178; PubMed
Angew. Chem. 2016, 128, 182–186;
Güixens-Gallardo P., Humpolickova J., Miclea S. P., Pohl R., Kraus T., Jurkiewicz P., Hof M., Hocek M., Org. Biomol. Chem. 2020, 18, 912–919. PubMed
Dziuba D., Pospíšil P., Matyašovský J., Brynda J., Nachtigallová D., Rulíšek L., Pohl R., Hof M., Hocek M., Chem. Sci. 2016, 7, 5775–5785. PubMed PMC
Glazer A. N., Rye H. S., Nature 1992, 359, 859–861. PubMed
Hövelmann F., Seitz O., Acc. Chem. Res. 2016, 49, 714–723; PubMed
Hövelmann F., Gaspar I., Ephrussi A., Seitz O., J. Am. Chem. Soc. 2013, 135, 19025–19032; PubMed
Knoll A., Kankowski S., Schöllkopf S., Meier J. C., Seitz O., Chem. Commun. 2019, 55, 14817–14820; PubMed
Berndl S., Dimitrov S. D., Menacher F., Fiebig T., Wagenknecht H.-A., Chem. Eur. J. 2016, 22, 2386–2395; PubMed
Holzhauser C., Liebl R., Goepferich A., Wagenknecht H.-A., Breunig M., ACS Chem. Biol. 2013, 8, 890–894; PubMed
Ikeda S., Okamoto A., Chem. Asian J. 2008, 3, 958–968; PubMed
Ikeda S., Kubota T., Yuki M., Okamoto A., Angew. Chem. Int. Ed. 2009, 48, 6480–6484; PubMed
Angew. Chem. 2009, 121, 6602–6606;
Kovaliov M., Segal M., Kafri P., Yavin E., Shav-Tal Y., Fischer B., Bioorg. Med. Chem. 2014, 22, 2613–2621. PubMed
Klimkowski P., De Ornellas S., Singleton D., El-Sagheer A. H., Brown T., Org. Biomol. Chem. 2019, 17, 5943–5950. PubMed PMC
Zhou L., Wang Q., Tan Y., Lang M. J., Sun H., Liu X., Chem. Eur. J. 2017, 23, 8736–8740. PubMed
Zhou L., Lu D., Wang Q., Liu S., Lin Q., Sun H., Biosens. Bioelectron. 2017, 91, 699–705. PubMed
Hottin A., Marx A., Acc. Chem. Res. 2016, 49, 418–427; PubMed
Hollenstein M., Molecules 2012, 17, 13569–13591. PubMed PMC
Ménová P., Cahová H., Plucnara M., Havran L., Fojta M., Hocek M., Chem. Commun. 2013, 49, 4652–4654. PubMed
Ren X., El-Sagheer A. H., Brown T., Analyst 2015, 140, 2671–2678; PubMed
Ren X., El-Sagheer A. H., Brown T., Nucleic Acids Res. 2016, 44, e79; PubMed PMC
Neef A. B., Luedtke N. W., ChemBioChem 2014, 15, 789–793; PubMed
Tera M., Glasauer S. M. K., Luedtke N. W., ChemBioChem 2018, 19, 1939–1943; PubMed
Tera M., Harati Taji Z., Luedtke N. W., Angew. Chem. Int. Ed. 2018, 57, 15405–15409; PubMed
Angew. Chem. 2018, 130, 15631–15635. PubMed
Zawada Z., Tatar A., Mocilac P., Buděšínský M., Kraus T., Angew. Chem. Int. Ed. 2018, 57, 9891–9895; PubMed
Angew. Chem. 2018, 130, 10039–10043;
Güixens-Gallardo P., Zawada Z., Matyašovský J., Dziuba D., Pohl R., Kraus T., Hocek M., Bioconjugate Chem. 2018, 29, 3906–3912. PubMed
Fojta M., Kostecka P., Trefulka M., Havran L., Palecek E., Anal. Chem. 2007, 79, 1022–1029. PubMed
Litte J. W., J. Biol. Chem. 1967, 242, 679–686. PubMed
Boger D. L., Tse W. C., Bioorg. Med. Chem. 2001, 9, 2511–2518. PubMed
Kapuscinski J., Biotechnic Histochem. 1995, 70, 220–233. PubMed
Kim S. K., Nordén B., FEBS Lett. 1993, 315, 61–64. PubMed
Kabir A., Suresh Kumar G., PLoS One 2013, 8, e70510. PubMed PMC
Gupta S., Tiwari N., Munde M., Sci. Rep. 2019, 9, 5891. PubMed PMC
Pang S., Liu S., Su X., RSC Adv. 2014, 4, 25857.
Wong M. L., Medrano J. F., BioTechniques 2005, 39, 75–85. PubMed
Karlsson H. J., Eriksson M., Perzon E., Akerman B., Lincoln P., Westman G., Nucleic Acids Res. 2003, 31, 6227–6234; PubMed PMC
Nam H.-M., Srinivasan V., Gillespie B. E., Murinda S. E., Oliver S. P., Int. J. Food Microbiol. 2005, 102, 161–171. PubMed
Thelwell N., Millington S., Solinas A., Booth J., Brown T., Nucleic Acids Res. 2000, 28, 3752–3761; PubMed PMC
Whitcombe D., Theaker J., Guy S. P., Brown T., Little S., Nat. Biotechnol. 1999, 17, 804–807. PubMed
Corman V. M., Landt O., Kaiser M., Molenkamp R., Meijer A., Chu D. K., Bleicker T., Brünink S., Schneider J., Schmidt M. L., Mulders D. G., Haagmans B. L., van der Veer B., van den Brink S., Wijsman L., Goderski G., Romette J.-L., Ellis J., Zambon M., Peiris M., Goossens H., Reusken C., Koopmans M. P., Drosten C., Eurosurveillance 2020, 25, 23–30. PubMed
