2-Substituted dATP Derivatives as Building Blocks for Polymerase-Catalyzed Synthesis of DNA Modified in the Minor Groove
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27879047
PubMed Central
PMC6680173
DOI
10.1002/anie.201609007
Knihovny.cz E-zdroje
- Klíčová slova
- DNA modification, DNA polymerase, bioconjugation, fluorescent labelling, nucleotides,
- MeSH
- denaturace nukleových kyselin MeSH
- deoxyadeninnukleotidy chemie metabolismus MeSH
- DNA-dependentní DNA-polymerasy metabolismus MeSH
- DNA chemie metabolismus MeSH
- konformace nukleové kyseliny MeSH
- sekvence nukleotidů MeSH
- substrátová specifita MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2'-deoxyadenosine triphosphate MeSH Prohlížeč
- deoxyadeninnukleotidy MeSH
- DNA-dependentní DNA-polymerasy MeSH
- DNA MeSH
2'-Deoxyadenosine triphosphate (dATP) derivatives bearing diverse substituents (Cl, NH2 , CH3 , vinyl, ethynyl, and phenyl) at position 2 were prepared and tested as substrates for DNA polymerases. The 2-phenyl-dATP was not a substrate for DNA polymerases, but the dATPs bearing smaller substituents were good substrates in primer-extension experiments, producing DNA substituted in the minor groove. The vinyl-modified DNA was applied in thiol-ene addition and the ethynyl-modified DNA was applied in a CuAAC click reaction to form DNA labelled with fluorescent dyes in the minor groove.
Zobrazit více v PubMed
Modified Nucleic Acids, Nucleic Acids and Molecular Biology Series, Vol. 31 (Eds.: K. Nakatani, Y. Tor), Springer, Berlin, 2016, pp. 1–276.
Reviews:
Hottin A., Marx A., Acc. Chem. Res. 2016, 49, 418–427; PubMed
Hollenstein M., Molecules 2012, 17, 13569–13591; PubMed PMC
Hocek M., J. Org. Chem. 2014, 79, 9914–9921; PubMed
Kuwahara M., Sugimoto N., Molecules 2010, 15, 5423–5444. PubMed PMC
Recent examples:
Obeid S., Baccaro A., Welte W., Diederichs K., Marx A., Proc. Natl. Acad. Sci. USA 2010, 107, 21327–21331; PubMed PMC
Bergen K., Steck A. L., Strütt S., Baccaro A., Welte W., Diederichs K., Marx A., J. Am. Chem. Soc. 2012, 134, 11840–11843; PubMed
Kielkowski P., Fanfrlík J., Hocek M., Angew. Chem. Int. Ed. 2014, 53, 7552–7555; PubMed
Angew. Chem. 2014, 126, 7682–7685.
Recent examples:
Dziuba D., Jurkiewicz P., Cebecauer M., Hof M., Hocek M., Angew. Chem. Int. Ed. 2016, 55, 174–178; PubMed
Angew. Chem. 2016, 128, 182–186;
Dziuba D., Pospíšil P., Matyašovský J., Brynda J., Nachtigallová D., Rulíšek L., Pohl R., Hof M., Hocek M., Chem. Sci. 2016, 7, 5775–5785; PubMed PMC
Tokugawa M., Masaki Y., Canggadibrata J. C., Kaneko K., Shiozawa T., Kanamori T., Grøtli M., Wilhelmsson L. M., Sekine M., Seio K., Chem. Commun. 2016, 52, 3809–3812. PubMed
Balintová J., Plucnara M., Vidláková P., Pohl R., Havran L., Fojta M., Hocek M., Chem. Eur. J. 2013, 19, 12720–12731; PubMed
Balintová J., Špaček J., Pohl R., Brázdová M., Havran L., Fojta M., Hocek M., Chem. Sci. 2015, 6, 575–587. PubMed PMC
Obeid S., Yulikov M., Jeschke G., Marx A., Angew. Chem. Int. Ed. 2008, 47, 6782–6785; PubMed
Angew. Chem. 2008, 120, 6886–6890.
Weisbrod S. H., Marx A., Chem. Commun. 2007, 1828–1830; PubMed
Borsenberger V., Howorka S., Nucleic Acids Res. 2009, 37, 1477–1485; PubMed PMC
Schoch J., Wiessler M., Jäschke A., J. Am. Chem. Soc. 2010, 132, 8846–8847; PubMed
Gutsmiedl K., Fazio D., Carell T., Chem. Eur. J. 2010, 16, 6877–6883; PubMed
Raindlová V., Pohl R., Hocek M., Chem. Eur. J. 2012, 18, 4080–4087; PubMed
Dadová J., Orság P., Pohl R., Brázdová M., Fojta M., Hocek M., Angew. Chem. Int. Ed. 2013, 52, 10515–10518; PubMed
Angew. Chem. 2013, 125, 10709–10712;
Arndt S., Wagenknecht H. A., Angew. Chem. Int. Ed. 2014, 53, 14580–14582; PubMed
Angew. Chem. 2014, 126, 14808–14811;
Wang K., Wang D., Ji K., Chen W., Zheng Y., Dai C., Wang B., Org. Biomol. Chem. 2015, 13, 909–915; PubMed PMC
Ren X., El-Sagheer A. H., Brown T., Nucleic Acids Res. 2016, 44, e79; PubMed PMC
Olszewska A., Pohl R., Brázdová M., Fojta M., Hocek M., Bioconjugate Chem. 2016, 27, 2089–2094. PubMed
Baccaro A., Steck A. L., Marx A., Angew. Chem. Int. Ed. 2012, 51, 254–257; PubMed
Angew. Chem. 2012, 124, 260–263.
Welter M., Verga D., Marx A., Angew. Chem. Int. Ed. 2016, 55, 10131–10135; PubMed
Angew. Chem. 2016, 128, 10286–10290.
Rubner M. M., Holzhauser C., Bohländer P. R., Wagenknecht H. A., Chem. Eur. J. 2012, 18, 1299–1302; PubMed
Berndl S., Herzig N., Kele P., Lachmann D., Li X., Wolfbeis O. S., Wagenknecht H. A., Bioconjugate Chem. 2009, 20, 558–564. PubMed
Wenge U., Ehrenschwender T., Wagenknecht H. A., Bioconjugate Chem. 2013, 24, 301–304. PubMed
Lauridsen L. H., Rothnagel J. A., Veedu R. N., ChemBioChem 2012, 13, 19–25; PubMed
Kuwahara M., Obika S., Nagashima J., Ohta Y., Suto Y., Ozaki H., Sawai H., Imanishi T., Nucleic Acids Res. 2008, 36, 4257–4265; PubMed PMC
Chen T., Hongdilokkul N., Liu Z., Adhikary R., Tsuen S. S., Romesberg F. E., Nat. Chem. 2016, 8, 556–562. PubMed PMC
Marx A., MacWilliams M. P., Bickle T. A., Schwitter U., Giese B., J. Am. Chem. Soc. 1997, 119, 1131–1132.
Parker W. B., Shaddix S. C., Chang C.-H., White E. L., Rose L. M., Brockman R. W., Shortnacy A. T., Montgomery J. A., J. A. Secrist III , Bennett L. L., Cancer Res. 1991, 51, 2386–2394. PubMed
Chollet A., Kawashima E., Nucleic Acids Res. 1988, 16, 305–317; PubMed PMC
Kutyavin I. V., Biochemistry 2008, 47, 13666–13673. PubMed
Khan N. N., Wright G. E., Dudycz L. W., Brown N. C., Nucleic Acids Res. 1985, 13, 6331–6342; PubMed PMC
Zdrazil B., Schwanke A., Schmitz B., Schäfer-Korting M., Höltje H. D., J. Enzyme Inhib. Med. Chem. 2011, 26, 270–279. PubMed
Matsuda S., Leconte A. M., Romesberg F. E., J. Am. Chem. Soc. 2007, 129, 5551–5557. PubMed PMC
Minuth M., Richert C., Angew. Chem. Int. Ed. 2013, 52, 10874–10877; PubMed
Angew. Chem. 2013, 125, 11074–11077.
Ramasamy K. S., Zounes M., Gonzales C., Freier S. M., Lesnik E. A., Cummins L. L., Griffey R. H., Monia B. P., Cook P. D., Tetrahedron Lett. 1994, 35, 215–218.
D′Ambrosi N., Constanzi S., Angelini D. F., Volpini R., Sancesario G., Cristalli G., Volonte C., Biochem. Pharmacol. 2004, 67, 621–630. PubMed
Kovács T., Ötvös L., Tetrahedron Lett. 1988, 29, 4525–4528.
Güixens-Gallardo P., Hocek M., Perlíková P., Bioorg. Med. Chem. Lett. 2016, 26, 288–291. PubMed
Brázdilová P., Vrábel M., Pohl R., Pivonková H., Havran L., Hocek M., Fojta M., Chem. Eur. J. 2007, 13, 9527–9533. PubMed
Hoyle C. E., Bowman C. N., Angew. Chem. Int. Ed. 2010, 49, 1540–1573; PubMed
Angew. Chem. 2010, 122, 1584–1617;
Hoyle C. E., Lowe A. B., Bowman C. N., Chem. Soc. Rev. 2010, 39, 1355–1387. PubMed
Gramlich P. M. E., Wirges C. T., Manetto A., Carell T., Angew. Chem. Int. Ed. 2008, 47, 8350–8358; PubMed
Angew. Chem. 2008, 120, 8478–8487;
El-Sagheer A. H., Brown T., Chem. Soc. Rev. 2010, 39, 1388–1405. PubMed
Akita S., Umezawa N., Higuchi T., Org. Lett. 2005, 7, 5565–5568. PubMed
Merkel M., Peewasan K., Arndt S., Ploschik D., Wagenknecht H. A., ChemBioChem 2015, 16, 1541–1553. PubMed