2-Substituted dATP Derivatives as Building Blocks for Polymerase-Catalyzed Synthesis of DNA Modified in the Minor Groove
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
27879047
PubMed Central
PMC6680173
DOI
10.1002/anie.201609007
Knihovny.cz E-resources
- Keywords
- DNA modification, DNA polymerase, bioconjugation, fluorescent labelling, nucleotides,
- MeSH
- Nucleic Acid Denaturation MeSH
- Deoxyadenine Nucleotides chemistry metabolism MeSH
- DNA-Directed DNA Polymerase metabolism MeSH
- DNA chemistry metabolism MeSH
- Nucleic Acid Conformation MeSH
- Base Sequence MeSH
- Substrate Specificity MeSH
- Thermodynamics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 2'-deoxyadenosine triphosphate MeSH Browser
- Deoxyadenine Nucleotides MeSH
- DNA-Directed DNA Polymerase MeSH
- DNA MeSH
2'-Deoxyadenosine triphosphate (dATP) derivatives bearing diverse substituents (Cl, NH2 , CH3 , vinyl, ethynyl, and phenyl) at position 2 were prepared and tested as substrates for DNA polymerases. The 2-phenyl-dATP was not a substrate for DNA polymerases, but the dATPs bearing smaller substituents were good substrates in primer-extension experiments, producing DNA substituted in the minor groove. The vinyl-modified DNA was applied in thiol-ene addition and the ethynyl-modified DNA was applied in a CuAAC click reaction to form DNA labelled with fluorescent dyes in the minor groove.
See more in PubMed
Modified Nucleic Acids, Nucleic Acids and Molecular Biology Series, Vol. 31 (Eds.: K. Nakatani, Y. Tor), Springer, Berlin, 2016, pp. 1–276.
Reviews:
Hottin A., Marx A., Acc. Chem. Res. 2016, 49, 418–427; PubMed
Hollenstein M., Molecules 2012, 17, 13569–13591; PubMed PMC
Hocek M., J. Org. Chem. 2014, 79, 9914–9921; PubMed
Kuwahara M., Sugimoto N., Molecules 2010, 15, 5423–5444. PubMed PMC
Recent examples:
Obeid S., Baccaro A., Welte W., Diederichs K., Marx A., Proc. Natl. Acad. Sci. USA 2010, 107, 21327–21331; PubMed PMC
Bergen K., Steck A. L., Strütt S., Baccaro A., Welte W., Diederichs K., Marx A., J. Am. Chem. Soc. 2012, 134, 11840–11843; PubMed
Kielkowski P., Fanfrlík J., Hocek M., Angew. Chem. Int. Ed. 2014, 53, 7552–7555; PubMed
Angew. Chem. 2014, 126, 7682–7685.
Recent examples:
Dziuba D., Jurkiewicz P., Cebecauer M., Hof M., Hocek M., Angew. Chem. Int. Ed. 2016, 55, 174–178; PubMed
Angew. Chem. 2016, 128, 182–186;
Dziuba D., Pospíšil P., Matyašovský J., Brynda J., Nachtigallová D., Rulíšek L., Pohl R., Hof M., Hocek M., Chem. Sci. 2016, 7, 5775–5785; PubMed PMC
Tokugawa M., Masaki Y., Canggadibrata J. C., Kaneko K., Shiozawa T., Kanamori T., Grøtli M., Wilhelmsson L. M., Sekine M., Seio K., Chem. Commun. 2016, 52, 3809–3812. PubMed
Balintová J., Plucnara M., Vidláková P., Pohl R., Havran L., Fojta M., Hocek M., Chem. Eur. J. 2013, 19, 12720–12731; PubMed
Balintová J., Špaček J., Pohl R., Brázdová M., Havran L., Fojta M., Hocek M., Chem. Sci. 2015, 6, 575–587. PubMed PMC
Obeid S., Yulikov M., Jeschke G., Marx A., Angew. Chem. Int. Ed. 2008, 47, 6782–6785; PubMed
Angew. Chem. 2008, 120, 6886–6890.
Weisbrod S. H., Marx A., Chem. Commun. 2007, 1828–1830; PubMed
Borsenberger V., Howorka S., Nucleic Acids Res. 2009, 37, 1477–1485; PubMed PMC
Schoch J., Wiessler M., Jäschke A., J. Am. Chem. Soc. 2010, 132, 8846–8847; PubMed
Gutsmiedl K., Fazio D., Carell T., Chem. Eur. J. 2010, 16, 6877–6883; PubMed
Raindlová V., Pohl R., Hocek M., Chem. Eur. J. 2012, 18, 4080–4087; PubMed
Dadová J., Orság P., Pohl R., Brázdová M., Fojta M., Hocek M., Angew. Chem. Int. Ed. 2013, 52, 10515–10518; PubMed
Angew. Chem. 2013, 125, 10709–10712;
Arndt S., Wagenknecht H. A., Angew. Chem. Int. Ed. 2014, 53, 14580–14582; PubMed
Angew. Chem. 2014, 126, 14808–14811;
Wang K., Wang D., Ji K., Chen W., Zheng Y., Dai C., Wang B., Org. Biomol. Chem. 2015, 13, 909–915; PubMed PMC
Ren X., El-Sagheer A. H., Brown T., Nucleic Acids Res. 2016, 44, e79; PubMed PMC
Olszewska A., Pohl R., Brázdová M., Fojta M., Hocek M., Bioconjugate Chem. 2016, 27, 2089–2094. PubMed
Baccaro A., Steck A. L., Marx A., Angew. Chem. Int. Ed. 2012, 51, 254–257; PubMed
Angew. Chem. 2012, 124, 260–263.
Welter M., Verga D., Marx A., Angew. Chem. Int. Ed. 2016, 55, 10131–10135; PubMed
Angew. Chem. 2016, 128, 10286–10290.
Rubner M. M., Holzhauser C., Bohländer P. R., Wagenknecht H. A., Chem. Eur. J. 2012, 18, 1299–1302; PubMed
Berndl S., Herzig N., Kele P., Lachmann D., Li X., Wolfbeis O. S., Wagenknecht H. A., Bioconjugate Chem. 2009, 20, 558–564. PubMed
Wenge U., Ehrenschwender T., Wagenknecht H. A., Bioconjugate Chem. 2013, 24, 301–304. PubMed
Lauridsen L. H., Rothnagel J. A., Veedu R. N., ChemBioChem 2012, 13, 19–25; PubMed
Kuwahara M., Obika S., Nagashima J., Ohta Y., Suto Y., Ozaki H., Sawai H., Imanishi T., Nucleic Acids Res. 2008, 36, 4257–4265; PubMed PMC
Chen T., Hongdilokkul N., Liu Z., Adhikary R., Tsuen S. S., Romesberg F. E., Nat. Chem. 2016, 8, 556–562. PubMed PMC
Marx A., MacWilliams M. P., Bickle T. A., Schwitter U., Giese B., J. Am. Chem. Soc. 1997, 119, 1131–1132.
Parker W. B., Shaddix S. C., Chang C.-H., White E. L., Rose L. M., Brockman R. W., Shortnacy A. T., Montgomery J. A., J. A. Secrist III , Bennett L. L., Cancer Res. 1991, 51, 2386–2394. PubMed
Chollet A., Kawashima E., Nucleic Acids Res. 1988, 16, 305–317; PubMed PMC
Kutyavin I. V., Biochemistry 2008, 47, 13666–13673. PubMed
Khan N. N., Wright G. E., Dudycz L. W., Brown N. C., Nucleic Acids Res. 1985, 13, 6331–6342; PubMed PMC
Zdrazil B., Schwanke A., Schmitz B., Schäfer-Korting M., Höltje H. D., J. Enzyme Inhib. Med. Chem. 2011, 26, 270–279. PubMed
Matsuda S., Leconte A. M., Romesberg F. E., J. Am. Chem. Soc. 2007, 129, 5551–5557. PubMed PMC
Minuth M., Richert C., Angew. Chem. Int. Ed. 2013, 52, 10874–10877; PubMed
Angew. Chem. 2013, 125, 11074–11077.
Ramasamy K. S., Zounes M., Gonzales C., Freier S. M., Lesnik E. A., Cummins L. L., Griffey R. H., Monia B. P., Cook P. D., Tetrahedron Lett. 1994, 35, 215–218.
D′Ambrosi N., Constanzi S., Angelini D. F., Volpini R., Sancesario G., Cristalli G., Volonte C., Biochem. Pharmacol. 2004, 67, 621–630. PubMed
Kovács T., Ötvös L., Tetrahedron Lett. 1988, 29, 4525–4528.
Güixens-Gallardo P., Hocek M., Perlíková P., Bioorg. Med. Chem. Lett. 2016, 26, 288–291. PubMed
Brázdilová P., Vrábel M., Pohl R., Pivonková H., Havran L., Hocek M., Fojta M., Chem. Eur. J. 2007, 13, 9527–9533. PubMed
Hoyle C. E., Bowman C. N., Angew. Chem. Int. Ed. 2010, 49, 1540–1573; PubMed
Angew. Chem. 2010, 122, 1584–1617;
Hoyle C. E., Lowe A. B., Bowman C. N., Chem. Soc. Rev. 2010, 39, 1355–1387. PubMed
Gramlich P. M. E., Wirges C. T., Manetto A., Carell T., Angew. Chem. Int. Ed. 2008, 47, 8350–8358; PubMed
Angew. Chem. 2008, 120, 8478–8487;
El-Sagheer A. H., Brown T., Chem. Soc. Rev. 2010, 39, 1388–1405. PubMed
Akita S., Umezawa N., Higuchi T., Org. Lett. 2005, 7, 5565–5568. PubMed
Merkel M., Peewasan K., Arndt S., Ploschik D., Wagenknecht H. A., ChemBioChem 2015, 16, 1541–1553. PubMed