Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy

. 2017 ; 12 (2) : e0171539. [epub] 20170210

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28187172

High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient's against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers.

Zobrazit více v PubMed

Mellstedt H, Vansteenkiste J, Thatcher N. Vaccines for the treatment of non-small cell lung cancer: investigational approaches and clinical experience. Lung cancer. 2011;73(1):11–7. 10.1016/j.lungcan.2011.02.023 PubMed DOI

Skachkova OV, Khranovska NM, Gorbach OI, Svergun NM, Sydor RI, Nikulina VV. Immunological markers of anti-tumor dendritic cells vaccine efficiency in patients with non-small cell lung cancer. Experimental oncology. 2013;35(2):109–13. PubMed

Datta J, Terhune JH, Lowenfeld L, Cintolo JA, Xu S, Roses RE et al. Optimizing dendritic cell-based approaches for cancer immunotherapy. The Yale journal of biology and medicine. 2014;87(4):491–518. PubMed PMC

Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ et al. Immunobiology of dendritic cells. Annual review of immunology. 2000;18:767–811. 10.1146/annurev.immunol.18.1.767 PubMed DOI

Mukherji B, Chakraborty NG, Yamasaki S, Okino T, Yamase H, Sporn JR et al. Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(17):8078–82. PubMed PMC

Sheikh NA, Petrylak D, Kantoff PW, Dela Rosa C, Stewart FP, Kuan LY et al. Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer immunology, immunotherapy: CII. 2013;62(1):137–47. 10.1007/s00262-012-1317-2 PubMed DOI PMC

Ueda Y, Itoh T, Nukaya I, Kawashima I, Okugawa K, Yano Y et al. Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived, HLA-A24-restricted CTL epitope: Clinical outcomes of 18 patients with metastatic gastrointestinal or lung adenocarcinomas. International journal of oncology. 2004;24(4):909–17. PubMed

Perroud MW Jr., Honma HN, Barbeiro AS, Gilli SC, Almeida MT, Vassallo J et al. Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a phase I pilot study. Journal of experimental & clinical cancer research: CR. 2011;30:65. PubMed PMC

Babatz J, Rollig C, Lobel B, Folprecht G, Haack M, Gunther H et al. Induction of cellular immune responses against carcinoembryonic antigen in patients with metastatic tumors after vaccination with altered peptide ligand-loaded dendritic cells. Cancer immunology, immunotherapy: CII. 2006;55(3):268–76. 10.1007/s00262-005-0021-x PubMed DOI PMC

Takahashi H, Okamoto M, Shimodaira S, Tsujitani S, Nagaya M, Ishidao T et al. Impact of dendritic cell vaccines pulsed with Wilms' tumour-1 peptide antigen on the survival of patients with advanced non-small cell lung cancers. European journal of cancer. 2013;49(4):852–9. 10.1016/j.ejca.2012.11.005 PubMed DOI

Morse MA, Clay TM, Hobeika AC, Osada T, Khan S, Chui S et al. Phase I study of immunization with dendritic cells modified with fowlpox encoding carcinoembryonic antigen and costimulatory molecules. Clinical cancer research: an official journal of the American Association for Cancer Research. 2005;11(8):3017–24. PubMed

Kontani K, Taguchi O, Ozaki Y, Hanaoka J, Sawai S, Inoue S et al. Dendritic cell vaccine immunotherapy of cancer targeting MUC1 mucin. International journal of molecular medicine. 2003;12(4):493–502. PubMed

Chang GC, Lan HC, Juang SH, Wu YC, Lee HC, Hung YM et al. A pilot clinical trial of vaccination with dendritic cells pulsed with autologous tumor cells derived from malignant pleural effusion in patients with late-stage lung carcinoma. Cancer. 2005;103(4):763–71. 10.1002/cncr.20843 PubMed DOI

Engell-Noerregaard L, Hendel HW, Johannesen HH, Alslev L, Svane IM. FDG PET scans as evaluation of clinical response to dendritic cell vaccination in patients with malignant melanoma. Cancer immunology, immunotherapy: CII. 2013;62(1):17–25. 10.1007/s00262-012-1306-5 PubMed DOI PMC

Hirschowitz EA, Foody T, Kryscio R, Dickson L, Sturgill J, Yannelli J. Autologous dendritic cell vaccines for non-small-cell lung cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2004;22(14):2808–15. PubMed

Hirschowitz EA, Foody T, Hidalgo GE, Yannelli JR. Immunization of NSCLC patients with antigen-pulsed immature autologous dendritic cells. Lung cancer. 2007;57(3):365–72. 10.1016/j.lungcan.2007.04.002 PubMed DOI PMC

Yannelli JR, Sturgill J, Foody T, Hirschowitz E. The large scale generation of dendritic cells for the immunization of patients with non-small cell lung cancer (NSCLC). Lung cancer. 2005;47(3):337–50. 10.1016/j.lungcan.2004.08.008 PubMed DOI

Hirschowitz EA, Mullins A, Prajapati D, Baeker T, Kloecker G, Foody T et al. Pilot study of 1650-G: a simplified cellular vaccine for lung cancer. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2011;6(1):169–73. PubMed

Um SJ, Choi YJ, Shin HJ, Son CH, Park YS, Roh MS et al. Phase I study of autologous dendritic cell tumor vaccine in patients with non-small cell lung cancer. Lung cancer. 2010;70(2):188–94. 10.1016/j.lungcan.2010.02.006 PubMed DOI

Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annual review of immunology. 2013;31:51–72. 10.1146/annurev-immunol-032712-100008 PubMed DOI

Adkins I, Fucikova J, Garg AD, Agostinis P, Spisek R. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Oncoimmunology. 2014;3(12):e968434 10.4161/21624011.2014.968434 PubMed DOI PMC

Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L et al. Molecular characteristics of immunogenic cancer cell death. Cell death and differentiation. 2008;15(1):3–12. 10.1038/sj.cdd.4402269 PubMed DOI

Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nature reviews Cancer. 2012;12(12):860–75. 10.1038/nrc3380 PubMed DOI

Fucikova J, Moserova I, Truxova I, Hermanova I, Vancurova I, Partlova S et al. High hydrostatic pressure induces immunogenic cell death in human tumor cells. International journal of cancer Journal international du cancer. 2014;135(5):1165–77. 10.1002/ijc.28766 PubMed DOI

Mikyskova R, Stepanek I, Indrova M, Bieblova J, Simova J, Truxova I et al. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure induce strong immune responses and display therapeutic effects both in murine TC-1 and TRAMP-C2 tumors when combined with docetaxel chemotherapy. International journal of oncology. 2016;48(3):953–64. 10.3892/ijo.2015.3314 PubMed DOI PMC

Truxova I, Pokorna K, Kloudova K, Partlova S, Spisek R, Fucikova J. Day 3 Poly (I:C)-activated dendritic cells generated in CellGro for use in cancer immunotherapy trials are fully comparable to standard Day 5 DCs. Immunology letters. 2014;160(1):39–49. 10.1016/j.imlet.2014.03.010 PubMed DOI

Gure AO, Chua R, Williamson B, Gonen M, Ferrera CA, Gnjatic S et al. Cancer-testis genes are coordinately expressed and are markers of poor outcome in non-small cell lung cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. 2005;11(22):8055–62. PubMed

Karanikas V, Tsochas S, Boukas K, Kerenidi T, Nakou M, Dahabreh J et al. Co-expression patterns of tumor-associated antigen genes by non-small cell lung carcinomas: implications for immunotherapy. Cancer biology & therapy. 2008;7(3):345–52. PubMed

Tajima K, Obata Y, Tamaki H, Yoshida M, Chen YT, Scanlan MJ et al. Expression of cancer/testis (CT) antigens in lung cancer. Lung cancer. 2003;42(1):23–33. PubMed

Grunwald C, Koslowski M, Arsiray T, Dhaene K, Praet M, Victor A et al. Expression of multiple epigenetically regulated cancer/germline genes in nonsmall cell lung cancer. International journal of cancer Journal international du cancer. 2006;118(10):2522–8. 10.1002/ijc.21669 PubMed DOI

Fucikova J, Rozkova D, Ulcova H, Budinsky V, Sochorova K, Pokorna K et al. Poly I: C-activated dendritic cells that were generated in CellGro for use in cancer immunotherapy trials. Journal of translational medicine. 2011;9:223 10.1186/1479-5876-9-223 PubMed DOI PMC

West MA, Wallin RP, Matthews SP, Svensson HG, Zaru R, Ljunggren HG et al. Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science. 2004;305(5687):1153–7. 10.1126/science.1099153 PubMed DOI

Macagno A, Napolitani G, Lanzavecchia A, Sallusto F. Duration, combination and timing: the signal integration model of dendritic cell activation. Trends in immunology. 2007;28(5):227–33. 10.1016/j.it.2007.03.008 PubMed DOI

Abdi K, Singh NJ, Matzinger P. Lipopolysaccharide-activated dendritic cells: "exhausted" or alert and waiting? Journal of immunology. 2012;188(12):5981–9. PubMed PMC

Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. The Journal of experimental medicine. 1996;184(2):747–52. PubMed PMC

Ma DY, Clark EA. The role of CD40 and CD154/CD40L in dendritic cells. Seminars in immunology. 2009;21(5):265–72. 10.1016/j.smim.2009.05.010 PubMed DOI PMC

Rouas R, Lewalle P, El Ouriaghli F, Nowak B, Duvillier H, Martiat P. Poly(I:C) used for human dendritic cell maturation preserves their ability to secondarily secrete bioactive IL-12. International immunology. 2004;16(5):767–73. 10.1093/intimm/dxh077 PubMed DOI

Delamarre L, Holcombe H, Mellman I. Presentation of exogenous antigens on major histocompatibility complex (MHC) class I and MHC class II molecules is differentially regulated during dendritic cell maturation. The Journal of experimental medicine. 2003;198(1):111–22. 10.1084/jem.20021542 PubMed DOI PMC

Alanio C, Lemaitre F, Law HK, Hasan M, Albert ML. Enumeration of human antigen-specific naive CD8+ T cells reveals conserved precursor frequencies. Blood. 2010;115(18):3718–25. 10.1182/blood-2009-10-251124 PubMed DOI

Coulie PG, Connerotte T. Human tumor-specific T lymphocytes: does function matter more than number? Current opinion in immunology. 2005;17(3):320–5. 10.1016/j.coi.2005.03.002 PubMed DOI

He XS, Mahmood K, Maecker HT, Holmes TH, Kemble GW, Arvin AM et al. Analysis of the frequencies and of the memory T cell phenotypes of human CD8+ T cells specific for influenza A viruses. The Journal of infectious diseases. 2003;187(7):1075–84. 10.1086/368218 PubMed DOI

Takahashi N, Ohkuri T, Homma S, Ohtake J, Wakita D, Togashi Y et al. First clinical trial of cancer vaccine therapy with artificially synthesized helper/ killer-hybrid epitope long peptide of MAGE-A4 cancer antigen. Cancer science. 2012;103(1):150–3. 10.1111/j.1349-7006.2011.02106.x PubMed DOI PMC

Atanackovic D, Altorki NK, Stockert E, Williamson B, Jungbluth AA, Ritter E et al. Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients. Journal of immunology. 2004;172(5):3289–96. PubMed

Brunsvig PF, Kyte JA, Kersten C, Sundstrom S, Moller M, Nyakas M et al. Telomerase peptide vaccination in NSCLC: a phase II trial in stage III patients vaccinated after chemoradiotherapy and an 8-year update on a phase I/II trial. Clinical cancer research: an official journal of the American Association for Cancer Research. 2011;17(21):6847–57. PubMed

Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz O et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood. 2007;109(12):5346–54. 10.1182/blood-2006-10-051318 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...