2-Allyl- and Propargylamino-dATPs for Site-Specific Enzymatic Introduction of a Single Modification in the Minor Groove of DNA
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
17-03419S
Grantová Agentura České Republiky
18-03305S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
H2020-MSCA-ITN-2014-642023
H2020 Marie Skłodowska-Curie Actions
Praemium Academiae
Akademie Věd České Republiky
PubMed
30074286
PubMed Central
PMC6221035
DOI
10.1002/chem.201803973
Knihovny.cz E-resources
- Keywords
- DNA, fluorescent probes, nucleotides, oligonucleotides, polymerases,
- MeSH
- Allyl Compounds chemistry MeSH
- Deoxyadenine Nucleotides chemistry MeSH
- DNA chemistry MeSH
- Fluorescent Dyes chemistry MeSH
- Nucleic Acid Conformation MeSH
- Oligonucleotides analysis MeSH
- Pargyline analogs & derivatives chemistry MeSH
- Propylamines chemistry MeSH
- Fluorescence Resonance Energy Transfer methods MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 2'-deoxyadenosine triphosphate MeSH Browser
- Allyl Compounds MeSH
- Deoxyadenine Nucleotides MeSH
- DNA MeSH
- Fluorescent Dyes MeSH
- Oligonucleotides MeSH
- Pargyline MeSH
- propargylamine MeSH Browser
- Propylamines MeSH
A series of 2-alkylamino-2'-deoxyadenosine triphosphates (dATP) was prepared and found to be substrates for the Therminator DNA polymerase, which incorporated only one modified nucleotide into the primer. Using a template encoding for two consecutive adenines, conditions were found for incorporation of either one or two modified nucleotides. In all cases, addition of a mixture of natural dNTPs led to primer extension resulting in site-specific single modification of DNA in the minor groove. The allylamino-substituted DNA was used for the thiol-ene addition, whereas the propargylamino-DNA for the CuAAC click reaction was used to label the DNA with a fluorescent dye in the minor groove. The approach was used to construct FRET probes for detection of oligonucleotides.
See more in PubMed
Modified Nucleic Acids, Nucleic Acids and Molecular Biology Series, Vol. 31 (Eds.: K. Nakatani, Y. Tor), Springer, 2016, pp. 1–276.
Reviews:
Hottin A., Marx A., Acc. Chem. Res. 2016, 49, 418–427; PubMed
Hollenstein M., Molecules 2012, 17, 13569–13591; PubMed PMC
Hocek M., J. Org. Chem. 2014, 79, 9914–9921; PubMed
Kuwahara M., Sugimoto N., Molecules 2010, 15, 5423–5444. PubMed PMC
Obeid S., Baccaro A., Welte W., Diederichs K., Marx A., Proc. Natl. Acad. Sci. USA 2010, 107, 21327–21331; PubMed PMC
Bergen K., Steck A. L., Strütt S., Baccaro A., Welte W., Diederichs K., Marx A., J. Am. Chem. Soc. 2012, 134, 11840–11843; PubMed
Kielkowski P., Fanfrlík J., Hocek M., Angew. Chem. Int. Ed. 2014, 53, 7552–7555; PubMed
Angew. Chem. 2014, 126, 7682–7685;
Cahová H., Panattoni A., Kielkowski P., Fanfrlík J., Hocek M., ACS Chem. Biol. 2016, 11, 3165–3171; PubMed
Hottin A., Betz K., Diederichs K., Marx A., Chem. Eur. J. 2017, 23, 2109–2118. PubMed
Recent examples:
Hollenstein M., Chem. Eur. J. 2012, 18, 13320–13330; PubMed
Ren X., El-Sagheer A. H., Brown T., Analyst 2015, 140, 2671–2678; PubMed
Dziuba D., Jurkiewicz P., Cebecauer M., Hof M., Hocek M., Angew. Chem. Int. Ed. 2016, 55, 174–178; PubMed
Angew. Chem. 2016, 128, 182–186;
Dziuba D., Pospíšil P., Matyašovský J., Brynda J., Nachtigallová D., Rulíšek L., Pohl R., Hof M., Hocek M., Chem. Sci. 2016, 7, 5775–5785; PubMed PMC
Welter M., Verga D., Marx A., Angew. Chem. Int. Ed. 2016, 55, 10131–10135; PubMed
Angew. Chem. 2016, 128, 10286–10290;
Merkel M., Arndt S., Ploschik D., Cserép G. B., Wenge U., Kele P., Wagenknecht H.-A., J. Org. Chem. 2016, 81, 7527–7538; PubMed
Hoshino H., Kasahara Y., Fujita H., Kuwahara M., Morihiro K., Tsunoda S.-I., Obika S., Bioorg. Med. Chem. Lett. 2016, 26, 530–533; PubMed
Ortiz M., Debela A. M., Svobodova M., Thorimbert S., Lesage D., Cole R. B., Hasenknopf B., O'Sullivan C. K., Chem. Eur. J. 2017, 23, 10597–10603; PubMed
Yamabe M., Kaihatsu K., Ebara Y., Bioconjugate Chem. 2018, 29, 1490–1494. PubMed
Ménová P., Cahová H., Plucnara M., Havran L., Fojta M., Hocek M., Chem. Commun. 2013, 49, 4652–4654. PubMed
Wenge U., Ehrenschwender T., Wagenknecht H. A., Bioconjugate Chem. 2013, 24, 301–304; PubMed
Lauridsen L. H., Rothnagel J. A., Veedu R. N., ChemBioChem 2012, 13, 19–25; PubMed
Kuwahara M., Obika S., Nagashima J., Ohta Y., Suto Y., Ozaki H., Sawai H., Imanishi T., Nucleic Acids Res. 2008, 36, 4257–4265; PubMed PMC
Chen T., Hongdilokkul N., Liu Z., Adhikary R., Tsuen S. S., Romesberg F. E., Nat. Chem. 2016, 8, 556–562; PubMed PMC
Marx A., MacWilliams M. P., Bickle T. A., Schwitter U., Giese B., J. Am. Chem. Soc. 1997, 119, 1131–1132.
Matyašovský J., Perlíková P., Malnuit V., Pohl R., Hocek M., Angew. Chem. Int. Ed. 2016, 55, 15856–15859; PubMed PMC
Angew. Chem. 2016, 128, 16088–16091. PubMed
Gowda A. S. P., Lee M., Spratt T. E., Angew. Chem. Int. Ed. 2017, 56, 2628–2631; PubMed PMC
Angew. Chem. 2017, 129, 2672–2675.
Matsuda S., Leconte A. M., Romesberg F. E., J. Am. Chem. Soc. 2007, 129, 5551–5557. PubMed PMC
Kovács T., Ötvös L., Tetrahedron Lett. 1988, 29, 4525–4528.
In some cases, the PEX was conducted using a 31-nucleotide template modified with TINA at 3′-end to prevent non-templated incorporation: Güixens-Gallardo P., Hocek M., Perlíková P., Bioorg. Med. Chem. Lett. 2016, 26, 288–291. PubMed
Brázdilová P., Vrábel M., Pohl R., Pivonková H., Havran L., Hocek M., Fojta M., Chem. Eur. J. 2007, 13, 9527–9533. PubMed
Examples of DNA FRET probes using combination of Cy3 and Cy5:
Ha T., Rasnik I., Cheng W., Babcock H. P., Gauss G. H., Lohman T. M., Chu S., Nature 2002, 419, 638–641; PubMed
Sabanayagam C. R., Eid J. S., Meller A., J. Chem. Phys. 2005, 123, 224708. PubMed
Other examples of nucleic acids FRET probes and related applications:
Xie Y., Dix A. V., Tor Y., J. Am. Chem. Soc. 2009, 131, 17605–17614; PubMed PMC
Holzhauser C., Wagenknecht H., ChemBioChem 2012, 13, 1136–1138; PubMed
Holzhauser C., Rubner M. M., Wagenknecht H., Photochem. Photobiol. Sci. 2013, 12, 722–724; PubMed
Walter H., Bauer J., Steinmeyer J., Kuzuya A., Niemeyer C. M., Wagenknecht H., Nano Lett. 2017, 17, 2467–2472. PubMed
Examples of DNA probes for cross-linking with proteins in major groove:
Winnacker M., Breeger S., Strasser R., Carell T., ChemBioChem 2009, 10, 109–118; PubMed
Wickramaratne S., Mukherjee S., Villalta P. W., Schärer O. D., Tretyakova N. Y., Bioconjugate Chem. 2013, 24, 1496–1506; PubMed PMC
Dadová J., Orság P., Pohl R., Brázdová M., Fojta M., Hocek M., Angew. Chem. Int. Ed. 2013, 52, 10515–10518; PubMed
Angew. Chem. 2013, 125, 10709–10712;
Pande P., Ji S., Mukherjee S., Schärer O. D., Tretyakova N. Y., Basu A. K., Chem. Res. Toxicol. 2017, 30, 669–677. PubMed PMC
Examples of major-groove DNA caging and regulation of protein binding:
Kielkowski P., Macíčková-Cahová H., Pohl R., Hocek M., Angew. Chem. Int. Ed. 2011, 50, 8727–8730; PubMed
Angew. Chem. 2011, 123, 8886–8889;
Vaníková Z., Hocek M., Angew. Chem. Int. Ed. 2014, 53, 6734–6737; PubMed
Angew. Chem. 2014, 126, 6852–6855;
Slavíčková M., Janoušková M., Šimonová A., Cahová H., Kambová M., Šanderová H., Krásný L., Hocek M., Chem. Eur. J. 2018, 24, 8311–8314. PubMed