Etioplasts are more susceptible to salinity stress than chloroplasts and photosynthetically active etio-chloroplasts of wheat (Triticum aestivum L.)
Jazyk angličtina Země Dánsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
GA ČR 23-07744S
Grantová Agentura České Republiky
FK124748
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
PD138540
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
New National Excellence Program ÚNKP-23-5-ELTE-12
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
Stipendium Hungaricum Scholarship to R.O.
Tempus Közalapítvány
PubMed
38148250
DOI
10.1111/ppl.14100
Knihovny.cz E-zdroje
- MeSH
- chlorofyl MeSH
- chloroplasty * MeSH
- pšenice * MeSH
- půda MeSH
- salinita MeSH
- semenáček MeSH
- solný stres MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- půda MeSH
High soil salinity is a global problem in agriculture that directly affects seed germination and the development of the seedlings sown deep in the soil. To study how salinity affected plastid ultrastructure, leaf segments of 11-day-old light- and dark-grown (etiolated) wheat (Triticum aestivum L. cv. Mv Béres) seedlings were floated on Hoagland solution, 600 mM KCl:NaCl (1:1) salt or isosmotic polyethylene glycol solution for 4 h in the dark. Light-grown seedlings were also treated in the light. The same treatments were also performed on etio-chloroplasts of etiolated seedlings greened for different time periods. Salt stress induced slight to strong changes in the relative chlorophyll content, photosynthetic activity, and organization of thylakoid complexes. Measurements of malondialdehyde contents and high-temperature thermoluminescence indicated significantly increased oxidative stress and lipid peroxidation under salt treatment, except for light-grown leaves treated in the dark. In chloroplasts of leaf segments treated in the light, slight shrinkage of grana (determined by transmission electron microscopy and small-angle neutron scattering) was observed, while a swelling of the (pro)thylakoid lumen was observed in etioplasts. Salt-induced swelling disappeared after the onset of photosynthesis after 4 h of greening. Osmotic stress caused no significant alterations in plastid structure and only mild changes in their activities, indicating that the swelling of the (pro)thylakoid lumen and the physiological effects of salinity are rather associated with the ionic component of salt stress. Our data indicate that etioplasts of dark-germinated wheat seedlings are the most sensitive to salt stress, especially at the early stages of their greening.
Department of Physics Faculty of Science University of Ostrava Ostrava Czech Republic
Institute of Plant Biology HUN REN Biological Research Center Szeged Hungary
Neutron Spectroscopy Department HUN REN Centre for Energy Research Budapest Hungary
Zobrazit více v PubMed
Abdelkader, A. F., Aronsson, H., Solymosi, K., Böddi, B., & Sundqvist, C. (2007a). High salt stress induces swollen prothylakoids in dark-grown wheat and alters both prolamellar body transformation and reformation after irradiation. Journal of Experimental Botany, 58(10), 2553-2564.
Abdelkader, A. F., Aronsson, H., & Sundqvist, C. (2007b). High salt stress in wheat leaves causes retardation of chlorophyll accumulation due to a limited rate of protochlorophyllide formation. Physiologia Plantarum, 130(1), 157-166.
Abdelkader, A. F., Aronsson, H., & Sundqvist, C. (2010). Prolonged salt stress alters the ratios of protochlorophyllide spectral forms in dark-grown wheat (Triticum aestivum) and influences chlorophyll a accumulation following irradiation. Acta Physiologiae Plantarum, 32(5), 971-978.
Almásy, L. (2021). New measurement control software on the Yellow Submarine SANS instrument at the Budapest Neutron Centre. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 15(3), 527-531.
Armarego-Marriott, T., Kowalewska, Ł., Burgos, A., Fischer, A., Thiele, W., Erban, A., Strand, D., Kahlau, S., Hertle, A., Kopka, J., Walther, D., Reich, Z., Schöttler, M. A., & Bock, R. (2019). Highly resolved systems biology to dissect the etioplast-to-chloroplast transition in tobacco leaves. Plant Physiology, 180(1), 654-681.
Artus, N. N., Ryberg, M., & Sundqvist, C. (1990). Plastid microtubule-like structures in wheat are insensitive to microtubule inhibitors. Physiologia Plantarum, 79(4), 641-648.
Basa, B., Lattanzio, G., Solti, Á., Tóth, B., Abadía, J., Fodor, F., & Sárvári, É. (2014). Changes induced by cadmium stress and iron deficiency in the composition and organization of thylakoid complexes in sugar beet (Beta vulgaris L.). Environmental and Experimental Botany, 101, 1-11.
Björkman, O., & Demmig, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489-504.
Böddi, B., Ryberg, M., & Sundqvist, C. (1992). Identification of four universal protochlorophyllide forms in dark-grown leaves by analyses of the 77 K fluorescence emission spectra. Journal of Photochemistry and Photobiology B: Biology, 12(4), 389-401.
Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G. M., Carnemolla, B., Orecchia, P., Zardi, L., & Righetti, P. G. (2004). Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 25(9), 1327-1333.
Chattha, M. U., Hassan, M. U., Khan, I., Chattha, M. B., Mahmood, A., Chattha, M. U., Nawaz, M., Subhani, M. N., Kharal, M., & Khan, S. (2017). Biofortification of wheat cultivars to combat zinc deficiency. Frontiers in Plant Science, 8, 1-8.
Chen, Y. E., Cui, J. M., Su, Y. Q., Zhang, C. M., Ma, J., Zhang, Z. W., Yuan, M., Liu, W. J., Zhang, H. Y., & Yuan, S. (2017). Comparison of phosphorylation and assembly of photosystem complexes and redox homeostasis in two wheat cultivars with different drought resistance. Scientific Reports, 7(1), 1-16.
Dhokne, K., Pandey, J., Yadav, R. M., Ramachandran, P., Rath, J. R., & Subramanyam, R. (2022). Change in the photochemical and structural organization of thylakoids from pea (Pisum Sativum) under salt stress. Plant Physiology and Biochemistry, 177, 46-60.
Ducruet, J. M., & Vass, I. (2009). Thermoluminescence: experimental. Photosynthesis Research, 101(2-3), 195-204.
Ducruet, J. M., & Vavilin, D. (1999). Chlorophyll high-temperature thermoluminescence emission as an indicator of oxidative stress: perturbating effects of oxygen and leaf water content. Free Radical Research, 31(1), 187-192.
Dulai, S., Molnár, I., Szopkó, D., Darkó, É., Vojtkó, A., Sass-Gyarmati, A., & Molnár-Láng, M. (2014). Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress. Journal of Plant Physiology, 171(7), 509-517.
Franck, F., Eullaffroy, P., & Popovic, R. (1997). Formation of long-wavelength chlorophyllide (Chlide695) is required for the assembly of Photosystem II in etiolated barley leaves. Photosynthesis Research, 51(2), 107-118.
Fujii, S., Nagata, N., Masuda, T., Wada, H., & Kobayashi, K. (2019). Galactolipids are essential for internal membrane transformation during etioplast-to-chloroplast differentiation. Plant & Cell Physiology, 60(6), 1224-1238.
Füzi, J., Len, A., & Bajnok, K. (2017). Research instruments at the Budapest Neutron Centre: Handbook of the central european training school on neutron techniques. KFKI.
Goussi, R., Manaa, A., Derbali, W., Cantamessa, S., Abdelly, C., & Barbato, R. (2018). Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea. Journal of Photochemistry and Photobiology B: Biology, 183, 275-287.
Grieco, M., Suorsa, M., Jajoo, A., Tikkanen, M., & Aro, E.-M. (2015). Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery - including both photosystems II and I. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1847(6), 607-619.
Hameed, A., Ahmed, M. Z., Hussain, T., Aziz, I., Ahmad, N., Gul, B., & Nielsen, B. L. (2021). Effects of salinity stress on chloroplast structure and function. Cells, 10(8).
Hasan, R., Kawasaki, M., Taniguchi, M., & Miyake, H. (2006). Salinity stress induces granal development in bundle sheath chloroplasts of maize, an NADP-malic enzyme-type C4 plant. Plant Production Science, 9(3), 256-265.
Hasan, R., Ohnuki, Y., Kawasaki, M., Taniguchi, M., & Miyake, H. (2005). Differential sensitivity of chloroplasts in mesophyll and bundle sheath cells in maize, an NADP-malic enzyme-type C4 plant, to salinity stress. Plant Production Science, 8(5), 567-577.
Havaux, M., & Niyogi, K. K. (1999). The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proceedings of the National Academy of Sciences, 96(15), 8762-8767.
Herdean, A., Teardo, E., Nilsson, A. K., Pfeil, B. E., Johansson, O. N., Ünnep, R., Nagy, G., Zsiros, O., Dana, S., Solymosi, K., Garab, G., Szabó, I., Spetea, C., & Lundin, B. (2016). A voltage-dependent chloride channel fine-tunes photosynthesis in plants. Nature Communications, 7, 11654.
Hernández, J. A., Olmos, E., Corpas, F. J., Sevilla, F., & del Río, L. A. (1995). Salt-induced oxidative stress in chloroplasts of pea plants. Plant Science, 105(2), 151-167.
Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. In Circular of California Agricultural Experiment Station (Vol. 347). University of California, College of Agriculture, Agricultural Experiment Station.
Järvi, S., Suorsa, M., Paakkarinen, V., & Aro, E. M. (2011). Optimized native gel systems for separation of thylakoid protein complexes: Novel super- and mega-complexes. Biochemical Journal, 439(2), 207-214.
Kakuszi, A., Sárvári, É., Solti, Á., Czégény, G., Hideg, É., Hunyadi-Gulyás, É., Bóka, K., & Böddi, B. (2016). Light piping driven photosynthesis in the soil: Low-light adapted active photosynthetic apparatus in the under-soil hypocotyl segments of bean (Phaseolus vulgaris). Journal of Photochemistry and Photobiology B: Biology, 161, 422-429.
Kalaji, H. M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L., Goltsev, V., Guidi, L., Jajoo, A., Li, P., Losciale, P., Mishra, V. K., Misra, A. N., Nebauer, S. G., Pancaldi, S., Penella, C., Pollastrini, M., Suresh, K., Tambussi, E., Bąba, W. (2017). Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research, 132(1), 13-66.
Kanervo, E., Singh, M., Suorsa, M., Paakkarinen, V., Aro, E., Battchikova, N., & Aro, E. M. (2008). Expression of protein complexes and individual proteins upon transition of etioplasts to chloroplasts in pea (Pisum Sativum). Plant and Cell Physiology, 49(3), 396-410.
Keiderling, U. (2002). The new ‘BerSANS-PC’ software for reduction and treatment of small angle neutron scattering data. Applied Physics A, 74(1), 1455-1457.
Kowalewska, Ł., Bykowski, M., & Mostowska, A. (2019). Spatial organization of thylakoid network in higher plants. Botany Letters, 166(3), 326-343.
Kunz, H. H., Gierth, M., Herdean, A., Satoh-Cruz, M., Kramer, D. M., Spetea, C., & Schroeder, J. I. (2014). Plastidial transporters KEA1, −2, and −3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 111(20), 7480-7485.
Lamb, J. J., Røkke, G., & Hohmann-Marriott, M. F. (2018). Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K. Photosynthetica, 56(1), 105-124.
Lehtimäki, N., Lintala, M., Allahverdiyeva, Y., Aro, E.-M., & Mulo, P. (2010). Drought stress-induced upregulation of components involved in ferredoxin-dependent cyclic electron transfer. Journal of Plant Physiology, 167(12), 1018-1022.
Misra, A. N., Misra, M., & Ranjeet, S. (2012). Thermoluminescence in chloroplast thylakoid. In A. N. Misra (Ed.), Biophysics (pp. 155-170). IntechOpen.
Mitsuya, S., Kawasaki, M., Taniguchi, M., & Miyake, H. (2003a). Light dependency of salinity-induced chloroplast degradation. Plant Production Science, 6(3), 219-223.
Mitsuya, S., Kawasaki, M., Taniguchi, M., & Miyake, H. (2003b). Relationship between salinity-induced damages and aging in rice leaf issues. Plant Production Science, 6(3), 213-218.
Mitsuya, S., Takeoka, Y., & Miyake, H. (2000). Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. Journal of Plant Physiology, 157(6), 661-667.
Miyake, H., Mitsuya, S., & Rahman, M. D. S. (2006). Ultrastructural effects of salinity stress in higher plants. In Abiotic Stress Tolerance in Plants (pp. 215-226).
Müller, B., & Eichacker, L. A. (1999). Assembly of the D1 precursor in monomeric photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts. The Plant Cell, 11(12), 2365-2377.
Müller, M., Kunz, H. H., Schroeder, J. I., Kemp, G., Young, H. S., & Ekkehard Neuhaus, H. (2014). Decreased capacity for sodium export out of Arabidopsis chloroplasts impairs salt tolerance, photosynthesis and plant performance. Plant Journal, 78(4), 646-658.
Nagy, G., & Garab, G. (2021). Neutron scattering in photosynthesis research: recent advances and perspectives for testing crop plants. Photosynthesis Research, 150(1), 41-49.
Nobel, P. S. (1967). Relation of swelling and photophosphorylation to light-induced ion uptake by chloroplasts in vitro. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 131(1), 127-140.
Ounoki, R., Ágh, F., Hembrom, R., Ünnep, R., Szögi-Tatár, B., Böszörményi, A., & Solymosi, K. (2021). Salt stress affects plastid ultrastructure and photosynthetic activity but not the essential oil composition in spearmint (Mentha spicata L. var. crispa “Moroccan”). Frontiers in Plant Science, 12(739467), 1-18.
Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies. Environmental Science and Pollution Research International, 22(6), 4056-4075.
Pesaresi, P., Hertle, A., Pribil, M., Kleine, T., Wagner, R., Strissel, H., Ihnatowicz, A., Bonardi, V., Scharfenberg, M., Schneider, A., Pfannschmidt, T., & Leister, D. (2009). Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation. The Plant Cell, 21(8), 2402-2423.
Podmaniczki, A., Nagy, V., Vidal-Meireles, A., Tóth, D., Patai, R., Kovács, L., & Tóth, S. Z. (2021). Ascorbate inactivates the oxygen-evolving complex in prolonged darkness. Physiologia Plantarum, 171(2), 232-245.
Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 975(3), 384-394.
Pottosin, I., & Dobrovinskaya, O. (2015). Ion channels in native chloroplast membranes: challenges and potential for direct patch-clamp studies. Frontiers in Physiology, 6, 396.
Pottosin, I., & Shabala, S. (2016). Transport across chloroplast membranes: optimizing photosynthesis for adverse environmental conditions. Molecular Plant, 9(3), 356-370.
Rahman, S., Matsumuro, T., Miyake, H., & Takeoka, Y. (2000). Salinity-induced ultrastructural alterations in leaf cells of rice (Oryza sativa L.). Plant Production Science, 3(4), 422-429.
Reinbothe, C., Pollmann, S., Desvignes, C., Weigele, M., Beck, E., & Reinbothe, S. (2004). LHPP, the light-harvesting NADPH:protochlorophyllide (Pchlide) oxidoreductase:Pchlide complex of etiolated plants, is developmentally expressed across the barley leaf gradient. Plant Science, 167(5), 1027-1041.
Ryberg, M., & Sundqvist, C. (1982). Characterization of prolamellar bodies and prothylakoids fractionated from wheat etioplasts. Physiologia Plantarum, 56(2), 125-132.
Sárvári, É., Gellén, G., Sági-Kazár, M., Schlosser, G., Solymosi, K., & Solti, Á. (2022). Qualitative and quantitative evaluation of thylakoid complexes separated by Blue Native PAGE. Plant Methods, 18(1), 23.
Sárvári, É., & Nyitrai, P. (1994). Separation of chlorophyll-protein complexes by deriphat polyacrylamide gradient gel electrophoresis. Electrophoresis, 15(1), 1068-1071.
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675.
Seleiman, M. F., Kheir, A. M. S., Al-Dhumri, S., Alghamdi, A. G., Omar, E.-S. H., Aboelsoud, H. M., Abdella, K. A., & Abou El Hassan, W. H. (2019). Exploring optimal tillage improved soil characteristics and productivity of wheat irrigated with different water qualities. Agronomy, 9(5), 1-11.
Shevela, D., Arnold, J., Reisinger, V., Berends, H. M., Kmiec, K., Koroidov, S., Bue, A. K., Messinger, J., & Eichacker, L. A. (2016). Biogenesis of water splitting by photosystem II during de-etiolation of barley (Hordeum vulgare L.). Plant Cell and Environment, 39(7), 1524-1536.
Shrivastava, P., & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131.
Sipka, G., Magyar, M., Mezzetti, A., Akhtar, P., Zhu, Q., Xiao, Y., Han, G., Santabarbara, S., Shen, J.-R., Lambrev, P. H., & Garab, G. (2021). Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. The Plant Cell, 33(4), 1286-1302.
Smeller, L., Solymosi, K., Fidy, J., & Böddi, B. (2003). Activation parameters of the blue shift (Shibata shift) subsequent to protochlorophyllide phototransformation. Biochimica et Biophysica Acta, 1651(1-2), 130-138.
Solymosi, K., & Aronsson, H. (2013). Etioplasts and their significance in chloroplast biogenesis. In B. Biswal, K. Krupinska, & U. C. Biswal (Eds.), Plastid Development in Leaves during Growth and Senescence (pp. 39-71). SpringerNetherlands.
Solymosi, K., & Schoefs, B. (2010). Etioplast and etio-chloroplast formation under natural conditions: The dark side of chlorophyll biosynthesis in angiosperms. Photosynthesis Research, 105(2), 143-166.
Suo, J., Zhao, Q., David, L., Chen, S., & Dai, S. (2017). Salinity response in chloroplasts: Insights from gene characterization. International Journal of Molecular Sciences, 18(5), 1-17.
Turan, S., & Tripathy, B. C. (2015). Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiologia Plantarum, 153(3), 477-491.
Ünnep, R., Zsiros, O., Solymosi, K., Kovács, L., Lambrev, P. H., Tóth, T., Schweins, R., Posselt, D., Székely, N. K., Rosta, L., Nagy, G., & Garab, G. (2014). The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. Biochimica et Biophysica Acta - Bioenergetics, 1837(9), 1572-1580.
Vass, I., & Govindjee. (1996). Thermoluminescence from the photosynthetic apparatus. Photosynthesis Research, 48(1-2), 117-126.
Vitányi, B., Kósa, A., Solymosi, K., & Böddi, B. (2013). Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions. Physiologia Plantarum, 148(2), 307-315.
von Arnim, A., & Deng, X. W. (1996). A role for transcriptional repression during light control of plant development. BioEssays, 18(11), 905-910.
Yamane, K., Kawasaki, M., Taniguchi, M., & Miyake, H. (2003). Differential effect of NaCl and polyethylene glycol on the ultrastructure of chloroplasts in rice seedlings. Journal of Plant Physiology, 160(5), 573-575.
Yamane, K., Kawasaki, M., Taniguchi, M., & Miyake, H. (2008). Correlation between chloroplast ultrastructure and chlorophyll fluorescence characteristics in the leaves of rice (Oryza sativa L.) grown under salinity. Plant Production Science, 11(1), 139-145.
Yamane, K., Mitsuya, S., Kawasaki, M., Taniguchi, M., & Miyake, H. (2009). Antioxidant capacity and damages caused by salinity stress in apical and basal regions of rice leaf. Plant Production Science, 12(3), 319-326.
Yamane, K., Rahman, M. S., Kawasaki, M., Taniguchi, M., & Miyake, H. (2004). Pretreatment with antioxidants decreases the effects of salt stress on chloroplast ultrastructure in rice leaf segments (Oryza sativa L.). Plant Production Science, 7(3), 292-300.
Yokono, M., Takabayashi, A., Akimoto, S., & Tanaka, A. (2015). A megacomplex composed of both photosystem reaction centres in higher plants. Nature Communications, 6(1), 6675.
Yokono, M., Takabayashi, A., Kishimoto, J., Fujita, T., Iwai, M., Murakami, A., Akimoto, S., & Tanaka, A. (2019). The Psi-PSII megacomplex in green plants. Plant and Cell Physiology, 60(5), 1098-1108.