Glyco-DNA: Enzymatic Synthesis of Base-Modified and Hypermodified DNA Displaying up to Four Different Monosaccharide Units in the Major Groove
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00885X
Grantová Agentura České Republiky
PubMed
38896019
DOI
10.1002/chem.202402318
Knihovny.cz E-zdroje
- Klíčová slova
- Carbohydrates, DNA synthesis, Glycopolymers, Lectins, Nucleotides,
- MeSH
- DNA-dependentní DNA-polymerasy metabolismus chemie MeSH
- DNA * chemie metabolismus MeSH
- glykosidy chemie chemická syntéza MeSH
- konformace nukleové kyseliny MeSH
- konkanavalin A chemie metabolismus MeSH
- monosacharidy * chemie chemická syntéza MeSH
- oligonukleotidy chemie chemická syntéza metabolismus MeSH
- pyrimidiny chemie chemická syntéza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA-dependentní DNA-polymerasy MeSH
- DNA * MeSH
- glykosidy MeSH
- konkanavalin A MeSH
- monosacharidy * MeSH
- oligonukleotidy MeSH
- pyrimidiny MeSH
A portfolio of six modified 2'-deoxyribonucleoside triphosphate (dNTP) derivatives derived from 5-substituted pyrimidine or 7-substituted 7-deazapurine bearing different carbohydrate units (d-glucose, d-galactose, d-mannose, l-fucose, sialic acid and N-Ac-d-galactosamine) tethered through propargyl-glycoside linker was designed and synthesized via the Sonogashira reactions of halogenated dNTPs with the corresponding propargyl-glycosides. The nucleotides were found to be good substrates for DNA polymerases in enzymatic primer extension and PCR synthesis of modified and hypermodified DNA displaying up to four different sugars. Proof of concept binding study of sugar-modified oligonucleotides with concanavalin A showed positive effect of avidity and sugar units count.
Zobrazit více v PubMed
Y. C. Lee, R. T. Lee, Acc. Chem. Res. 1995, 28, 321–327.
K. K. Palaniappan, C. R. Bertozzi, Chem. Rev. 2016, 116, 14277–14306;
C. Müller, G. Despras, T. K. Lindhorst, Chem. Soc. Rev. 2016, 45, 3275–3302;
Y. Miura, Y. Hoshino, H. Seto, Chem. Rev. 2016, 116, 1673–1692.
B. Ernst, J. L. Magnani, Nat. Rev. Drug Discov. 2009, 8, 661–677.
S. Cecioni, A. Imberty, S. Vidal, Chem. Rev. 2015, 115, 525–561.
S.-J. Richards, M. I. Gibson, JACS Au 2021, 1, 2089–2099.
J. Saarbach, P. M. Sabale, N. Winssinger, Curr. Opin. Chem. Biol. 2019, 52, 112–124;
S. B. Yeldell, O. Seitz, Chem. Soc. Rev. 2020, 49, 6848–6865;
N. Lahav-Mankovski, P. K. Prasad, N. Oppenheimer-Low, G. Raviv, T. Dadosh, T. Unger, T. M. Salame, L. Motiei, D. Margulies, Nat. Commun. 2020, 11, 1299;
H. Kim, H. Choi, Y. Heo, C. Kim, M. Kim, K. T. Kim, Appl. Sci. 2022, 12, 1717;
M. Imiołek, N. Winssinger, ChemBioChem 2022, 24, e202200561;
O. Suss, O. Halfin, Z. Porat, Y. Fridmann Sirkis, L. Motiei, D. Margulies, Angew. Chem. Int. Ed 2024, 63, e202312461.
L. K. McKenzie, R. El-Khoury, J. D. Thorpe, M. J. Damha, M. Hollenstein, Chem. Soc. Rev. 2021, 50, 5126–5164.
R. K. Grover, S. J. K. Pond, Q. Cui, P. Subramaniam, D. A. Case, D. P. Millar, P. Wentworth, Angew. Chem. Int. Ed. 2007, 46, 2839–2843.
A. Chakrapani, O. Ruiz-Larrabeiti, R. Pohl, M. Svoboda, L. Krásný, M. Hocek, Chem. Eur. J. 2022, 28, e202200911.
N. Spinelli, E. Defrancq, F. Morvan, Chem. Soc. Rev. 2013, 42, 4557–4573;
A. Novoa, N. Winssinger, Beilstein J. Org. Chem. 2015, 11, 707–719;
K. Gorska, K.-T. Huang, O. Chaloin, N. Winssinger, Angew. Chem. Int. Ed. 2009, 48, 7695–7700;
T. Machida, A. Novoa, É. Gillon, S. Zheng, J. Claudinon, T. Eierhoff, A. Imberty, W. Römer, N. Winssinger, Angew. Chem. Int. Ed. 2017, 56, 6762–6766;
L. Farrera-Soler, J.-P. Daguer, P. Raunft, S. Barluenga, A. Imberty, N. Winssinger, Bioorg. Med. Chem. 2020, 28, 115458.
C. Scheibe, S. Wedepohl, S. B. Riese, J. Dernedde, O. Seitz, ChemBioChem 2013, 14, 236–250;
V. Bandlow, S. Liese, D. Lauster, K. Ludwig, R. R. Netz, A. Herrmann, O. Seitz, J. Am, Chem. Soc. 2017, 139, 16389–16397;
G. Bachem, E.-C. Wamhoff, K. Silberreis, D. Kim, H. Baukmann, F. Fuchsberger, J. Dernedde, C. Rademacher, O. Seitz, Angew. Chem. Int. Ed. 2020, 59, 21016–21022;
C. Scheibe, A. Bujotzek, J. Dernedde, M. Weber, O. Seitz, Chem. Sci. 2011, 2, 770.
K. Matsuura, M. Hibino, Y. Yamada, K. Kobayashi, J. Am. Chem. Soc. 2001, 123, 357–358;
K. Matsuura, M. Hibino, T. Ikeda, Y. Yamada, K. Kobayashi, Chem. Eur. J. 2004, 10, 352–359.
T. Machida, N. Winssinger, ChemBioChem 2016, 17, 811–815;
R. L. Redman, I. J. Krauss, J. Am. Chem. Soc. 2021, 143, 8565–8571.
N. Probst, R. Lartia, O. Théry, M. Alami, E. Defrancq, S. Messaoudi, Chem. Eur. J. 2018, 24, 1795–1800.
K. Matsuura, T. Akasaka, M. Hibino, K. Kobayashi, Bioconjugate Chem. 2000, 11, 202–211.
B. Thomas, X. Lu, W. R. Birmingham, K. Huang, P. Both, J. E. Reyes Martinez, R. J. Young, C. P. Davie, S. L. Flitsch, ChemBioChem 2017, 18, 858–863.
M. Hocek, Acc. Chem. Res. 2019, 52, 1730–1737.
M. Ondruš, V. Sýkorová, L. Bednárová, R. Pohl, M. Hocek, Nucleic Acids Res. 2020, 48, 11982–11993;
M. Ondruš, V. Sýkorová, M. Hocek, Chem. Commun. 2022, 58, 11248–11251;
N. Kuprikova, M. Ondruš, L. Bednárová, M. Riopedre-Fernandez, L. P. Slavětínská, V. Sýkorová, M. Hocek, Nucleic Acids Res. 2023, 51, 11428–11438.
D. Kodr, C. P. Yenice, A. Simonova, D. P. Saftić, R. Pohl, V. Sýkorová, M. Ortiz, L. Havran, M. Fojta, Z. J. Lesnikowski, C. K. O'Sullivan, M. Hocek, J. Am. Chem. Soc. 2021, 143, 7124–7134.
M. Matsui, Y. Nishiyama, S. Ueji, Y. Ebara, Bioorg. Med. Chem. Lett. 2007, 17, 456–460;
M. Matsui, Y. Ebara, Bioorg. Med. Chem. Lett. 2012, 22, 6139–6143;
M. Yamabe, K. Kaihatsu, Y. Ebara, Bioconjug. Chem. 2018, 29, 1490–1494;
M. Yamabe, K. Kaihatsu, Y. Ebara, Bioorg. Med. Chem. Lett. 2019, 29, 744–748.
M. Yamabe, A. Fujita, K. Kaihatsu, Y. Ebara, Carbohydr. Res. 2019, 474, 43–50.
K.-W. Huang, Y.-T. Lai, G.-J. Chern, S.-F. Huang, C.-L. Tsai, Y.-C. Sung, C.-C. Chiang, P.-B. Hwang, T.-L. Ho, R.-L. Huang, T.-Y. Shiue, Y. Chen, S.-K. Wang, Biomacromolecules 2018, 19, 2330–2339;
R. Daly, G. Vaz, A. M. Davies, M. O. Senge, E. M. Scanlan, Chem. Eur. J. 2012, 18, 14671–14679;
H. B. Mereyala, S. R. Gurrala, S. K. Mohan, Tetrahedron 1999, 55, 11331–11342;
J. F. Nierengarten, J. Iehl, V. Oerthel, M. Holler, B. M. Illescas, A. Muñoz, N. Martín, J. Rojo, M. Sánchez-Navarro, S. Cecioni, S. Vidal, K. Buffet, M. Durka, S. P. Vincent, Chem. Commun. 2010, 46, 3860–3862.
V. Borsenberger, M. Kukwikila, S. Howorka, Org. Biomol. Chem. 2009, 7, 3826–3835;
H. Cahová, L. Havran, P. Brázdilová, H. Pivoňková, R. Pohl, M. Fojta, M. Hocek, Angew. Chem. Int. Ed. 2008, 47, 2059–2062;
P. Čapek, R. Pohl, M. Hocek, Org. Biomol. Chem. 2006, 4, 2278–2284;
V. Sýkorová, M. Tichý, M. Hocek, ChemBioChem 2022, 23, e202100608.
D. Gelman, S. L. Buchwald, Angew. Chem. Int. Ed. 2003, 42, 5993–5996.
K. W. Anderson, S. L. Buchwald, Angew. Chem. Int. Ed. 2005, 44, 6173–6177.
B. S. Cavada, V. J. S. Osterne, C. F. Lossio, V. R. Pinto-Junior, M. V. Oliveira, M. T. L. Silva, R. B. Leal, K. S. Nascimento, Int. J. Biol. Macromol. 2019, 134, 901–911.
Y. Abdiche, D. Malashock, A. Pinkerton, J. Pons, Anal. Biochem. 2008, 377, 209–217.
D. Ponader, P. Maffre, J. Aretz, D. Pussak, N. M. Ninnemann, S. Schmidt, P. H. Seeberger, C. Rademacher, G. U. Nienhaus, L. Hartmann, J. Am. Chem. Soc. 2014, 136, 2008–2016.
J. L. Jimenez Blanco, C. Ortiz Mellet, J. M. Garcia Fernandez, Chem. Soc. Rev. 2013, 42, 4518–4531.