Glyco-DNA: Enzymatic Synthesis of Base-Modified and Hypermodified DNA Displaying up to Four Different Monosaccharide Units in the Major Groove
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
20-00885X
Grantová Agentura České Republiky
- Keywords
- Carbohydrates, DNA synthesis, Glycopolymers, Lectins, Nucleotides,
- MeSH
- DNA-Directed DNA Polymerase metabolism chemistry MeSH
- DNA * chemistry metabolism MeSH
- Glycosides chemistry chemical synthesis MeSH
- Nucleic Acid Conformation MeSH
- Concanavalin A chemistry metabolism MeSH
- Monosaccharides * chemistry chemical synthesis MeSH
- Oligonucleotides chemistry chemical synthesis metabolism MeSH
- Pyrimidines chemistry chemical synthesis MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA-Directed DNA Polymerase MeSH
- DNA * MeSH
- Glycosides MeSH
- Concanavalin A MeSH
- Monosaccharides * MeSH
- Oligonucleotides MeSH
- Pyrimidines MeSH
A portfolio of six modified 2'-deoxyribonucleoside triphosphate (dNTP) derivatives derived from 5-substituted pyrimidine or 7-substituted 7-deazapurine bearing different carbohydrate units (d-glucose, d-galactose, d-mannose, l-fucose, sialic acid and N-Ac-d-galactosamine) tethered through propargyl-glycoside linker was designed and synthesized via the Sonogashira reactions of halogenated dNTPs with the corresponding propargyl-glycosides. The nucleotides were found to be good substrates for DNA polymerases in enzymatic primer extension and PCR synthesis of modified and hypermodified DNA displaying up to four different sugars. Proof of concept binding study of sugar-modified oligonucleotides with concanavalin A showed positive effect of avidity and sugar units count.
See more in PubMed
Y. C. Lee, R. T. Lee, Acc. Chem. Res. 1995, 28, 321–327.
K. K. Palaniappan, C. R. Bertozzi, Chem. Rev. 2016, 116, 14277–14306;
C. Müller, G. Despras, T. K. Lindhorst, Chem. Soc. Rev. 2016, 45, 3275–3302;
Y. Miura, Y. Hoshino, H. Seto, Chem. Rev. 2016, 116, 1673–1692.
B. Ernst, J. L. Magnani, Nat. Rev. Drug Discov. 2009, 8, 661–677.
S. Cecioni, A. Imberty, S. Vidal, Chem. Rev. 2015, 115, 525–561.
S.-J. Richards, M. I. Gibson, JACS Au 2021, 1, 2089–2099.
J. Saarbach, P. M. Sabale, N. Winssinger, Curr. Opin. Chem. Biol. 2019, 52, 112–124;
S. B. Yeldell, O. Seitz, Chem. Soc. Rev. 2020, 49, 6848–6865;
N. Lahav-Mankovski, P. K. Prasad, N. Oppenheimer-Low, G. Raviv, T. Dadosh, T. Unger, T. M. Salame, L. Motiei, D. Margulies, Nat. Commun. 2020, 11, 1299;
H. Kim, H. Choi, Y. Heo, C. Kim, M. Kim, K. T. Kim, Appl. Sci. 2022, 12, 1717;
M. Imiołek, N. Winssinger, ChemBioChem 2022, 24, e202200561;
O. Suss, O. Halfin, Z. Porat, Y. Fridmann Sirkis, L. Motiei, D. Margulies, Angew. Chem. Int. Ed 2024, 63, e202312461.
L. K. McKenzie, R. El-Khoury, J. D. Thorpe, M. J. Damha, M. Hollenstein, Chem. Soc. Rev. 2021, 50, 5126–5164.
R. K. Grover, S. J. K. Pond, Q. Cui, P. Subramaniam, D. A. Case, D. P. Millar, P. Wentworth, Angew. Chem. Int. Ed. 2007, 46, 2839–2843.
A. Chakrapani, O. Ruiz-Larrabeiti, R. Pohl, M. Svoboda, L. Krásný, M. Hocek, Chem. Eur. J. 2022, 28, e202200911.
N. Spinelli, E. Defrancq, F. Morvan, Chem. Soc. Rev. 2013, 42, 4557–4573;
A. Novoa, N. Winssinger, Beilstein J. Org. Chem. 2015, 11, 707–719;
K. Gorska, K.-T. Huang, O. Chaloin, N. Winssinger, Angew. Chem. Int. Ed. 2009, 48, 7695–7700;
T. Machida, A. Novoa, É. Gillon, S. Zheng, J. Claudinon, T. Eierhoff, A. Imberty, W. Römer, N. Winssinger, Angew. Chem. Int. Ed. 2017, 56, 6762–6766;
L. Farrera-Soler, J.-P. Daguer, P. Raunft, S. Barluenga, A. Imberty, N. Winssinger, Bioorg. Med. Chem. 2020, 28, 115458.
C. Scheibe, S. Wedepohl, S. B. Riese, J. Dernedde, O. Seitz, ChemBioChem 2013, 14, 236–250;
V. Bandlow, S. Liese, D. Lauster, K. Ludwig, R. R. Netz, A. Herrmann, O. Seitz, J. Am, Chem. Soc. 2017, 139, 16389–16397;
G. Bachem, E.-C. Wamhoff, K. Silberreis, D. Kim, H. Baukmann, F. Fuchsberger, J. Dernedde, C. Rademacher, O. Seitz, Angew. Chem. Int. Ed. 2020, 59, 21016–21022;
C. Scheibe, A. Bujotzek, J. Dernedde, M. Weber, O. Seitz, Chem. Sci. 2011, 2, 770.
K. Matsuura, M. Hibino, Y. Yamada, K. Kobayashi, J. Am. Chem. Soc. 2001, 123, 357–358;
K. Matsuura, M. Hibino, T. Ikeda, Y. Yamada, K. Kobayashi, Chem. Eur. J. 2004, 10, 352–359.
T. Machida, N. Winssinger, ChemBioChem 2016, 17, 811–815;
R. L. Redman, I. J. Krauss, J. Am. Chem. Soc. 2021, 143, 8565–8571.
N. Probst, R. Lartia, O. Théry, M. Alami, E. Defrancq, S. Messaoudi, Chem. Eur. J. 2018, 24, 1795–1800.
K. Matsuura, T. Akasaka, M. Hibino, K. Kobayashi, Bioconjugate Chem. 2000, 11, 202–211.
B. Thomas, X. Lu, W. R. Birmingham, K. Huang, P. Both, J. E. Reyes Martinez, R. J. Young, C. P. Davie, S. L. Flitsch, ChemBioChem 2017, 18, 858–863.
M. Hocek, Acc. Chem. Res. 2019, 52, 1730–1737.
M. Ondruš, V. Sýkorová, L. Bednárová, R. Pohl, M. Hocek, Nucleic Acids Res. 2020, 48, 11982–11993;
M. Ondruš, V. Sýkorová, M. Hocek, Chem. Commun. 2022, 58, 11248–11251;
N. Kuprikova, M. Ondruš, L. Bednárová, M. Riopedre-Fernandez, L. P. Slavětínská, V. Sýkorová, M. Hocek, Nucleic Acids Res. 2023, 51, 11428–11438.
D. Kodr, C. P. Yenice, A. Simonova, D. P. Saftić, R. Pohl, V. Sýkorová, M. Ortiz, L. Havran, M. Fojta, Z. J. Lesnikowski, C. K. O'Sullivan, M. Hocek, J. Am. Chem. Soc. 2021, 143, 7124–7134.
M. Matsui, Y. Nishiyama, S. Ueji, Y. Ebara, Bioorg. Med. Chem. Lett. 2007, 17, 456–460;
M. Matsui, Y. Ebara, Bioorg. Med. Chem. Lett. 2012, 22, 6139–6143;
M. Yamabe, K. Kaihatsu, Y. Ebara, Bioconjug. Chem. 2018, 29, 1490–1494;
M. Yamabe, K. Kaihatsu, Y. Ebara, Bioorg. Med. Chem. Lett. 2019, 29, 744–748.
M. Yamabe, A. Fujita, K. Kaihatsu, Y. Ebara, Carbohydr. Res. 2019, 474, 43–50.
K.-W. Huang, Y.-T. Lai, G.-J. Chern, S.-F. Huang, C.-L. Tsai, Y.-C. Sung, C.-C. Chiang, P.-B. Hwang, T.-L. Ho, R.-L. Huang, T.-Y. Shiue, Y. Chen, S.-K. Wang, Biomacromolecules 2018, 19, 2330–2339;
R. Daly, G. Vaz, A. M. Davies, M. O. Senge, E. M. Scanlan, Chem. Eur. J. 2012, 18, 14671–14679;
H. B. Mereyala, S. R. Gurrala, S. K. Mohan, Tetrahedron 1999, 55, 11331–11342;
J. F. Nierengarten, J. Iehl, V. Oerthel, M. Holler, B. M. Illescas, A. Muñoz, N. Martín, J. Rojo, M. Sánchez-Navarro, S. Cecioni, S. Vidal, K. Buffet, M. Durka, S. P. Vincent, Chem. Commun. 2010, 46, 3860–3862.
V. Borsenberger, M. Kukwikila, S. Howorka, Org. Biomol. Chem. 2009, 7, 3826–3835;
H. Cahová, L. Havran, P. Brázdilová, H. Pivoňková, R. Pohl, M. Fojta, M. Hocek, Angew. Chem. Int. Ed. 2008, 47, 2059–2062;
P. Čapek, R. Pohl, M. Hocek, Org. Biomol. Chem. 2006, 4, 2278–2284;
V. Sýkorová, M. Tichý, M. Hocek, ChemBioChem 2022, 23, e202100608.
D. Gelman, S. L. Buchwald, Angew. Chem. Int. Ed. 2003, 42, 5993–5996.
K. W. Anderson, S. L. Buchwald, Angew. Chem. Int. Ed. 2005, 44, 6173–6177.
B. S. Cavada, V. J. S. Osterne, C. F. Lossio, V. R. Pinto-Junior, M. V. Oliveira, M. T. L. Silva, R. B. Leal, K. S. Nascimento, Int. J. Biol. Macromol. 2019, 134, 901–911.
Y. Abdiche, D. Malashock, A. Pinkerton, J. Pons, Anal. Biochem. 2008, 377, 209–217.
D. Ponader, P. Maffre, J. Aretz, D. Pussak, N. M. Ninnemann, S. Schmidt, P. H. Seeberger, C. Rademacher, G. U. Nienhaus, L. Hartmann, J. Am. Chem. Soc. 2014, 136, 2008–2016.
J. L. Jimenez Blanco, C. Ortiz Mellet, J. M. Garcia Fernandez, Chem. Soc. Rev. 2013, 42, 4518–4531.