Separation of Antibiotics Using Two Commercial Nanofiltration Membranes-Experimental Study and Modelling

. 2024 Nov 23 ; 14 (12) : . [epub] 20241123

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39728698

Grantová podpora
SGS_2024_003 Ministry of Education, Youth and Sports, Czech Republic

The widespread use of antimicrobial drugs has contributed to the increasing trace levels of contaminants in the environment, posing an environmental problem and a challenge to modern-day medicine seeking advanced solutions. Nanofiltration is one such breakthrough solution for the selective removal of antibiotics from wastewater due to their high efficiency, scalability, and versatility. This study examines the separation of antibiotics (sulfamethoxazole (SMX), trimethoprim (TMP), and metformin (MET), respectively) using commercially available membranes with an emphasis on AFC membranes (AFC 30 and AFC 80). Thus, we evaluate their efficacy, performance, and applicability in wastewater treatment processes. The data for characterizing the structural parameters of the NF membranes were determined from an uncharged organic solute rejection experiment, and the effect of various operating conditions on the retention of solutes was evaluated. All experimental data were collected using a laboratory-scale nanofiltration unit and HPLC, and rejection percentages were determined using analytical measurements. The results obtained allowed for the determination of the radius of the membrane pores using the Steric Hindrance Pore (SHP) model, resulting in values of 0.353 and 0.268 nm for the AFC 30 and AFC 80 membranes, respectively. Additionally, higher transmembrane pressure and feed flow were observed to lead to an increased rejection of antibiotics. AFC 30 demonstrated a rejection of 94% for SMX, 87% for TMP, and 87% for MET, while AFC 80 exhibited a rejection of 99.5% for SMX, 97.5% for TMP, and 98% for MET. The sieving effect appears to be the primary separation mechanism for AFC 30, as lower feed-flow rates were observed to intensify concentration polarization, thereby compromising rejection efficiency. On the contrary, AFC 80 experienced less concentration polarization due to its smaller pore sizes, effectively preventing pore clogging. Membrane performance was evaluated using the Spiegler-Kedem-Katchalsky model, based on irreversible thermodynamics, which effectively explained the mechanism of solute transport of antibiotics through the AFC 30 and AFC 80 membranes in the NF process.

Zobrazit více v PubMed

Hutchings M., Truman A., Wilkinson B. Antibiotics: Past, Present and Future. Curr. Opin. Microbiol. 2019;51:72–80. doi: 10.1016/j.mib.2019.10.008. PubMed DOI

Davies J. Origins and Evolution of Antibiotic Resistance. Microbiologia. 1996;12:9–16. doi: 10.1128/MMBR.00016-10. PubMed DOI

Gould K. Antibiotics: From Prehistory to the Present Day. J. Antimicrob. Chemother. 2016;71:572–575. doi: 10.1093/jac/dkv484. PubMed DOI

Meek R.W., Vyas H., Piddock L.J.V. Nonmedical Uses of Antibiotics: Time to Restrict Their Use? PLoS Biol. 2015;13:e1002266. doi: 10.1371/journal.pbio.1002266. PubMed DOI PMC

Klein E.Y., Van Boeckel T.P., Martinez E.M., Pant S., Gandra S., Levin S.A., Goossens H., Laxminarayan R. Global Increase and Geographic Convergence in Antibiotic Consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA. 2018;115:E3463–E3470. doi: 10.1073/pnas.1717295115. PubMed DOI PMC

Browne A.J., Chipeta M.G., Haines-Woodhouse G., Kumaran E.P.A., Hamadani B.H.K., Zaraa S., Henry N.J., Deshpande A., Reiner R.C., Day N.P.J., et al. Global Antibiotic Consumption and Usage in Humans, 2000–2018: A Spatial Modelling Study. Lancet Planet. Health. 2021;5:e893–e904. doi: 10.1016/S2542-5196(21)00280-1. PubMed DOI PMC

Bombaywala S., Mandpe A., Paliya S., Kumar S. Antibiotic Resistance in the Environment: A Critical Insight on Its Occurrence, Fate, and Eco-Toxicity. Environ. Sci. Pollut. Res. 2021;28:24889–24916. doi: 10.1007/s11356-021-13143-x. PubMed DOI

Organisation for Economic Co-Operation and Development (OECD) Pharmaceutical Residues in Freshwater Hazards and Policy Responses Pharmaceutical Residues in Freshwater: Hazards and Policy Responses. OECD Studies on Water, OECD Publishing; Paris, France: 2019. DOI

Nayak V., Cuhorka J., Mikulášek P. Separation of Drugs by Commercial Nanofiltration Membranes and Their Modelling. Membranes. 2022;12:528. doi: 10.3390/membranes12050528. PubMed DOI PMC

Smith R.D., Coast J. Antimicrobial Resistance: A Global Response. Bull. World Health Organ. 2002;80:126–133. PubMed PMC

Murray C.J., Ikuta K.S., Sharara F., Swetschinski L., Robles Aguilar G., Gray A., Han C., Bisignano C., Rao P., Wool E., et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0. PubMed DOI PMC

Du Y., Pramanik B.K., Zhang Y., Dumée L., Jegatheesan V. Recent Advances in the Theory and Application of Nanofiltration: A Review. Curr. Pollut. Rep. 2022;8:51–80. doi: 10.1007/s40726-021-00208-1. DOI

Abdel-Fatah M.A. Nanofiltration Systems and Applications in Wastewater Treatment: Review Article. Ain Shams Eng. J. 2018;9:3077–3092. doi: 10.1016/j.asej.2018.08.001. DOI

Giacobbo A., Pasqualotto I.F., Machado Filho R.C.d.C., Minhalma M., Bernardes A.M., Pinho M.N.D. Ultrafiltration and Nanofiltration for the Removal of Pharmaceutically Active Compounds from Water: The Effect of Operating Pressure on Electrostatic Solute—Membrane Interactions. Membranes. 2023;13:743. doi: 10.3390/membranes13080743. PubMed DOI PMC

Amine Didi M. Promising Techniques for Wastewater Treatment and Water Quality Assessment. Volume 119. IntechOpen; Rijeka, Croatia: 2021. Treatment of Wastewater by Nanofiltration. DOI

Yadav D., Hazarika S., Ingole P.G. Recent Development in Nanofiltration (NF) Membranes and Their Diversified Applications. Emergent Mater. 2022;5:1311–1328. doi: 10.1007/s42247-021-00302-6. DOI

Maroufi N., Hajilary N. Nanofiltration Membranes Types and Application in Water Treatment: A Review. Sustain. Water Resour. Manag. 2023;9:142. doi: 10.1007/s40899-023-00899-y. DOI

Ahmad N.N.R., Mohammad A.W., Mahmoudi E., Ang W.L., Leo C.P., Teow Y.H. An Overview of the Modification Strategies in Developing Antifouling Nanofiltration Membranes. Membranes. 2022;12:1276. doi: 10.3390/membranes12121276. PubMed DOI PMC

José López-Muñoz M., Sotto A., Arsuaga J.M. Nanofi Ltration Removal of Pharmaceutically Active Compounds. Desalination Water Treat. 2012;42:138–143. doi: 10.5004/dwt.2012.2473. DOI

Dolar D., Vuković A., Ašperger D., Košutić K. Effect of Water Matrices on Removal of Veterinary Pharmaceuticals by Nanofiltration and Reverse Osmosis Membranes. J. Environ. Sci. 2011;23:1299–1307. doi: 10.1016/S1001-0742(10)60545-1. PubMed DOI

Yangali-Quintanilla V., Sadmani A., McConville M., Kennedy M., Amy G. Rejection of Pharmaceutically Active Compounds and Endocrine Disrupting Compounds by Clean and Fouled Nanofiltration Membranes. Water Res. 2009;43:2349–2362. doi: 10.1016/j.watres.2009.02.027. PubMed DOI

Żyłła R., Foszpańczyk M., Kamińska I., Kudzin M., Balcerzak J., Ledakowicz S. Impact of Polymer Membrane Properties on the Removal of Pharmaceuticals. Membranes. 2022;12:150. doi: 10.3390/membranes12020150. PubMed DOI PMC

Nghiem L.D., Schäfer A.I., Elimelech M. Pharmaceutical Retention Mechanisms by Nanofiltration Membranes. Environ. Sci. Technol. 2005;39:7698–7705. doi: 10.1021/es0507665. PubMed DOI

Malik F., Mehdi S.F., Ali H., Patel P., Basharat A., Kumar A., Ashok F., Stein J., Brima W., Malhotra P., et al. Is Metformin Poised for a Second Career as an Antimicrobial? Diabetes Metab. Res. Rev. 2018;34:e2975. doi: 10.1002/dmrr.2975. PubMed DOI

Masadeh M.M., Alzoubi K.H., Masadeh M.M., Aburashed Z.O. Metformin as a Potential Adjuvant Antimicrobial Agent against Multidrug Resistant Bacteria. Clin. Pharmacol. 2021;13:83–90. doi: 10.2147/CPAA.S297903. PubMed DOI PMC

Triggle C.R., Mohammed I., Bshesh K., Marei I., Ye K., Ding H., MacDonald R., Hollenberg M.D., Hill M.A. Metformin: Is It a Drug for All Reasons and Diseases? Metabolism. 2022;133:155223. doi: 10.1016/j.metabol.2022.155223. PubMed DOI

Osorio S.C., Ryzhkov I.I., Spruijt E., van der Wal A., Biesheuvel P.M., Dykstra J.E. Micropollutant Removal via Nanofiltration: The Effect of Salt Concentration—Theory and Experimental Validation. J. Membr. Sci. 2024;713:123347. doi: 10.1016/j.memsci.2024.123347. DOI

Wang X.-M., Li B., Zhang T., Li X.-Y. Performance of Nanofiltration Membrane in Rejecting Trace Organic Compounds: Experiment and Model Prediction. Desalination. 2015;370:7–16. doi: 10.1016/j.desal.2015.05.010. DOI

Foureaux A.F.S., Reis E.O., Lebron Y., Moreira V., Santos L.V., Amaral M.S., Lange L.C. Rejection of Pharmaceutical Compounds from Surface Water by Nanofiltration and Reverse Osmosis. Sep. Purif. Technol. 2019;212:171–179. doi: 10.1016/j.seppur.2018.11.018. DOI

Hidalgo A.M., León G., Murcia M.D., Gómez M., Gómez E., Gómez J.L. Using Pressure-Driven Membrane Processes to Remove Emerging Pollutants from Aqueous Solutions. Int. J. Environ. Res. Public Health. 2021;18:4036. doi: 10.3390/ijerph18084036. PubMed DOI PMC

Kong F.X., Yang H.W., Wu Y.Q., Wang X.M., Xie Y.F. Rejection of Pharmaceuticals during Forward Osmosis and Prediction by Using the Solution-Diffusion Model. J. Memb. Sci. 2015;476:410–420. doi: 10.1016/j.memsci.2014.11.026. DOI

Boreen A.L., Arnold W.A., McNeill K. Photochemical Fate of Sulfa Drugs in Then Aquatic Environment: Sulfa Drugs Containing Five-Membered Heterocyclic Groups. Environ. Sci. Technol. 2004;38:3933–3940. doi: 10.1021/es0353053. PubMed DOI

Martínez-Costa J.I., Rivera-Utrilla J., Leyva-Ramos R., Sánchez-Polo M., Velo-Gala I., Mota A.J. Individual and Simultaneous Degradation of the Antibiotics Sulfamethoxazole and Trimethoprim in Aqueous Solutions by Fenton, Fenton-like and Photo-Fenton Processes Using Solar and UV Radiations. J. Photochem. Photobiol. A Chem. 2018;360:95–108. doi: 10.1016/j.jphotochem.2018.04.014. DOI

Adil S., Maryam B., Kim E.J., Dulova N. Individual and Simultaneous Degradation of Sulfamethoxazole and Trimethoprim by Ozone, Ozone/Hydrogen Peroxide and Ozone/Persulfate Processes: A Comparative Study. Environ. Res. 2020;189:109889. doi: 10.1016/j.envres.2020.109889. PubMed DOI

Gherasim C.V., Mikulášek P. Influence of Operating Variables on the Removal of Heavy Metal Ions from Aqueous Solutions by Nanofiltration. Desalination. 2014;343:67–74. doi: 10.1016/j.desal.2013.11.012. DOI

Knox C., Wilson M., Klinger C.M., Franklin M., Oler E., Wilson A., Pon A., Cox J., Chin N.E.L., Strawbridge S.A., et al. DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024;52:D1265–D1275. doi: 10.1093/nar/gkad976. PubMed DOI PMC

Mondal S., Samajdar R.N., Mukherjee S., Bhattacharyya A.J., Bagchi B. Unique Features of Metformin: A Combined Experimental, Theoretical, and Simulation Study of Its Structure, Dynamics, and Interaction Energetics with DNA Grooves. J. Phys. Chem. B. 2018;122:2227–2242. doi: 10.1021/acs.jpcb.7b11928. PubMed DOI

Di Cagno M.P., Clarelli F., Vabenø J., Lesley C., Rahman S.D., Cauzzo J., Franceschinis E., Realdon N., Stein P.C. Experimental Determination of Drug Diffusion Coefficients in Unstirred Aqueous Environments by Temporally Resolved Concentration Measurements. Mol. Pharm. 2018;15:1488–1494. doi: 10.1021/acs.molpharmaceut.7b01053. PubMed DOI

Kreft M., Lukšič M., Zorec T.M., Prebil M., Zorec R. Diffusion of D-Glucose Measured in the Cytosol of a Single Astrocyte. Cell. Mol. Life Sci. 2013;70:1483–1492. doi: 10.1007/s00018-012-1219-7. PubMed DOI PMC

Wang X.-L., Tsuru T., Togoh M., Nakao S.-I., Kimura S. Evaluation of Pore Structure and Electrical Properties of Nanofiltration Membranes. J. Chem. Eng. Jpn. 1995;28:186–192. doi: 10.1252/jcej.28.186. DOI

Gherasim C.V., Cuhorka J., Mikulášek P. Analysis of Lead(II) Retention from Single Salt and Binary Aqueous Solutions by a Polyamide Nanofiltration Membrane: Experimental Results and Modelling. J. Membr. Sci. 2013;436:132–144. doi: 10.1016/j.memsci.2013.02.033. DOI

Babić S., Ašperger D., Mutavdžić D., Horvat A.J.M., Kaštelan-Macan M. Solid Phase Extraction and HPLC Determination of Veterinary Pharmaceuticals in Wastewater. Talanta. 2006;70:732–738. doi: 10.1016/j.talanta.2006.07.003. PubMed DOI

Sayar E., Sahin S., Cevheroglu S., Atilla Hıncal A. Development and Validation of an HPLC Method for Simultaneous Determination of Trimethoprim and Sulfamethoxazole in Human Plasma. Eur. J. Drug Metab. Pharmacokinet. 2010;35:41–46. doi: 10.1007/s13318-010-0006-9. PubMed DOI

Kar M., Choudhury P.K. HPLC Method for Estimation of Metformin Hydrochloride in Formulated Microspheres and Tablet Dosage Form. Indian J. Pharm. Sci. 2009;71:318. doi: 10.4103/0250-474X.56031. PubMed DOI PMC

Reyes V.M.H., Martínez O., Hernández G.F. Plant Breeding. Universidad Autónoma Agraria Antonio Narro; Saltillo, Mexico: 1923. National Center for Biotechnology Information.

Yalkowsky S.R. Dannenfelser Aquasol Database of Aqueous Solubility Version 5. University of Arizona, College of Pharmacy; Tuscon, AZ, USA: 1992.

Diawara C.K., Lô S.M., Rumeau M., Pontie M., Sarr O. A Phenomenological Mass Transfer Approach in Nanofiltration of Halide Ions for a Selective Defluorination of Brackish Drinking Water. J. Memb. Sci. 2003;219:103–112. doi: 10.1016/S0376-7388(03)00189-3. DOI

Bowen W.R., Mohammad A.W. Characterization and Prediction of Nanofiltration Membrane Performance-A General Assessment. Chem. Eng. Res. Des. 1998;76:885–893. doi: 10.1205/026387698525685. DOI

Shen J., Schäfer A. Removal of Fluoride and Uranium by Nanofiltration and Reverse Osmosis: A Review. Chemosphere. 2014;117:679–691. doi: 10.1016/j.chemosphere.2014.09.090. PubMed DOI

Adeniyi A., Mbaya R., Popoola P., Gomotsegang F., Ibrahim I., Onyango M. Predicting the Fouling Tendency of Thin Film Composite Membranes Using Fractal Analysis and Membrane Autopsy. Alex. Eng. J. 2020;59:4397–4407. doi: 10.1016/j.aej.2020.07.046. DOI

Van Der Bruggen B., Vandecasteele C. Modelling of the Retention of Uncharged Molecules with Nanofiltration. Water Res. 2002;36:1360–1368. doi: 10.1016/S0043-1354(01)00318-9. PubMed DOI

Bowen W.R., Doneva T.A. Atomic Force Microscopy Studies of Nanofiltration Membranes: Surface Morphology, Pore Size Distribution and Adhesion. Desalination. 2000;129:163–172. doi: 10.1016/S0011-9164(00)00058-8. DOI

Otero-Fernández A., Díaz P., Otero J.A., Ibáñez R., Maroto-Valiente A., Palacio L., Prádanos P., Carmona F.J., Hernández A. Morphological, Chemical and Electrical Characterization of a Family of Commercial Nanofiltration Polyvinyl Alcohol Coated Polypiperazineamide Membranes. Eur. Polym. J. 2020;126:109544. doi: 10.1016/j.eurpolymj.2020.109544. DOI

Han R., Zhang S., Jian X. Effect of Electric Field Intensity on the Performance of Poly(Piperazine Amide) Nanofiltration Membranes. Desalination Water Treat. 2016;57:28531–28536. doi: 10.1080/19443994.2016.1189852. DOI

Escoda A., Fievet P., Lakard S., Szymczyk A., Déon S. Influence of Salts on the Rejection of Polyethyleneglycol by an NF Organic Membrane: Pore Swelling and Salting-out Effects. J. Membr. Sci. 2010;347:174–182. doi: 10.1016/j.memsci.2009.10.021. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...