Separation of Drugs by Commercial Nanofiltration Membranes and Their Modelling

. 2022 May 17 ; 12 (5) : . [epub] 20220517

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35629854

Grantová podpora
CZ.02.2.69/0.0/0.0/18_053/0016969 'International mobility of employees of the University of Pardubice II' 'International mobility of employees of the University of Pardubice II'

Pharmaceutical drugs have recently emerged as one the foremost water pollutants in the environment, triggering a severe threat to living species. With their complex chemical nature and the intricacy involved in the removal process in mind, the present work investigates the performance of commercially available polyamide thin-film composite tubular nanofiltration (NF) membranes (AFC 40 and AFC 80) in removing polluting pharmaceutical drugs, namely caffeine, paracetamol and naproxen. The structural parameters of the NF membranes were estimated by water permeability measurements and retention measurements with aqueous solutions of organic, uncharged (glycerol) solutes. The effect of various operating conditions on the retention of solutes by the AFC 40 and AFC 80 membranes, such as applied transmembrane pressure, tangential feed flow velocity, feed solution concentration and ionic strength, were evaluated. It was found that the rejection of drugs was directly proportional to transmembrane pressure and feed flow rate. Due to the size difference between caffeine (MW = 194.9 g/mol), naproxen (MW = 230.2 g/mol) and paracetamol (MW = 151.16 g/mol), the AFC 40 membrane proved to be efficient for caffeine and naproxen, with rejection efficiencies of 88% and 99%, respectively. In contrast, the AFC 80 membrane proved to be better for paracetamol, with a rejection efficiency of 96% (and rejection efficiency of 100% for caffeine and naproxen). It was also observed that the rejection efficiency of the AFC 80 membrane did not change with changes in external operating conditions compared to the AFC 40 membrane. The membrane performance was predicted using the Spiegler-Kedem model based on irreversible thermodynamics, which was successfully used to explain the transport mechanism of solutes through the AFC 40 and AFC 80 membranes in the NF process.

Zobrazit více v PubMed

Garcia-Ivars J., Martella L., Massella M., Carbonell-Alcaina C., Alcaina-Miranda M.I., Iborra-Clar M.I. Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants. Water Res. 2017;125:360–373. doi: 10.1016/j.watres.2017.08.070. PubMed DOI

Chandrakanth G., Antía P.G., Ganapati D.Y., Inmaculada O., Raquel I., Virendra K.R., Kumudini V.M. Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse. Ind. Eng. Chem. Res. 2014;53:11571–11592.

Vasilachi I.C., Asiminicesei D.M., Fertu D.I., Gavrilescu M. Occurrence and fate of emerging pollutants in Water environmental and options for their removal. Water. 2021;13:181. doi: 10.3390/w13020181. DOI

Kim S., Chu K.H., Al-Hamadani Y.A.J., Park C.M., Jang M., Kim D.H., Yu M., Heo J., Yoon Y. Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chem. Eng. J. 2018;335:896–914. doi: 10.1016/j.cej.2017.11.044. DOI

Jonathan C.E., Vítor J.P.V. Innovative light-driven chemical/catalytic reactors towards contaminants of emerging concern mitigation: A review. Chem. Eng. J. 2020;394:124865.

Mehrdad T., Satinder K.B., Verma M., Surampalli R.Y., Zhang T.C., Valero J.R. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Sci. Total Environ. 2016;547:60–77. PubMed

Ahmad J., Naeem S., Ahmad M., Usman A.R., Al-Wabel M.I. A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes. J. Environ. Manag. 2019;246:214–228. doi: 10.1016/j.jenvman.2019.05.152. PubMed DOI

Jayasiri H.B., Purushothaman C.S., Vennila A. Pharmaceutically active compounds (PhACs): A threat for aquatic environment. J. Mar. Sci. Res. Dev. 2013;4:1–2. doi: 10.4172/2155-9910.1000e122. DOI

Molinari R., Caruso A., Argurio P., Poerio T. Diclofenac transport through stagnant sandwich and supported liquid membrane systems. Ind. Eng. Chem. Res. 2006;45:9115–9121. doi: 10.1021/ie0607088. DOI

Mamo J., García-Galán M.J., Stefania M., Rodríguez-Mozaz S., Barceló D., Monclús H., Rodriguez-Roda I., Comas J. Fate of pharmaceuticals and their transformation products in integrated membrane systems for wastewater reclamation. Chem. Eng. J. 2018;331:450–461. doi: 10.1016/j.cej.2017.08.050. DOI

Lange F., Cornelissen S., Kubac D., Sein M.M., von Sonntag J., Hannich C.B. Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin. Chemosphere. 2006;65:17–23. doi: 10.1016/j.chemosphere.2006.03.014. PubMed DOI

Anon . Pharmaceuticals in Drinking-Water. World Health Organization; Geneva, Switzerland: 2011.

Carolina F.C., Lisete C.L., Miriam C.S.A. Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—A review. J. Water Process Eng. 2019;32:1009272.

Anderson P.D. Technical Brief: Endocrine Disrupting Compounds and Implications for Wastewater Treatment, WERF Report: Surface Water Quality, 04-WEM-6. IWA; London, UK: 2005.

Yuyi Y., Wenjuan S., Hui L., Weibo W., Linna D., Wei X. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environ. Int. 2018;116:60–73. PubMed

Bell K.Y., Bandy J., Beck S., Keen O., Kolankowsky N., Parker A.M., Linden K. Emerging pollutants—Part II: Treatment. Water Environ. Res. 2012;84:1909–1940. doi: 10.2175/106143012X13407275695832. DOI

Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol. Lett. 2002;131:5–17. doi: 10.1016/S0378-4274(02)00041-3. PubMed DOI

Xie P., Chen C., Zhang C., Su G., Ren N., Ho S.H. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae. Water Res. 2020;172:115475. doi: 10.1016/j.watres.2020.115475. PubMed DOI

Diemert S., Andrews R.C. The impact of alum coagulation on pharmaceutically active compounds, endocrine disrupting compounds and natural organic matter. Water Sci. Technol. Water Supply. 2013;13:1348–1357. doi: 10.2166/ws.2013.145. DOI

El-Kemary M., El-Shamy H., El-Mehasseb I. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. J. Lumin. 2010;130:2327–2331. doi: 10.1016/j.jlumin.2010.07.013. DOI

Dodd M.C., Kohler H.P.E., Von Gunten U. Oxidation of Antibacterial Compounds by Ozone and Hydroxyl Radical: Elimination of Biological Activity during Aqueous Ozonation Processes. Environ. Sci. Technol. 2009;43:2498–2504. doi: 10.1021/es8025424. PubMed DOI

Le-Minh N., Khan S.J., Drewes J.E., Stuetz R.M. Fate of antibiotics during municipal water recycling treatment processes. Water Res. 2010;44:4295–4323. doi: 10.1016/j.watres.2010.06.020. PubMed DOI

Geens J., Witte B.D., Bruggen B.V.D. Removal of API’s (Active Pharmaceutical Ingredients) from organic solvents by nanofiltration. Sep. Sci. Technol. 2007;42:2435–2449. doi: 10.1080/01496390701477063. DOI

Jye L.W., Ismail A.F. Nanofiltration Membranes: Synthesis, Characterization, and Applications. CRC Press Taylor & Francis Group; Boca Raton, FL, USA: 2017.

Yangali-Quintanilla V., Sadmani A., McConville M., Kennedy M., Amy G. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes. Water Res. 2009;43:2349–2362. doi: 10.1016/j.watres.2009.02.027. PubMed DOI

María J.L.M., Arcadio S., Arsuaga J.M. Nanofiltration removal of pharmaceutically active compounds. Desalina. Water Treat. 2012;42:138–143.

Verliefde A.R.D., Cornelissen E.R., Heijman S.G.J., Petrinic I., Luxbacher T., Amy G.L., Van der Bruggen B., Dijk J.C.V. Influence of membrane fouling by (pretreated) surface water on rejection of pharmaceutically active compounds (PhACs) by nanofiltration membranes. J. Membr. Sci. 2009;330:90–103. doi: 10.1016/j.memsci.2008.12.039. DOI

Jiř C., Edwin W., Petr M. Removal of micropollutants from water by commercially available nanofiltration membranes. Sci. Total Environ. 2020;720:137474. PubMed

Kimura K., Amy G., Drewes J., Heberer T., Kim T., Watanabe Y. Rejection of organic micropollutants (disinfection byproducts, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J. Membr. Sci. 2003;227:113–121. doi: 10.1016/j.memsci.2003.09.005. DOI

Nair R.R., Protasova E., Strand S., Bilstad T. Implementation of Spiegler– Kedem and steric hindrance pore models for analyzing nanofiltration membrane performance for smart water production. Membranes. 2018;8:78. doi: 10.3390/membranes8030078. PubMed DOI PMC

Su J., Chung T.-S. Sublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in FO processes. J. Membr. Sci. 2011;376:214–224. doi: 10.1016/j.memsci.2011.04.031. DOI

Qadir D., Mukhtar H.B., Keong L.K. Rejection of divalent ions in commercial tubularmembranes: Effect of feed concentration and anion type. Sustain. Environ. Res. 2017;27:103–106. doi: 10.1016/j.serj.2016.12.002. DOI

Mahlangu T.O., Msagati T.A.M., Hoek E.M.V., Verliefde A.R.D., Mamba B.B. Rejection of pharmaceuticals by nanofiltration (NF) membranes: Effect of fouling on rejection behavior. Phys. Chem. Earth. 2014;76–78:28–34. doi: 10.1016/j.pce.2014.11.008. DOI

Licona K.P.M., Geaquinto L.R.O., Nicolini J.V., Figueiredo N.G., Chiapetta S.C., Habert A.C., Yokoyama L.J. Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water. Water. Process. Eng. 2018;25:195–204. doi: 10.1016/j.jwpe.2018.08.002. DOI

Asunción M.H., Gerardo L., María D.M., María G., Elisa G., José L.G. Using Pressure-Driven Membrane Processes to Remove Emerging Pollutants from Aqueous Solutions. Int. J. Environ. Res. Public Health. 2021;18:4036. PubMed PMC

Azaïs A., Mendret J., Gassara S., Petit E., Deratani A., Brosillon S. Nanofiltration for wastewater reuse: Counteractive effects of fouling and matrice on the rejection of pharmaceutical active compounds. Sep. Purif. Technol. 2014;133:313–327. doi: 10.1016/j.seppur.2014.07.007. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Separation of Antibiotics Using Two Commercial Nanofiltration Membranes-Experimental Study and Modelling

. 2024 Nov 23 ; 14 (12) : . [epub] 20241123

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...