Effect of Non-Modified as Well as Surface-Modified SiO2 Nanoparticles on Red Blood Cells, Biological and Model Membranes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37511517
PubMed Central
PMC10380300
DOI
10.3390/ijms241411760
PII: ijms241411760
Knihovny.cz E-zdroje
- Klíčová slova
- biological membranes, erythrocyte membranes, erythrocytes, hemolytic toxicity, liposomes, osmotic resistance, silica nanoparticles,
- MeSH
- buněčná membrána MeSH
- erytrocyty MeSH
- membrány MeSH
- nanočástice * chemie MeSH
- oxid křemičitý * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid křemičitý * MeSH
Nanoparticles are extremely promising components that are used in diagnostics and medical therapies. Among them, silica nanoparticles are ultrafine materials that, due to their unique physicochemical properties, have already been used in biomedicine, for instance, in cancer therapy. The aim of this study was to investigate the cytotoxicity of three types of nanoparticles (SiO2, SiO2-SH, and SiO2-COOH) in relation to red blood cells, as well as the impact of silicon dioxide nanoparticles on biological membranes and liposome models of membranes. The results obtained prove that hemolytic toxicity depends on the concentration of nanoparticles and the incubation period. Silica nanoparticles have a marginal impact on the changes in the osmotic resistance of erythrocytes, except for SiO2-COOH, which, similarly to SiO2 and SiO2-SH, changes the shape of erythrocytes from discocytes mainly towards echinocytes. What is more, nanosilica has an impact on the change in fluidity of biological and model membranes. The research gives a new view of the practical possibilities for the use of large-grain nanoparticles in biomedicine.
Zobrazit více v PubMed
Tan Y., Yu D., Feng J., You H., Bai Y., He J., Cao H., Che Q., Guo J., Su Z. Toxicity evaluation of silica nanoparticles for delivery applications. Drug Deliv. Transl. Res. 2023:1–26. doi: 10.1007/s13346-023-01312-z. PubMed DOI
Chauhan S., Manivasagam G., Kumar P., Ambasta R.K. Cellular toxicity of mesoporous silica nanoparticle in SHSY5Y and BM-MNCs cell. Pharm. Nanotechnol. 2018;6:245–252. doi: 10.2174/2211738506666181031160108. PubMed DOI
Napierska D., Thomassen L.C., Lison D., Martens J.A., Hoet P.H. The nanosilica hazard: Another variable entity. Part. Fibre Toxicol. 2010;7:39. doi: 10.1186/1743-8977-7-39. PubMed DOI PMC
Jafari S., Derakhshankhah H., Alaei L., Fattahi A., Varnamkhasti B.S., Saboury A.A. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother. 2019;109:1100–1111. doi: 10.1016/j.biopha.2018.10.167. PubMed DOI
Zhou Y., Quan G., Wu Q., Zhang X., Niu B., Wu B., Huang Y., Pan X., Wu C. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B. 2018;8:165–177. doi: 10.1016/j.apsb.2018.01.007. PubMed DOI PMC
Ferenc M., Katir N., Milowska K., Bousmina M., Brahmi Y., Felczak A., Lisowska K., Bryszewska M., El Kadib A. Impact of mesoporous silica surface functionalization on human serum albumin interaction, cytotoxicity and antibacterial activity. Microporous Mesoporous Mater. 2016;231:47–56. doi: 10.1016/j.micromeso.2016.05.012. DOI
Mukhopadhyay S., Veroniaina H., Chimombe T., Han L., Zhenghong W., Xiaole Q. Synthesis and compatibility evaluation of versatile mesoporous silica nanoparticles with red blood cells: An overview. RSC Adv. 2019;9:35566–35578. doi: 10.1039/C9RA06127D. PubMed DOI PMC
Repsold L., Joubert A.M. Eryptosis: An erythrocyte’s suicidal type of cell death. BioMed Res. Int. 2018;2018:9405617. doi: 10.1155/2018/9405617. PubMed DOI PMC
Stasiuk M., Kijanka G., Kozubek A. Zmiany kształtu erytrocytów i czynniki je wywołujące. Postępy Biochem. 2009;55:425–433. PubMed
Spychalska J. Membranopatie krwinek czerwonych—patogeneza, obraz kliniczny i diagnostyka. Hematologia. 2012;3:81–119.
Bruch G.E., Fernandes L.F., Bassi B.L., Alves M.T.R., Pereira I.O., Frézard F., Massensini A.R. Liposomes for drug delivery in stroke. Brain Res. Bull. 2019;152:246–256. doi: 10.1016/j.brainresbull.2019.07.015. PubMed DOI
Kozub P. Doctoral Thesis. University of Silesia in Katowice; Katowice, Poland: 2015. Otrzymywanie Oraz Charakterystyka Liposomów-Potencjalnych Nośników Leków w Celu Zwiększenia Skuteczności Terapii Fotodynamicznej.
Litwińczuk-Mammadova A., Cieślik-Boczula K., Rospenk M. Budowa i funkcje układów białkowo-lipidowych. Wiadomości Chem. 2016;70:11–12.
Bozzuto G., Molinari A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015;10:975. doi: 10.2147/IJN.S68861. PubMed DOI PMC
Horakova J., Mikes P., Saman A., Svarcova T., Jencova V., Suchy T., Heczkova B., Jakubkova S., Jirousova J., Prochazkova R. Comprehensive assessment of electrospun scaffolds hemocompatibility. Mater. Sci. Eng. C. 2018;82:330–335. doi: 10.1016/j.msec.2017.05.011. PubMed DOI
Bhavsar D., Patel V., Sawant K. Systematic investigation of in vitro and in vivo safety, toxicity and degradation of mesoporous silica nanoparticles synthesized using commercial sodium silicate. Microporous Mesoporous Mater. 2019;284:343–352. doi: 10.1016/j.micromeso.2019.04.050. DOI
Yildirim A., Ozgur E., Bayindir M. Impact of mesoporous silica nanoparticle surface functionality on hemolytic activity, thrombogenicity and non-specific protein adsorption. J. Mater. Chem. B. 2013;1:1909–1920. doi: 10.1039/c3tb20139b. PubMed DOI
Solarska-Ściuk K., Gajewska A., Glińska S., Studzian M., Michlewska S., Balcerzak Ł., Skolimowski J., Kolago B., Bartosz G. Intracellular transport of nanodiamond particles in human endothelial and epithelial cells. Chem.-Biol. Interact. 2014;219:90–100. doi: 10.1016/j.cbi.2014.05.013. PubMed DOI
Jędrzejczak P., Parus A., Balicki S., Kornaus K., Janczarek M., Wilk K.A., Jesionowski T., Ślosarczyk A., Klapiszewski Ł. The influence of various forms of titanium dioxide on the performance of resultant cement composites with photocatalytic and antibacterial functions. Mater. Res. Bull. 2023;160:112139. doi: 10.1016/j.materresbull.2022.112139. DOI
Feng P., Chang H., Liu X., Ye S., Shu X., Ran Q. The significance of dispersion of nano-SiO2 on early age hydration of cement pastes. Mater. Des. 2020;186:108320. doi: 10.1016/j.matdes.2019.108320. DOI
Bernhardt I., Ellory J.C. Red Cell Membrane Transport in Health and Disease. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2013.
Jouyandeh M., Jazani O.M., Navarchian A.H., Shabanian M., Vahabi H., Saeb M.R. Bushy-surface hybrid nanoparticles for developing epoxy superadhesives. Appl. Surf. Sci. 2019;479:1148–1160. doi: 10.1016/j.apsusc.2019.01.283. DOI
Solarska-Ściuk K., Adach K., Cyboran-Mikołajczyk S., Bonarska-Kujawa D., Rusak A., Cwynar-Zając Ł., Machałowski T., Jesionowski T., Grzywacz K., Fijałkowski M. Are biogenic and pyrogenic mesoporous SiO2 nanoparticles safe for normal cells? Molecules. 2021;26:1427. doi: 10.3390/molecules26051427. PubMed DOI PMC
Ranjbarzadeh R., Moradikazerouni A., Bakhtiari R., Asadi A., Afrand M. An experimental study on stability and thermal conductivity of water/silica nanofluid: Eco-friendly production of nanoparticles. J. Clean. Prod. 2019;206:1089–1100. doi: 10.1016/j.jclepro.2018.09.205. DOI
Bois L., Bonhommé A., Ribes A., Pais B., Raffin G., Tessier F. Functionalized silica for heavy metal ions adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2003;221:221–230. doi: 10.1016/S0927-7757(03)00138-9. DOI
Mureseanu M., Reiss A., Stefanescu I., David E., Parvulescu V., Renard G., Hulea V. Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere. 2008;73:1499–1504. doi: 10.1016/j.chemosphere.2008.07.039. PubMed DOI
Jesionowski T., Ciesielczyk F., Krysztafkiewicz A. Influence of selected alkoxysilanes on dispersive properties and surface chemistry of spherical silica precipitated in emulsion media. Mater. Chem. Phys. 2010;119:65–74. doi: 10.1016/j.matchemphys.2009.07.034. DOI
Patwardhan S.V., Emami F.S., Berry R.J., Jones S.E., Naik R.R., Deschaume O., Heinz H., Perry C.C. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. J. Am. Chem. Soc. 2012;134:6244–6256. doi: 10.1021/ja211307u. PubMed DOI
Klapiszewski Ł., Nowacka M., Milczarek G., Jesionowski T. Physicochemical and electrokinetic properties of silica/lignin biocomposites. Carbohydr. Polym. 2013;94:345–355. doi: 10.1016/j.carbpol.2013.01.058. PubMed DOI
do Canto A.M., Robalo J.R., Santos P.D., Carvalho A.J.P., Ramalho J.P., Loura L.M. Diphenylhexatriene membrane probes DPH and TMA-DPH: A comparative molecular dynamics simulation study. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2016;1858:2647–2661. doi: 10.1016/j.bbamem.2016.07.013. PubMed DOI
Wang J., Wang W., Kollman P.A., Case D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006;25:247–260. doi: 10.1016/j.jmgm.2005.12.005. PubMed DOI
Li Z., Mu Y., Peng C., Lavin M.F., Shao H., Du Z. Understanding the mechanisms of silica nanoparticles for nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021;13:e1658. doi: 10.1002/wnan.1658. PubMed DOI PMC
Chen L., Zhou X., He C. Mesoporous silica nanoparticles for tissue-engineering applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019;11:e1573. doi: 10.1002/wnan.1573. PubMed DOI
Ferenc M., Katir N., Miłowska K., Bousmina M., Majoral J.P., Bryszewska M., El Kadib A. Haemolytic activity and cellular toxicity of SBA-15-type silicas: Elucidating the role of the mesostructure, surface functionality and linker length. J. Mater. Chem. B. 2015;3:2714–2724. doi: 10.1039/C4TB01901F. PubMed DOI
Gao J., Monaghan S.A. Hematopathology. Elsevier; Amsterdam, The Netherlands: 2018. Red blood cell/hemoglobin disorders; pp. 3–56.
Elsabahy M., Wooley K.L. Cytokines as biomarkers of nanoparticle immunotoxicity. Chem. Soc. Rev. 2013;42:5552–5576. doi: 10.1039/c3cs60064e. PubMed DOI PMC
Labbaf S., Tsigkou O., Müller K.H., Stevens M.M., Porter A.E., Jones J.R. Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials. 2011;32:1010–1018. doi: 10.1016/j.biomaterials.2010.08.082. PubMed DOI
Zhai W., He C., Wu L., Zhou Y., Chen H., Chang J., Zhang H. Degradation of hollow mesoporous silica nanoparticles in human umbilical vein endothelial cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012;100:1397–1403. doi: 10.1002/jbm.b.32711. PubMed DOI
Zhao Y., Vivero-Escoto J.L., Slowing I.I., Trewyn B.G., Lin V.S. Capped mesoporous silica nanoparticles as stimuli-responsive controlled release systems for intracellular drug/gene delivery. Expert Opin. Drug Deliv. 2010;7:1013–1029. doi: 10.1517/17425247.2010.498816. PubMed DOI
Vivero-Escoto J.L., Slowing I.I., Trewyn B.G., Lin V.S.Y. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small. 2010;6:1952–1967. doi: 10.1002/smll.200901789. PubMed DOI
Lin Y., Haynes C. CH2-Hemolysis and size different MSN. J. Am. Chem. Soc. 2010;132:4834–4842. doi: 10.1021/ja910846q. PubMed DOI
Yu T., Malugin A., Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano. 2011;5:5717–5728. doi: 10.1021/nn2013904. PubMed DOI PMC
Paula A.J., Martinez D.S.T., Araujo Júnior R.T., Souza Filho A.G., Alves O.L. Suppression of the hemolytic effect of mesoporous silica nanoparticles after protein corona interaction: Independence of the surface microchemical environment. J. Braz. Chem. Soc. 2012;23:1807–1814. doi: 10.1590/S0103-50532012005000048. DOI
Jiang L., Yu Y., Li Y., Yu Y., Duan J., Zou Y., Li Q., Sun Z. Oxidative damage and energy metabolism disorder contribute to the hemolytic effect of amorphous silica nanoparticles. Nanoscale Res. Lett. 2016;11:57. doi: 10.1186/s11671-016-1280-5. PubMed DOI PMC
Shinto H., Fukasawa T., Yoshisue K., Tezuka M., Orita M. Cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, malignant melanocytes, and macrophages. Adv. Powder Technol. 2014;25:1872–1881. doi: 10.1016/j.apt.2014.09.002. PubMed DOI
Wei X., Jiang W., Yu J., Ding L., Hu J., Jiang G. Effects of SiO2 nanoparticles on phospholipid membrane integrity and fluidity. J. Hazard. Mater. 2015;287:217–224. doi: 10.1016/j.jhazmat.2015.01.063. PubMed DOI
Shin T.H., Ketebo A.A., Lee D.Y., Lee S., Kang S.H., Basith S., Manavalan B., Kwon D.H., Park S., Lee G. Decrease in membrane fluidity and traction force induced by silica-coated magnetic nanoparticles. J. Nanobiotechnol. 2021;19:1–14. doi: 10.1186/s12951-020-00765-5. PubMed DOI PMC
Pruchnik H., Włoch A., Bonarska-Kujawa D., Kleszczyńska H. An In Vitro study of the effect of cytotoxic triorganotin dimethylaminophenylazobenzoate complexes on red blood cells. J. Membr. Biol. 2018;251:735–745. doi: 10.1007/s00232-018-0051-x. PubMed DOI PMC
Cyboran S., Oszmiański J., Kleszczyńska H. Interaction between plant polyphenols and the erythrocyte membrane. Cell. Mol. Biol. Lett. 2012;17:77–88. doi: 10.2478/s11658-011-0038-4. PubMed DOI PMC
Dodge J.T., Mitchell C., Hanahan D.J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch. Biochem. Biophys. 1963;100:119–130. doi: 10.1016/0003-9861(63)90042-0. PubMed DOI
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Maddy A., Dunn M., Kelly P. The characterisation of membrane proteins by centrifugation and gel electrophoresis a comparison of proteins prepared by different methods. Biochim. Et Biophys. Acta (BBA)-Biomembr. 1972;288:263–276. doi: 10.1016/0005-2736(72)90247-7. PubMed DOI
Bonarska-Kujawa D., Pruchnik H., Oszmiański J., Sarapuk J., Kleszczyńska H. Changes caused by fruit extracts in the lipid phase of biological and model membranes. Food Biophys. 2011;6:58–67. doi: 10.1007/s11483-010-9175-y. PubMed DOI PMC
Cyboran-Mikołajczyk S., Bonarska-Kujawa D., Męczarska K., Krawczyk-ebek A., Kostrzewa-Susłow E. Novel O-Methylglucoside Derivatives of Flavanone in Interaction with Model Membrane and Transferrin. Membranes. 2022;12:978. doi: 10.3390/membranes12100978. PubMed DOI PMC